Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Plant Physiol ; 192(4): 2971-2988, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37061818

RESUMEN

Polyprenylated xanthones are natural products with a multitude of biological and pharmacological activities. However, their biosynthetic pathway is not completely understood. In this study, metabolic profiling revealed the presence of 4-prenylated 1,3,5,6-tetrahydroxyxanthone derivatives in St. John's wort (Hypericum perforatum) root extracts. Transcriptomic data mining led to the detection of 5 variants of xanthone 4-prenyltransferase (HpPT4px) comprising 4 long variants (HpPT4px-v1 to HpPT4px-v4) and 1 short variant (HpPT4px-sh). The full-length sequences of all 5 variants were cloned and heterologously expressed in yeast (Saccharomyces cerevisiae). Microsomes containing HpPT4px-v2, HpPT4px-v4, and HpPT4px-sh catalyzed the addition of a prenyl group at the C-4 position of 1,3,5,6-tetrahydroxyxanthone; 1,3,5-trihydroxyxanthone; and 1,3,7-trihydroxyxanthone, whereas microsomes harboring HpPT4px-v1 and HpPT4px-v3 additionally accepted 1,3,6,7-tetrahydroxyxanthone. HpPT4px-v1 produced in Nicotiana benthamiana displayed the same activity as in yeast, while HpPT4px-sh was inactive. The kinetic parameters of HpPT4px-v1 and HpPT4px-sh chosen as representative variants indicated 1,3,5,6-tetrahydroxyxanthone as the preferred acceptor substrate, rationalizing that HpPT4px catalyzes the first prenylation step in the biosynthesis of polyprenylated xanthones in H. perforatum. Dimethylallyl pyrophosphate was the exclusive prenyl donor. Expression of the HpPT4px transcripts was highest in roots and leaves, raising the question of product translocation. C-terminal yellow fluorescent protein fusion of HpPT4px-v1 localized to the envelope of chloroplasts in N. benthamiana leaves, whereas short, truncated, and masked signal peptides led to the disruption of plastidial localization. These findings pave the way for a better understanding of the prenylation of xanthones in plants and the identification of additional xanthone-specific prenyltransferases.


Asunto(s)
Dimetilaliltranstransferasa , Hypericum , Xantonas , Hypericum/genética , Hypericum/metabolismo , Dimetilaliltranstransferasa/genética , Dimetilaliltranstransferasa/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Xantonas/metabolismo , Xantonas/farmacología , Extractos Vegetales/farmacología
2.
Appl Microbiol Biotechnol ; 108(1): 344, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38801472

RESUMEN

Modulating the soil microbiome by applying microbial inoculants has gained increasing attention as eco-friendly option to improve soil disease suppressiveness. Currently, studies unraveling the interplay of inoculants, root-associated microbiome, and plant response are lacking for apple trees. Here, we provide insights into the ability of Bacillus velezensis FZB42 or Pseudomonas sp. RU47 to colonize apple root-associated microhabitats and to modulate their microbiome. We applied the two strains to apple plants grown in soils from the same site either affected by apple replant disease (ARD) or not (grass), screened their establishment by selective plating, and measured phytoalexins in roots 3, 16, and 28 days post inoculation (dpi). Sequencing of 16S rRNA gene and ITS fragments amplified from DNA extracted 28 dpi from different microhabitat samples revealed significant inoculation effects on fungal ß-diversity in root-affected soil and rhizoplane. Interestingly, only in ARD soil, most abundant bacterial amplicon sequence variants (ASVs) changed significantly in relative abundance. Relative abundances of ASVs affiliated with Enterobacteriaceae were higher in rhizoplane of apple grown in ARD soil and reduced by both inoculants. Bacterial communities in the root endosphere were not affected by the inoculants but their presence was indicated. Interestingly and previously unobserved, apple plants responded to the inoculants with increased phytoalexin content in roots, more pronounced in grass than ARD soil. Altogether, our results indicate that FZB42 and RU47 were rhizosphere competent, modulated the root-associated microbiome, and were perceived by the apple plants, which could make them interesting candidates for an eco-friendly mitigation strategy of ARD. KEY POINTS: • Rhizosphere competent inoculants modulated the microbiome (mainly fungi) • Inoculants reduced relative abundance of Enterobacteriaceae in the ARD rhizoplane • Inoculants increased phytoalexin content in roots, stronger in grass than ARD soil.


Asunto(s)
Bacillus , Malus , Microbiota , Fitoalexinas , Raíces de Plantas , Pseudomonas , ARN Ribosómico 16S , Rizosfera , Sesquiterpenos , Microbiología del Suelo , Malus/microbiología , Raíces de Plantas/microbiología , Bacillus/genética , Bacillus/metabolismo , ARN Ribosómico 16S/genética , Sesquiterpenos/metabolismo , Pseudomonas/genética , Pseudomonas/metabolismo , Pseudomonas/fisiología , Inoculantes Agrícolas/fisiología , Inoculantes Agrícolas/genética , Hongos/genética , Hongos/clasificación , Hongos/metabolismo , Hongos/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control
3.
Planta ; 258(4): 78, 2023 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-37689618

RESUMEN

MAIN CONCLUSION: Biphenyl and dibenzofuran phytoalexins are differentially distributed among species of the rosaceous subtribe Malinae, which includes apple and pear, and exhibit varying inhibitory activity against phytopathogenic microorganisms. Biphenyls and dibenzofurans are specialized metabolites, which are formed in species of the rosaceous subtribe Malinae upon elicitation by biotic and abiotic inducers. The subtribe Malinae (previously Pyrinae) comprises approximately 1000 species, which include economically important fruit trees such as apple and pear. The present review summarizes the current status of knowledge of biphenyls and dibenzofurans in the Malinae, mainly focusing on their role as phytoalexins. To date, 46 biphenyls and 41 dibenzofurans have been detected in 44 Malinae species. Structurally, 54 simple molecules, 23 glycosidic compounds and 10 miscellaneous structures were identified. Functionally, 21 biphenyls and 21 dibenzofurans were demonstrated to be phytoalexins. Furthermore, their distribution in species of the Malinae, inhibitory activities against phytopathogens, and structure-activity relationships were studied. The most widely distributed phytoalexins of the Malinae are the three biphenyls aucuparin (3), 2'-methoxyaucuparin (7), and 4'-methoxyaucuparin (9) and the three dibenzofurans α-cotonefuran (47), γ-cotonefuran (49), and eriobofuran (53). The formation of biphenyl and dibenzofuran phytoalexins appears to be an essential defense weapon of the Malinae against various stresses. Manipulating phytoalexin formation may enhance the disease resistance in economically important fruit trees. However, this approach requires an extensive understanding of how the compounds are formed. Although the biosynthesis of biphenyls was partially elucidated, formation of dibenzofurans remains largely unclear. Thus, further efforts have to be made to gain deeper insight into the distribution, function, and metabolism of biphenyls and dibenzofurans in the Malinae.


Asunto(s)
Malus , Pyrus , Fitoalexinas , Compuestos de Bifenilo , Dibenzofuranos , Resistencia a la Enfermedad , Árboles
4.
Molecules ; 28(5)2023 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-36903619

RESUMEN

Microshoot agitated and bioreactor cultures (PlantForm bioreactors) of three Hypericum perforatum cultivars (Elixir, Helos, Topas) were maintained in four variants of Murashige and Skoog medium (MS) supplemented with 6-benzylaminopurine (BAP) and 1-naphthaleneacetic acid (NAA) (in the range of 0.1-3.0 mg/L). In both types of in vitro cultures, the accumulation dynamics of phenolic acids, flavonoids, and catechins were investigated during 5- and 4-week growth cycles, respectively. The contents of metabolites in methanolic extracts from biomasses collected in 1-week intervals were estimated by HPLC. The highest total contents of phenolic acids, flavonoids, and catechins were 505, 2386, and 712 mg/100 g DW, respectively (agitated cultures of cv. Helos). The extracts from biomass grown under the best in vitro culture conditions were examined for antioxidant and antimicrobial activities. The extracts showed high or moderate antioxidant activity (DPPH, reducing power, and chelating activity assays), high activity against Gram-positive bacteria, and strong antifungal activity. Additionally, experiments with phenylalanine feeding (1 g/L) in agitated cultures were performed reaching the highest enhancement of the total contents of flavonoids, phenolic acids, and catechins on day 7 after the addition of the biogenetic precursor (2.33-, 1.73- and 1.33-fold, respectively). After feeding, the highest accumulation of polyphenols was detected in the agitated culture of cv. Elixir (4.48 g/100 g DW). The high contents of metabolites and the promising biological properties of the biomass extracts are interesting from a practical point of view.


Asunto(s)
Hypericum , Biomasa , Hypericum/química , Flavonoides/metabolismo , Antioxidantes/metabolismo , Extractos Vegetales/metabolismo
5.
Plant J ; 104(6): 1472-1490, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33031578

RESUMEN

Benzoic acid-derived compounds, such as polyprenylated benzophenones and xanthones, attract the interest of scientists due to challenging chemical structures and diverse biological activities. The genus Hypericum is of high medicinal value, as exemplified by H. perforatum. It is rich in benzophenone and xanthone derivatives, the biosynthesis of which requires the catalytic activity of benzoate-coenzyme A (benzoate-CoA) ligase (BZL), which activates benzoic acid to benzoyl-CoA. Despite remarkable research so far done on benzoic acid biosynthesis in planta, all previous structural studies of BZL genes and proteins are exclusively related to benzoate-degrading microorganisms. Here, a transcript for a plant acyl-activating enzyme (AAE) was cloned from xanthone-producing Hypericum calycinum cell cultures using transcriptomic resources. An increase in the HcAAE1 transcript level preceded xanthone accumulation after elicitor treatment, as previously observed with other pathway-related genes. Subcellular localization of reporter fusions revealed the dual localization of HcAAE1 to cytosol and peroxisomes owing to a type 2 peroxisomal targeting signal. This result suggests the generation of benzoyl-CoA in Hypericum by the CoA-dependent non-ß-oxidative route. A luciferase-based substrate specificity assay and the kinetic characterization indicated that HcAAE1 exhibits promiscuous substrate preference, with benzoic acid being the sole aromatic substrate accepted. Unlike 4-coumarate-CoA ligase and cinnamate-CoA ligase enzymes, HcAAE1 did not accept 4-coumaric and cinnamic acids, respectively. The substrate preference was corroborated by in silico modeling, which indicated valid docking of both benzoic acid and its adenosine monophosphate intermediate in the HcAAE1/BZL active site cavity.


Asunto(s)
Acilcoenzima A/metabolismo , Coenzima A Ligasas/metabolismo , Hypericum/metabolismo , Proteínas de Plantas/metabolismo , Xantonas/metabolismo , Clonación Molecular , Coenzima A Ligasas/genética , Citosol/enzimología , Hypericum/enzimología , Redes y Vías Metabólicas , Simulación del Acoplamiento Molecular , Peroxisomas/enzimología , Filogenia , Proteínas de Plantas/genética
6.
Plant Cell Physiol ; 62(3): 424-435, 2021 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-33537755

RESUMEN

Plant anthranoids are medicinally used for their purgative properties. Their scaffold was believed to be formed by octaketide synthase (OKS), a member of the superfamily of type III polyketide synthase (PKS) enzymes. Here, a cDNA encoding OKS of Polygonum cuspidatum was isolated using a homology-based cloning strategy. When produced in Escherichia coli, P. cuspidatum octaketide synthase (PcOKS) catalyzed the condensation of eight molecules of malonyl-CoA to yield a mixture of unphysiologically folded aromatic octaketides. However, when the ORF for PcOKS was expressed in Arabidopsis thaliana, the anthranoid emodin was detected in the roots of transgenic lines. No emodin was found in the roots of wild-type A. thaliana. This result indicated that OKS is the key enzyme of plant anthranoids biosynthesis. In addition, the root growth of the transgenic A. thaliana lines was inhibited to an extent that resembled the inhibitory effect of exogenous emodin on the root growth of wild-type A. thaliana. Immunochemical studies of P. cuspidatum plants detected PcOKS mainly in roots and rhizome, in which anthranoids accumulate. Co-incubation of E. coli - produced PcOKS and cell-free extract of wild-type A. thaliana roots did not form a new product, suggesting an alternative, physiological folding of PcOKS and its possible interaction with additional factors needed for anthranoids assembling in transgenic A. thaliana. Thus, transgenic A. thaliana plants producing PcOKS provide an interesting system for elucidating the route of plant anthranoid biosynthesis.


Asunto(s)
Arabidopsis/metabolismo , Emodina/metabolismo , Fallopia japonica/enzimología , Proteínas de Plantas/metabolismo , Sintasas Poliquetidas/metabolismo , Arabidopsis/enzimología , Clonación Molecular , Escherichia coli , Fallopia japonica/genética , Redes y Vías Metabólicas , Microorganismos Modificados Genéticamente , Filogenia , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Sintasas Poliquetidas/genética , Alineación de Secuencia , Análisis de Secuencia de ADN
7.
Plant J ; 100(6): 1176-1192, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31437324

RESUMEN

Apple (Malus sp.) and other genera belonging to the sub-tribe Malinae of the Rosaceae family produce unique benzoic acid-derived biphenyl phytoalexins. Cell cultures of Malus domestica cv. 'Golden Delicious' accumulate two biphenyl phytoalexins, aucuparin and noraucuparin, in response to the addition of a Venturia inaequalis elicitor (VIE). In this study, we isolated and expressed a cinnamate-CoA ligase (CNL)-encoding sequence from VIE-treated cell cultures of cv. 'Golden Delicious' (M. domestica CNL; MdCNL). MdCNL catalyses the conversion of cinnamic acid into cinnamoyl-CoA, which is subsequently converted to biphenyls. MdCNL failed to accept benzoic acid as a substrate. When scab-resistant (cv. 'Shireen') and moderately scab-susceptible (cv. 'Golden Delicious') apple cultivars were challenged with the V. inaequalis scab fungus, an increase in MdCNL transcript levels was observed in internodal regions. The increase in MdCNL transcript levels could conceivably correlate with the pattern of accumulation of biphenyls. The C-terminal signal in the MdCNL protein directed its N-terminal reporter fusion to peroxisomes in Nicotiana benthamiana leaves. Thus, this report records the cloning and characterisation of a cinnamoyl-CoA-forming enzyme from apple via a series of in vivo and in vitro studies. Defining the key step of phytoalexin formation in apple provides a biotechnological tool for engineering elite cultivars with improved resistance.


Asunto(s)
Benzoatos/metabolismo , Cinamatos/metabolismo , Ligasas/metabolismo , Malus/metabolismo , Secuencia de Aminoácidos , Ascomicetos/patogenicidad , Compuestos de Bifenilo , Técnicas de Cultivo de Célula , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Ligasas/química , Malus/genética , Modelos Moleculares , Simulación del Acoplamiento Molecular , Enfermedades de las Plantas/microbiología , Hojas de la Planta , Conformación Proteica , Alineación de Secuencia , Sesquiterpenos , Nicotiana , Fitoalexinas
8.
Planta ; 249(3): 677-691, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30357505

RESUMEN

MAIN CONCLUSION: This manuscript describes the cloning and functional characterization of a biphenyl phytoalexin biosynthetic gene, 3,5-dihydroxybiphenyl O-methyltransferase from elicitor-treated cell cultures of scab resistant apple cultivar 'Florina'. Apples belong to the subtribe Malinae of the Rosaceae family. Biphenyls and dibenzofurans are the specialized phytoalexins of Malinae, of which aucuparin is the most widely distributed biphenyl. The precursor of aucuparin, 3,5-dihydroxybiphenyl, is a benzoate-derived polyketide, which is formed by the sequential condensation of three molecules of malonyl-CoA and one molecule of benzoyl-CoA in a reaction catalyzed by biphenyl synthase (BIS). This 3,5-dihydroxybiphenyl then undergoes sequential 5-O-methylation, 4-hydroxylation, and finally 3-O-methylation to form aucuparin. A cDNA encoding O-methyltransferase (OMT) was isolated and functionally characterized from the cell cultures of scab-resistant apple cultivar 'Florina' (Malus domestica cultivar 'Florina'; MdOMT) after treatment with elicitor prepared from the apple scab causing fungus Venturia inaequalis. MdOMT catalyzed the regiospecific O-methylation of 3,5-dihydroxybiphenyl at the 5-position to form 3-hydroxy-5-methoxybiphenyl. The enzyme showed absolute substrate preference for 3,5-dihydroxybiphenyl. The elicitor-treated apple cell cultures showed transient increases in the MdOMT (GenBank ID MF740747) and MdBIS3 (GenBank ID JQ390523) transcript levels followed by the accumulation of biphenyls (aucuparin and noraucuparin) and dibenzofuran (eriobofuran) phytoalexins. MdOMT fused with N- and C-terminal yellow fluorescent protein showed cytoplasmic localization in the epidermis of Nicotiana benthamiana leaves. In scab inoculated greenhouse-grown 'Florina' plants, the expression of MdOMT was transiently induced in the stem followed by the accumulation of biphenyl phytoalexins.


Asunto(s)
Malus/enzimología , Metiltransferasas/metabolismo , Sesquiterpenos/metabolismo , Células Cultivadas , Clonación Molecular , Malus/citología , Malus/genética , Malus/metabolismo , Redes y Vías Metabólicas , Metiltransferasas/genética , Metiltransferasas/fisiología , Filogenia , Alineación de Secuencia , Especificidad por Sustrato , Fitoalexinas
9.
New Phytol ; 222(1): 318-334, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30485455

RESUMEN

Polyprenylated acylphloroglucinol derivatives, such as xanthones, are natural plant products with interesting pharmacological properties. They are difficult to synthesize chemically. Biotechnological production is desirable but it requires an understanding of the biosynthetic pathways. cDNAs encoding membrane-bound aromatic prenyltransferase (aPT) enzymes from Hypericum sampsonii seedlings (HsPT8px and HsPTpat) and Hypericum calycinum cell cultures (HcPT8px and HcPTpat) were cloned and expressed in Saccharomyces cerevisiae and Nicotiana benthamiana, respectively. Microsomes and chloroplasts were used for functional analysis. The enzymes catalyzed the prenylation of 1,3,6,7-tetrahydroxyxanthone (1367THX) and/or 1,3,6,7-tetrahydroxy-8-prenylxanthone (8PX) and discriminated nine additionally tested acylphloroglucinol derivatives. The transient expression of the two aPT genes preceded the accumulation of the products in elicitor-treated H. calycinum cell cultures. C-terminal yellow fluorescent protein fusions of the two enzymes were localized to the envelope of chloroplasts in N. benthamiana leaves. Based on the kinetic properties of HsPT8px and HsPTpat, the enzymes catalyze sequential rather than parallel addition of two prenyl groups to the carbon atom 8 of 1367THX, yielding gem-diprenylated patulone under loss of aromaticity of the gem-dialkylated ring. Coexpression in yeast significantly increased product formation. The patulone biosynthetic pathway involves multiple subcellular compartments. The aPTs studied here and related enzymes may be promising tools for plant/microbe metabolic pathway engineering.


Asunto(s)
Dimetilaliltranstransferasa/metabolismo , Hypericum/enzimología , Xantonas/química , Xantonas/metabolismo , Biocatálisis , Cloroplastos/metabolismo , Dimetilaliltranstransferasa/genética , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Hypericum/genética , Cinética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Estereoisomerismo
10.
New Phytol ; 217(3): 1099-1112, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29210088

RESUMEN

Xanthones are specialized metabolites with antimicrobial properties, which accumulate in roots of Hypericum perforatum. This medicinal plant provides widely taken remedies for depressive episodes and skin disorders. Owing to the array of pharmacological activities, xanthone derivatives attract attention for drug design. Little is known about the sites of biosynthesis and accumulation of xanthones in roots. Xanthone biosynthesis is localized at the transcript, protein, and product levels using in situ mRNA hybridization, indirect immunofluorescence detection, and high lateral and mass resolution mass spectrometry imaging (AP-SMALDI-FT-Orbitrap MSI), respectively. The carbon skeleton of xanthones is formed by benzophenone synthase (BPS), for which a cDNA was cloned from root cultures of H. perforatum var. angustifolium. Both the BPS protein and the BPS transcripts are localized to the exodermis and the endodermis of roots. The xanthone compounds as the BPS products are detected in the same tissues. The exodermis and the endodermis, which are the outermost and innermost cell layers of the root cortex, respectively, are not only highly specialized barriers for controlling the passage of water and solutes but also preformed lines of defence against soilborne pathogens and predators.


Asunto(s)
Vías Biosintéticas , Hypericum/anatomía & histología , Hypericum/metabolismo , Raíces de Plantas/anatomía & histología , Raíces de Plantas/metabolismo , Xantonas/metabolismo , Acilcoenzima A/metabolismo , ADN Complementario/genética , ADN Complementario/aislamiento & purificación , Regulación de la Expresión Génica de las Plantas , Lípidos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Homología de Secuencia de Ácido Nucleico , Especificidad por Sustrato , Xantonas/química
11.
Plant J ; 83(2): 263-76, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26017378

RESUMEN

Biphenyls and dibenzofurans are the phytoalexins of the Malinae involving apple and pear. Biosynthesis of the defence compounds includes two O-methylation reactions. cDNAs encoding the O-methyltransferase (OMT) enzymes were isolated from rowan (Sorbus aucuparia) cell cultures after treatment with an elicitor preparation from the scab-causing fungus, Venturia inaequalis. The preferred substrate for SaOMT1 was 3,5-dihydroxybiphenyl, supplied by the first pathway-specific enzyme, biphenyl synthase (BIS). 3,5-Dihydroxybiphenyl underwent a single methylation reaction in the presence of S-adenosyl-l-methionine (SAM). The second enzyme, SaOMT2, exhibited its highest affinity for noraucuparin, however the turnover rate was greater with 5-hydroxyferulic acid. Both substrates were only methylated at the meta-positioned hydroxyl group. The substrate specificities of the OMTs and the regiospecificities of their reactions were rationalized by homology modeling and substrate docking. Interaction of the substrates with SAM also took place at a position other than the sulfur group. Expression of SaOMT1, SaOMT2 and SaBIS3 was transiently induced in rowan cell cultures by the addition of the fungal elicitor. While the immediate SaOMT1 products were not detectable in elicitor-treated cell cultures, noraucuparin and noreriobofuran accumulated transiently, followed by increasing levels of the SaOMT2 products aucuparin and eriobofuran. SaOMT1, SaOMT2 and SaBIS3 were N- and C-terminally fused with the super cyan fluorescent protein and a modified yellow fluorescent protein, respectively. All the fluorescent reporter fusions were localized to the cytoplasm of Nicotiana benthamiana leaf epidermis cells. A revised biosynthetic pathway of biphenyls and dibenzofurans in the Malinae is presented.


Asunto(s)
Benzofuranos/metabolismo , Compuestos de Bifenilo/metabolismo , Proteína O-Metiltransferasa/metabolismo , Secuencia de Aminoácidos , Malus , Datos de Secuencia Molecular , Proteína O-Metiltransferasa/química , Proteína O-Metiltransferasa/genética , Pyrus , ARN Mensajero/genética , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
13.
Plant Physiol ; 168(2): 428-42, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25862456

RESUMEN

Upon pathogen attack, fruit trees such as apple (Malus spp.) and pear (Pyrus spp.) accumulate biphenyl and dibenzofuran phytoalexins, with aucuparin as a major biphenyl compound. 4-Hydroxylation of the biphenyl scaffold, formed by biphenyl synthase (BIS), is catalyzed by a cytochrome P450 (CYP). The biphenyl 4-hydroxylase (B4H) coding sequence of rowan (Sorbus aucuparia) was isolated and functionally expressed in yeast (Saccharomyces cerevisiae). SaB4H was named CYP736A107. No catalytic function of CYP736 was known previously. SaB4H exhibited absolute specificity for 3-hydroxy-5-methoxybiphenyl. In rowan cell cultures treated with elicitor from the scab fungus, transient increases in the SaB4H, SaBIS, and phenylalanine ammonia lyase transcript levels preceded phytoalexin accumulation. Transient expression of a carboxyl-terminal reporter gene construct directed SaB4H to the endoplasmic reticulum. A construct lacking the amino-terminal leader and transmembrane domain caused cytoplasmic localization. Functional B4H coding sequences were also isolated from two apple (Malus × domestica) cultivars. The MdB4Hs were named CYP736A163. When stems of cv Golden Delicious were infected with the fire blight bacterium, highest MdB4H transcript levels were observed in the transition zone. In a phylogenetic tree, the three B4Hs were closest to coniferaldehyde 5-hydroxylases involved in lignin biosynthesis, suggesting a common ancestor. Coniferaldehyde and related compounds were not converted by SaB4H.


Asunto(s)
Hidrocarburo de Aril Hidroxilasas/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Malus/enzimología , Proteínas de Plantas/metabolismo , Sesquiterpenos/metabolismo , Sorbus/enzimología , Secuencia de Aminoácidos , Hidrocarburo de Aril Hidroxilasas/química , Células Cultivadas , Clonación Molecular , Sistema Enzimático del Citocromo P-450/química , ADN Complementario/genética , Cromatografía de Gases y Espectrometría de Masas , Regulación de la Expresión Génica de las Plantas , Biblioteca de Genes , Cinética , Malus/genética , Malus/microbiología , Microsomas/metabolismo , Datos de Secuencia Molecular , Filogenia , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/química , Transporte de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Sesquiterpenos/química , Sorbus/genética , Fracciones Subcelulares/enzimología , Especificidad por Sustrato , Nicotiana/metabolismo , Fitoalexinas
14.
Bioorg Med Chem Lett ; 25(19): 4333-6, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26277406

RESUMEN

Two novel alkaloids named pandalisines A (1) and B (2), constituting a new class of C8-substituted indolizidine moiety, were isolated from the leaves of Pandanus utilis. The structures of these new compounds were established by their mass and spectroscopic data. The absolute configuration was determined by the comparison of experimental CD and calculated ECD spectra. A plausible biosynthetic pathway for compounds 1 and 2 is advanced. The cytotoxic activities of the isolated alkaloids against A-549, Hep-G2, and MDA-MB-231 cancer cell lines were evaluated. The result showed that 1 and 2 are the first non-cytotoxic indolizidine alkaloids.


Asunto(s)
Indolicidinas/química , Pandanaceae/química , Hojas de la Planta/química , Línea Celular Tumoral , Células Hep G2 , Humanos , Indolicidinas/aislamiento & purificación , Estructura Molecular
15.
J Nat Prod ; 78(10): 2346-54, 2015 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-26461164

RESUMEN

Pandanus amaryllifolius Roxb. (Pandanaceae) is used as a flavor and in folk medicine in Southeast Asia. The ethanolic crude extract of the aerial parts of P. amaryllifolius exhibited antioxidant, antibiofilm, and anti-inflammatory activities in previous studies. In the current investigation, the purification of the ethanolic extract yielded nine new compounds, including N-acetylnorpandamarilactonines A (1) and B (2); pandalizines A (3) and B (4); pandanmenyamine (5); pandamarilactones 2 (6) and 3 (7), and 5(E)-pandamarilactonine-32 (8); and pandalactonine (9). The isolated alkaloids, with either a γ-alkylidene-α,ß-unsaturated-γ-lactone or γ-alkylidene-α,ß-unsaturated-γ-lactam system, can be classified into five skeletons including norpandamarilactonine, indolizinone, pandanamine, pandamarilactone, and pandamarilactonine. A plausible biosynthetic route toward 1-5, 7, and 9 is proposed.


Asunto(s)
Alcaloides/aislamiento & purificación , Alcaloides/metabolismo , Pandanaceae/química , Alcaloides/química , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Antioxidantes/metabolismo , Furanos/química , Furanos/aislamiento & purificación , Furanos/metabolismo , Lactonas/química , Lactonas/aislamiento & purificación , Lactonas/metabolismo , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Componentes Aéreos de las Plantas/química , Hojas de la Planta/química , Pirrolidinas/química , Pirrolidinas/aislamiento & purificación , Pirrolidinas/metabolismo , Estereoisomerismo , Taiwán
16.
Molecules ; 20(9): 15616-30, 2015 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-26343621

RESUMEN

In plants, prenylation of metabolites is widely distributed to generate compounds with efficient defense potential and distinct pharmacological activities profitable to human health. Prenylated compounds are formed by members of the prenyltransferase (PT) superfamily, which catalyze the addition of prenyl moieties to a variety of acceptor molecules. Cell cultures of Hypericum calycinum respond to elicitor treatment with the accumulation of the prenylated xanthone hyperxanthone E. A cDNA encoding a membrane-bound PT (HcPT) was isolated from a subtracted cDNA library and transcript preparations of H. calycinum. An increase in the HcPT transcript level preceded hyperxanthone E accumulation in cell cultures of H. calycinum treated with elicitor. The HcPT cDNA was functionally characterized by expression in baculovirus-infected insect cells. The recombinant enzyme catalyzed biosynthesis of 1,3,6,7-tetrahydroxy-8-prenylxanthone through regiospecific C-8 prenylation of 1,3,6,7-tetrahydroxyxanthone, indicating its involvement in hyperxanthone E formation. The enzymatic product shared significant structural features with the previously reported cholinesterase inhibitor γ-mangostin. Thus, our findings may offer a chance for semisynthesis of new active agents to be involved in the treatment of Alzheimer's disease.


Asunto(s)
Clonación Molecular/métodos , Dimetilaliltranstransferasa/genética , Hypericum/enzimología , Dimetilaliltranstransferasa/química , Dimetilaliltranstransferasa/metabolismo , Biblioteca de Genes , Hypericum/genética , Modelos Moleculares , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Xantonas/metabolismo
17.
Chembiochem ; 15(3): 373-6, 2014 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-24449489

RESUMEN

Fire blight is a devastating disease of Rosaceae plants, such as apple and pear trees. It is characterized by necrosis of plant tissue, caused by the phytopathogenic bacterium Erwinia amylovora. The plant pathogen produces the well-known antimetabolite 6-thioguanine (6TG), which plays a key role in fire blight pathogenesis. Here we report that YcfR, a member of the LTTR family, is a major regulator of 6TG biosynthesis in E. amylovora. Inactivation of the regulator gene (ycfR) led to dramatically decreased 6TG production. Infection assays with apple plants (Malus domestica cultivar Holsteiner Cox) and cell cultures of Sorbus aucuparia (mountain ash, rowan) revealed abortive fire blight pathogenesis and reduced plant response (biphenyl and dibenzofuran phytoalexin production). In the presence of the ΔycfR mutant, apple trees were capable of activating the abscission machinery to remove infected tissue. In addition to unveiling the regulation of 6TG biosynthesis in a major plant pathogen, we demonstrate for the first time that this antimetabolite plays a pivotal role in dysregulating the plant response to infection.


Asunto(s)
Erwinia amylovora/química , Tioguanina/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Secuencia de Bases , Benzofuranos/química , Benzofuranos/metabolismo , Compuestos de Bifenilo/química , Compuestos de Bifenilo/metabolismo , Erwinia amylovora/genética , Erwinia amylovora/metabolismo , Datos de Secuencia Molecular , Familia de Multigenes , Mutación , Células Vegetales/química , Células Vegetales/metabolismo , Enfermedades de las Plantas/microbiología , Rosaceae/crecimiento & desarrollo , Rosaceae/metabolismo , Rosaceae/microbiología , Sesquiterpenos/química , Sesquiterpenos/metabolismo , Tioguanina/química , Fitoalexinas
18.
J Nat Prod ; 77(12): 2626-32, 2014 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-25419616

RESUMEN

Parvistones A-E (1-5), five new styryllactones possessing a rare α,ß-lactone moiety and a 6S configuration, were isolated from a methanolic extract of Polyalthia parviflora leaves. The structures and the absolute configuration of the isolates were elucidated using NMR spectroscopy, specific rotation, circular dichroism, and X-ray single-crystal analysis. Compounds 8, 9, 11, and 12 were isolated for the first time. The results were supported by comparing the data measured to those of 6R-styryllactones. Moreover, a plausible biogenetic pathway of the isolated compounds was proposed. The structure-activity relationship of the compounds in an in vitro anti-inflammatory assay revealed the 6S-styryllactones to be more potent than the 6R derivatives. However, the effect was opposite regarding their cytotoxic activity. In addition, 6S-styrylpyrones isolated showed more potent anti-inflammatory and cytotoxic activity when compared to the 1S-phenylpyranopyrones obtained.


Asunto(s)
Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/farmacología , Lactonas/aislamiento & purificación , Lactonas/farmacología , Polyalthia/química , Antiinflamatorios/química , Dicroismo Circular , Cristalografía por Rayos X , Lactonas/química , Conformación Molecular , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Hojas de la Planta/química , Estereoisomerismo , Relación Estructura-Actividad , Vietnam
19.
Org Lett ; 26(26): 5522-5527, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38900928

RESUMEN

Here, we use transcriptomic data from seeds of Musella lasiocarpa to identify five enzymes involved in the formation of dihydrocurcuminoids. Characterization of the substrate specificities of the enzymes reveals two distinct dihydrocurcuminoid pathways leading to phenylphenalenones and linear diarylheptanoid derivatives, the major seed metabolites. Furthermore, we demonstrate the stepwise conversion of dihydrobisdemethoxycurcumin to the phenylphenalenone 4'-hydroxylachnanthocarpone by feeding intermediates to M. lasiocarpa root protein extract.


Asunto(s)
Diarilheptanoides , Fenalenos , Diarilheptanoides/química , Fenalenos/química , Estructura Molecular , Semillas/química , Musa/química , Especificidad por Sustrato , Pueblos del Este de Asia
20.
Nat Commun ; 15(1): 4525, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806518

RESUMEN

Medicinal compounds from plants include bicyclo[3.3.1]nonane derivatives, the majority of which are polycyclic polyprenylated acylphloroglucinols (PPAPs). Prototype molecules are hyperforin, the antidepressant constituent of St. John's wort, and garcinol, a potential anticancer compound. Their complex structures have inspired innovative chemical syntheses, however, their biosynthesis in plants is still enigmatic. PPAPs are divided into two subclasses, named type A and B. Here we identify both types in Hypericum sampsonii plants and isolate two enzymes that regiodivergently convert a common precursor to pivotal type A and B products. Molecular modelling and substrate docking studies reveal inverted substrate binding modes in the two active site cavities. We identify amino acids that stabilize these alternative binding scenarios and use reciprocal mutagenesis to interconvert the enzymatic activities. Our studies elucidate the unique biochemistry that yields type A and B bicyclo[3.3.1]nonane cores in plants, thereby providing key building blocks for biotechnological efforts to sustainably produce these complex compounds for preclinical development.


Asunto(s)
Hypericum , Hypericum/metabolismo , Hypericum/genética , Hypericum/química , Compuestos Bicíclicos con Puentes/metabolismo , Compuestos Bicíclicos con Puentes/química , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Simulación del Acoplamiento Molecular , Floroglucinol/metabolismo , Floroglucinol/análogos & derivados , Floroglucinol/química , Alcanos/metabolismo , Alcanos/química , Dominio Catalítico , Terpenos/metabolismo , Terpenos/química , Modelos Moleculares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA