Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Microbiol ; 19(2): 500-510, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27376348

RESUMEN

Silver nanoparticles (AgNPs) enter estuaries via wastewater treatment effluents, where they can inhibit microorganisms, because of their antimicrobial properties. Ammonia-oxidising bacteria (AOB) and archaea (AOA) are involved in the first step of nitrification and are important to ecosystem function, especially where effluent discharge results in high nitrogen inputs. Here, we investigated the effect of a pulse addition of AgNPs on AOB and AOA ammonia monooxygenase (amoA) gene abundances and benthic nitrification potential rates (NPR) in low-salinity and mesohaline estuarine sediments. Whilst exposure to 0.5 mg L-1 AgNPs had no significant effect on amoA gene abundances or NPR, 50 mg L-1 AgNPs significantly decreased AOB amoA gene abundance (up to 76% over 14 days), and significantly decreased NPR by 20-fold in low-salinity sediments and by twofold in mesohaline sediments, after one day. AgNP behaviour differed between sites, whereby greater aggregation occurred in mesohaline waters (possibly due to higher salinity), which may have reduced toxicity. In conclusion, AgNPs have the potential to reduce ammonia oxidation in estuarine sediments, particularly where AgNPs accumulate over time and reach high concentrations. This could lead to long-term risks to nitrification, especially in polyhaline estuaries where ammonia-oxidation is largely driven by AOB.


Asunto(s)
Genes Bacterianos , Sedimentos Geológicos/microbiología , Nanopartículas del Metal/toxicidad , Nitrificación/efectos de los fármacos , Oxidorreductasas/genética , Plata/toxicidad , Contaminantes Químicos del Agua/toxicidad , Amoníaco/metabolismo , Archaea/genética , Archaea/metabolismo , Bacterias/genética , Bacterias/metabolismo , Estuarios , Genes Arqueales , Oxidación-Reducción , Salinidad
2.
Appl Environ Microbiol ; 81(1): 159-65, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25326303

RESUMEN

Nitrification, mediated by ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA), is important in global nitrogen cycling. In estuaries where gradients of salinity and ammonia concentrations occur, there may be differential selections for ammonia-oxidizer populations. The aim of this study was to examine the activity, abundance, and diversity of AOA and AOB in surface oxic sediments of a highly nutrified estuary that exhibits gradients of salinity and ammonium. AOB and AOA communities were investigated by measuring ammonia monooxygenase (amoA) gene abundance and nitrification potentials both spatially and temporally. Nitrification potentials differed along the estuary and over time, with the greatest nitrification potentials occurring mid-estuary (8.2 µmol N grams dry weight [gdw](-1) day(-1) in June, increasing to 37.4 µmol N gdw(-1) day(-1) in January). At the estuary head, the nitrification potential was 4.3 µmol N gdw(-1) day(-1) in June, increasing to 11.7 µmol N gdw(-1) day(-1) in January. At the estuary head and mouth, nitrification potentials fluctuated throughout the year. AOB amoA gene abundances were significantly greater (by 100-fold) than those of AOA both spatially and temporally. Nitrosomonas spp. were detected along the estuary by denaturing gradient gel electrophoresis (DGGE) band sequence analysis. In conclusion, AOB dominated over AOA in the estuarine sediments, with the ratio of AOB/AOA amoA gene abundance increasing from the upper (freshwater) to lower (marine) regions of the Colne estuary. These findings suggest that in this nutrified estuary, AOB (possibly Nitrosomonas spp.) were of major significance in nitrification.


Asunto(s)
Amoníaco/metabolismo , Archaea/clasificación , Archaea/metabolismo , Bacterias/clasificación , Bacterias/metabolismo , Estuarios , Sedimentos Geológicos/microbiología , Archaea/genética , Archaea/aislamiento & purificación , Bacterias/genética , Bacterias/aislamiento & purificación , Electroforesis en Gel de Gradiente Desnaturalizante , Datos de Secuencia Molecular , Nitrificación , Oxidación-Reducción , Oxidorreductasas/genética , Estaciones del Año , Análisis de Secuencia de ADN , Reino Unido
3.
Antioxidants (Basel) ; 12(4)2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37107316

RESUMEN

Elevated inflammation has been associated with adverse mood states, such as depression and anxiety, and antioxidant nutrients, such as vitamin C, have been associated with decreased inflammation and improved mood. In the current study comprising a cohort of pregnant women with depression and anxiety, we hypothesised that elevated inflammation would be associated with adverse mood states and inversely associated with vitamin C status and that multinutrient supplementation would optimise vitamin concentrations and attenuate inflammation. Sixty-one participants from the NUTRIMUM trial had blood samples collected between 12 and 24 weeks gestation (baseline) and following 12 weeks of daily supplementation with a multinutrient formula containing 600 mg of vitamin C or active placebo. The samples were analysed for inflammatory biomarkers (C-reactive protein (CRP) and cytokines) and vitamin C content and were related to scales of depression and anxiety. Positive correlations were observed between interleukin-6 (IL-6) and all of the mood scales administered (p < 0.05), including the Edinburgh Postnatal Depression Scale, the Clinical Global Impressions-Severity Scale, the Montgomery and Åsberg Depression Rating Scale, the Depression Anxiety Stress Scale 21, and the Generalized Anxiety Disorder-7 (GAD-7). CRP correlated weakly with GAD-7 (p = 0.05). There was an inverse correlation between CRP and the vitamin C status of the cohort (p = 0.045), although there was no association of the latter with the mood scales (p > 0.05). Supplementation with the multinutrient formula resulted in a significant increase in the vitamin C status of the cohort (p = 0.007) but did not affect the inflammatory biomarker concentrations (p > 0.05). In conclusion, greater systemic inflammation was associated with worse mood states; however, 12-week multinutrient supplementation did not alter inflammatory biomarker concentrations. Nevertheless, the vitamin C status of the cohort was improved with supplementation, which may aid pregnancy and infant outcomes.

4.
Vet Microbiol ; 195: 158-164, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27771062

RESUMEN

The fastidious porcine respiratory pathogen Mycoplasma hyopneumoniae has proven difficult to culture since it was first isolated in 1965. A reliable solid medium has been particularly challenging. Moreover, clinical and pathological samples often contain the fast-growing M. hyorhinis which contaminates and overgrows M. hyopneumoniae in primary culture. The aim of this study was to optimise the culture medium for recovery of M. hyopneumoniae and to devise a medium for selection of M. hyopneumoniae from clinical samples also containing M. hyorhinis. The solid medium devised by Niels Friis was improved by use of Purified agar and incorporation of DEAE-dextran. Addition of glucose or neutralization of acidity in liquid medium with NaOH did not improve the final yield of viable organisms or alter the timing of peak viability. Analysis of the relative susceptibility of M. hyopneumoniae and M. hyorhinis strains to four antimicrobials showed that M. hyopneumoniae is less susceptible than M. hyorhinis to kanamycin. This was consistent in all UK and Danish strains tested. A concentration of 2µg/ml of kanamycin selectively inhibited the growth of all M. hyorhinis tested, while M. hyopneumoniae was able to grow. This forms the basis of an effective selective culture medium for M. hyopneumoniae.


Asunto(s)
Técnicas Bacteriológicas/métodos , Medios de Cultivo/farmacología , Mycoplasma hyopneumoniae/fisiología , Antibacterianos/farmacología , Medios de Cultivo/química , Farmacorresistencia Bacteriana , Mycoplasma hyorhinis/fisiología , Especificidad de la Especie
5.
Chemosphere ; 145: 416-23, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26692519

RESUMEN

Naphthenic acids (NAs) are among the most toxic organic pollutants present in oil sands process waters (OSPW) and enter marine and freshwater environments through natural and anthropogenic sources. We investigated the effects of the acid extractable organic (AEO) fraction of OSPW and individual surrogate NAs, on maximum photosynthetic efficiency of photosystem II (PSII) (FV/FM) and cell growth in Emiliania huxleyi and Chlorella vulgaris as representative marine and freshwater phytoplankton. Whilst FV/FM in E. huxleyi and C. vulgaris was not inhibited by AEO, exposure to two surrogate NAs: (4'-n-butylphenyl)-4-butanoic acid (n-BPBA) and (4'-tert-butylphenyl)-4-butanoic acid (tert-BPBA), caused complete inhibition of FV/FM in E. huxleyi (≥10 mg L(-1)n-BPBA; ≥50 mg L(-1)tert-BPBA) but not in C. vulgaris. Growth rates and cell abundances in E. huxleyi were also reduced when exposed to ≥10 mg L(-1)n- and tert-BPBA; however, higher concentrations of n- and tert-BPBA (100 mg L(-1)) were required to reduce cell growth in C. vulgaris. AEO at ≥10 mg L(-1) stimulated E. huxleyi growth rate (p ≤ 0.002), yet had no apparent effect on C. vulgaris. In conclusion, E. huxleyi was generally more sensitive to NAs than C. vulgaris. This report provides a better understanding of the physiological responses of phytoplankton to NAs which will enable improved monitoring of NA pollution in aquatic ecosystems in the future.


Asunto(s)
Ácidos Carboxílicos/toxicidad , Chlorella vulgaris/efectos de los fármacos , Haptophyta/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Proteínas Algáceas/metabolismo , Chlorella vulgaris/crecimiento & desarrollo , Haptophyta/crecimiento & desarrollo , Industria del Petróleo y Gas , Complejo de Proteína del Fotosistema II/metabolismo , Fitoplancton/efectos de los fármacos , Fitoplancton/crecimiento & desarrollo , Aguas Residuales/toxicidad
6.
Environ Microbiol Rep ; 6(5): 448-58, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25646535

RESUMEN

Currently, little is known about the impact of silver nanoparticles (AgNPs) on ecologically important microorganisms such as ammonia-oxidizing bacteria (AOB). We performed a multi-analytical approach to demonstrate the effects of uncapped nanosilver (uAgNP), capped nanosilver (cAgNP) and Ag2SO4 on the activities of the AOB: Nitrosomonas europaea, Nitrosospira multiformis and Nitrosococcus oceani, and the growth of Escherichia coli and Bacillus subtilis as model bacterial systems in relation to AgNP type and concentration. All Ag treatments caused significant inhibition to the nitrification potential rates (NPRs) of Nitrosomonas europaea (decreased from 34 to < 16.7 µM NH4+ oxidized day−1), Nitrosospira multiformis (decreased from 46 to < 24.8 µM NH4+ oxidized day−1) and Nitrosococcus oceani (decreased from 26 to < 18.4 µM NH4+ oxidized day−1). Escherichia coli-Ag interactions revealed that the percentage of damaged E. coli cells was 45% greater with Ag2SO4, 39% with cAgNPs and 33% with uAgNPs compared with controls. Generally, the inhibitory effect on AOB NPRs and E. coli/B. subtilis growth was in the following order Ag2SO4 > cAgNP > uAgNP. In conclusion, AgNPs (especially cAgNPs) and Ag2SO4 adversely affected AOB activities and thus have the potential to severely impact key microbially driven processes such as nitrification in the environment.


Asunto(s)
Bacillus subtilis/crecimiento & desarrollo , Escherichia coli/crecimiento & desarrollo , Nanopartículas/toxicidad , Proteobacteria/crecimiento & desarrollo , Plata/toxicidad , Amoníaco/metabolismo , Bacillus subtilis/efectos de los fármacos , Bacillus subtilis/metabolismo , Ecosistema , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Nanopartículas/química , Nitrificación , Proteobacteria/efectos de los fármacos , Proteobacteria/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA