Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
J Biol Chem ; 298(9): 102336, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35931111

RESUMEN

Mitochondrial chelatable iron contributes to the severity of several injury processes, including ischemia/reperfusion, oxidative stress, and drug toxicity. However, methods to measure this species in living cells are lacking. To measure mitochondrial chelatable iron in living cells, here we synthesized a new fluorescent indicator, mitoferrofluor (MFF). We designed cationic MFF to accumulate electrophoretically in polarized mitochondria, where a reactive group then forms covalent adducts with mitochondrial proteins to retain MFF even after subsequent depolarization. We also show in cell-free medium that Fe2+ (and Cu2+), but not Fe3+, Ca2+, or other biologically relevant divalent cations, strongly quenched MFF fluorescence. Using confocal microscopy, we demonstrate in hepatocytes that red MFF fluorescence colocalized with the green fluorescence of the mitochondrial membrane potential (ΔΨm) indicator, rhodamine 123 (Rh123), indicating selective accumulation into the mitochondria. Unlike Rh123, mitochondria retained MFF after ΔΨm collapse. Furthermore, intracellular delivery of iron with membrane-permeant Fe3+/8-hydroxyquinoline (FeHQ) quenched MFF fluorescence by ∼80% in hepatocytes and other cell lines, which was substantially restored by the membrane-permeant transition metal chelator pyridoxal isonicotinoyl hydrazone. We also show FeHQ quenched the fluorescence of cytosolically coloaded calcein, another Fe2+ indicator, confirming that Fe3+ in FeHQ undergoes intracellular reduction to Fe2+. Finally, MFF fluorescence did not change after addition of the calcium mobilizer thapsigargin, which shows MFF is insensitive to physiologically relevant increases of mitochondrial Ca2+. In conclusion, the new sensor reagent MFF fluorescence is an indicator of mitochondrial chelatable Fe2+ in normal hepatocytes with polarized mitochondria as well as in cells undergoing loss of ΔΨm.


Asunto(s)
Colorantes Fluorescentes , Quelantes del Hierro , Mitocondrias , Animales , Calcio/metabolismo , Cationes Bivalentes/análisis , Células Cultivadas , Fluorescencia , Colorantes Fluorescentes/química , Quelantes del Hierro/análisis , Ratones , Mitocondrias/química , Proteínas Mitocondriales/química , Oxiquinolina/química , Rodamina 123 , Tapsigargina/farmacología
2.
Biol Cell ; 113(3): 133-145, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33275284

RESUMEN

BACKGROUND INFORMATION: Wnt/ß-catenin signalling, in the microenvironment of pluripotent stem cells (PSCs), plays a critical role in their differentiation and proliferation. Contradictory reports on the role of Wnt/ß-catenin signalling in PSCs self-renewal and differentiation, however, render these mechanisms largely unclear. RESULTS: Wnt/ß-catenin signalling pathway in human-induced pluripotent stem cells (hiPSCs) was activated by inhibiting glycogen synthase kinase 3 (GSK3), driving the cells into a mesodermal/mesenchymal state, exhibiting proliferative, invasive and anchorage-independent growth properties, where over 70% of cell population became CD 44 (+)/CD133 (+). Wnt/ß-catenin signalling activation also altered the metabolic state of hiPSCs from aerobic glycolysis to oxidative metabolism and changed their drug and oxidative stress sensitivities. These effects of GSK3 inhibition were suppressed in HIF1α-stabilised cells. CONCLUSIONS: Persistent activation of Wnt/ß-catenin signalling endows hiPSCs with proliferative/invasive 'teratoma-like' states, shifting their metabolic dependence and allowing HIF1α-stabilisation to inhibit their proliferative/invasive properties. SIGNIFICANCE: The hiPSC potential to differentiate into 'teratoma-like' cells suggest that stem cells may exist in two states with differential metabolic and drug dependency.


Asunto(s)
Células Madre Pluripotentes Inducidas , Vía de Señalización Wnt/fisiología , Diferenciación Celular , Línea Celular , Proliferación Celular , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo
3.
J Biol Chem ; 295(52): 18091-18104, 2020 12 25.
Artículo en Inglés | MEDLINE | ID: mdl-33087445

RESUMEN

Akt3 regulates mitochondrial content in endothelial cells through the inhibition of PGC-1α nuclear localization and is also required for angiogenesis. However, whether there is a direct link between mitochondrial function and angiogenesis is unknown. Here we show that Akt3 depletion in primary endothelial cells results in decreased uncoupled oxygen consumption, increased fission, decreased membrane potential, and increased expression of the mitochondria-specific protein chaperones, HSP60 and HSP10, suggesting that Akt3 is required for mitochondrial homeostasis. Direct inhibition of mitochondrial homeostasis by the model oxidant paraquat results in decreased angiogenesis, showing a direct link between angiogenesis and mitochondrial function. Next, in exploring functional links to PGC-1α, the master regulator of mitochondrial biogenesis, we searched for compounds that induce this process. We found that, sildenafil, a phosphodiesterase 5 inhibitor, induced mitochondrial biogenesis as measured by increased uncoupled oxygen consumption, mitochondrial DNA content, and voltage-dependent anion channel protein expression. Sildenafil rescued the effects on mitochondria by Akt3 depletion or pharmacological inhibition and promoted angiogenesis, further supporting that mitochondrial homeostasis is required for angiogenesis. Sildenafil also induces the expression of PGC-1 family member PRC and can compensate for PGC-1α activity during mitochondrial stress by an Akt3-independent mechanism. The induction of PRC by sildenafil depends upon cAMP and the transcription factor CREB. Thus, PRC can functionally substitute during Akt3 depletion for absent PGC-1α activity to restore mitochondrial homeostasis and promote angiogenesis. These findings show that mitochondrial homeostasis as controlled by the PGC family of transcriptional activators is required for angiogenic responses.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5/química , Endotelio Vascular/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Neovascularización Fisiológica/efectos de los fármacos , Inhibidores de Fosfodiesterasa 5/farmacología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Factores de Transcripción/metabolismo , Núcleo Celular/efectos de los fármacos , Regulación de la Expresión Génica , Humanos , Mitocondrias/patología , Biogénesis de Organelos , Consumo de Oxígeno , Factores de Transcripción/genética
4.
FASEB J ; 33(7): 8186-8201, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30951369

RESUMEN

Statins, widely used to treat hypercholesterolemia, inhibit the 3-hydroxy-3-methylglutaryl-coenzyme A reductase, the rate-limiting enzyme of de novo cholesterol (Chol) synthesis. Statins have been also reported to slow tumor progression. In cancer cells, ATP is generated both by glycolysis and oxidative phosphorylation. Mitochondrial membrane potential (ΔΨ), a readout of mitochondrial metabolism, is sustained by the oxidation of respiratory substrates in the Krebs cycle to generate NADH and flavin adenine dinucleotide, which are further oxidized by the respiratory chain. Here, we studied the short-term effects of statins (3-24 h) on mitochondrial metabolism on cancer cells. Lovastatin (LOV) and simvastatin (SIM) increased ΔΨ in HepG2 and Huh7 human hepatocarcinoma cells and HCC4006 human lung adenocarcinoma cells. Mitochondrial hyperpolarization after LOV and SIM was dose and time dependent. Maximal increase in ΔΨ occurred at 10 µM and 24 h for both statins. The structurally unrelated atorvastatin also hyperpolarized mitochondria in HepG2 cells. Cellular and mitochondrial Chol remained unchanged after SIM. Both LOV and SIM decreased basal respiration, ATP-linked respiration, and ATP production. LOV and SIM did not change the rate of lactic acid production. In summary, statins modulate mitochondrial metabolism in cancer cells independently of the Chol content in cellular membranes without affecting glycolysis.-Christie, C. F., Fang, D., Hunt, E. G., Morris, M. E., Rovini, A., Heslop, K. A., Beeson, G. C., Beeson, C. C., Maldonado, E. N. Statin-dependent modulation of mitochondrial metabolism in cancer cells is independent of cholesterol content.


Asunto(s)
Adenocarcinoma del Pulmón/metabolismo , Carcinoma Hepatocelular/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Neoplasias Hepáticas/metabolismo , Lovastatina/farmacología , Neoplasias Pulmonares/metabolismo , Mitocondrias Hepáticas/metabolismo , Simvastatina/farmacología , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/patología , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias Hepáticas/patología
5.
Toxicol Appl Pharmacol ; 272(2): 490-502, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-23811330

RESUMEN

Many environmental chemicals and drugs negatively affect human health through deleterious effects on mitochondrial function. Currently there is no chemical library of mitochondrial toxicants, and no reliable methods for predicting mitochondrial toxicity. We hypothesized that discrete toxicophores defined by distinct chemical entities can identify previously unidentified mitochondrial toxicants. We used a respirometric assay to screen 1760 compounds (5 µM) from the LOPAC and ChemBridge DIVERSet libraries. Thirty-one of the assayed compounds decreased uncoupled respiration, a stress test for mitochondrial dysfunction, prior to a decrease in cell viability and reduced the oxygen consumption rate in isolated mitochondria. The mitochondrial toxicants were grouped by chemical similarity and two clusters containing four compounds each were identified. Cheminformatic analysis of one of the clusters identified previously uncharacterized mitochondrial toxicants from the ChemBridge DIVERSet. This approach will enable the identification of mitochondrial toxicants and advance the prediction of mitochondrial toxicity for both drug discovery and risk assessment.


Asunto(s)
Contaminantes Ambientales/toxicidad , Ensayos Analíticos de Alto Rendimiento/métodos , Túbulos Renales Proximales/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Consumo de Oxígeno/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/toxicidad , Animales , Carbonil Cianuro p-Trifluorometoxifenil Hidrazona/farmacología , Supervivencia Celular , Contaminantes Ambientales/química , Femenino , Túbulos Renales Proximales/patología , Mitocondrias/metabolismo , Mitocondrias/patología , Valor Predictivo de las Pruebas , Cultivo Primario de Células , Ionóforos de Protónes/farmacología , Conejos , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad
6.
Chem Res Toxicol ; 26(9): 1323-32, 2013 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-23895456

RESUMEN

A goal of the Tox21 program is to transit toxicity testing from traditional in vivo models to in vitro assays that assess how chemicals affect cellular responses and toxicity pathways. A critical contribution of the NIH Chemical Genomics center (NCGC) to the Tox21 program is the implementation of a quantitative high throughput screening (qHTS) approach, using cell- and biochemical-based assays to generate toxicological profiles for thousands of environmental compounds. Here, we evaluated the effect of chemical compounds on mitochondrial membrane potential in HepG2 cells by screening a library of 1,408 compounds provided by the National Toxicology Program (NTP) in a qHTS platform. Compounds were screened over 14 concentrations, and results showed that 91 and 88 compounds disrupted mitochondrial membrane potential after treatment for 1 or 5 h, respectively. Seventy-six compounds active at both time points were clustered by structural similarity, producing 11 clusters and 23 singletons. Thirty-eight compounds covering most of the active chemical space were more extensively evaluated. Thirty-six of the 38 compounds were confirmed to disrupt mitochondrial membrane potential using a fluorescence plate reader, and 35 were confirmed using a high content imaging approach. Among the 38 compounds, 4 and 6 induced LDH release, a measure of cytotoxicity, at 1 or 5 h, respectively. Compounds were further assessed for mechanism of action (MOA) by measuring changes in oxygen consumption rate, which enabled the identification of 20 compounds as uncouplers. This comprehensive approach allows for the evaluation of thousands of environmental chemicals for mitochondrial toxicity and identification of possible MOAs.


Asunto(s)
Contaminantes Ambientales/toxicidad , Ensayos Analíticos de Alto Rendimiento , Membranas Mitocondriales/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Células Hep G2 , Humanos , Estructura Molecular , Relación Estructura-Actividad , Células Tumorales Cultivadas
7.
J Pharmacol Exp Ther ; 342(1): 106-18, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22490378

RESUMEN

Mitochondrial dysfunction is a common mediator of disease and organ injury. Although recent studies show that inducing mitochondrial biogenesis (MB) stimulates cell repair and regeneration, only a limited number of chemicals are known to induce MB. To examine the impact of the ß-adrenoceptor (ß-AR) signaling pathway on MB, primary renal proximal tubule cells (RPTC) and adult feline cardiomyocytes were exposed for 24 h to multiple ß-AR agonists: isoproterenol (nonselective ß-AR agonist), (±)-(R*,R*)-[4-[2-[[2-(3-chlorophenyl)-2-hydroxyethyl]amino]propyl]phenoxy] acetic acid sodium hydrate (BRL 37344) (selective ß(3)-AR agonist), and formoterol (selective ß(2)-AR agonist). The Seahorse Biosciences (North Billerica, MA) extracellular flux analyzer was used to quantify carbonylcyanide p-trifluoromethoxyphenylhydrazone (FCCP)-uncoupled oxygen consumption rate (OCR), a marker of maximal electron transport chain activity. Isoproterenol and BRL 37244 did not alter mitochondrial respiration at any of the concentrations examined. Formoterol exposure resulted in increases in both FCCP-uncoupled OCR and mitochondrial DNA (mtDNA) copy number. The effect of formoterol on OCR in RPTC was inhibited by the ß-AR antagonist propranolol and the ß(2)-AR inverse agonist 3-(isopropylamino)-1-[(7-methyl-4-indanyl)oxy]butan-2-ol hydrochloride (ICI-118,551). Mice exposed to formoterol for 24 or 72 h exhibited increases in kidney and heart mtDNA copy number, peroxisome proliferator-activated receptor γ coactivator 1α, and multiple genes involved in the mitochondrial electron transport chain (F0 subunit 6 of transmembrane F-type ATP synthase, NADH dehydrogenase subunit 1, NADH dehydrogenase subunit 6, and NADH dehydrogenase [ubiquinone] 1ß subcomplex subunit 8). Cheminformatic modeling, virtual chemical library screening, and experimental validation identified nisoxetine from the Sigma Library of Pharmacologically Active Compounds and two compounds from the ChemBridge DIVERSet that increased mitochondrial respiratory capacity. These data provide compelling evidence for the use and development of ß(2)-AR ligands for therapeutic MB.


Asunto(s)
Agonistas Adrenérgicos beta/farmacología , Etanolaminas/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Receptores Adrenérgicos beta/metabolismo , Antagonistas Adrenérgicos beta/farmacología , Animales , Carbonil Cianuro p-Trifluorometoxifenil Hidrazona/farmacología , Gatos , Respiración de la Célula/efectos de los fármacos , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Transporte de Electrón/efectos de los fármacos , Femenino , Fluoxetina/análogos & derivados , Fluoxetina/farmacología , Fumarato de Formoterol , Corazón/efectos de los fármacos , Isoproterenol/farmacología , Riñón/efectos de los fármacos , Riñón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Biogénesis de Organelos , Consumo de Oxígeno/efectos de los fármacos , PPAR gamma/metabolismo , Propanolaminas/farmacología , Conejos , Transducción de Señal/efectos de los fármacos
8.
J Bioenerg Biomembr ; 44(4): 421-37, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22689143

RESUMEN

High-throughput applicable screens for identifying drug-induced mitochondrial impairment are necessary in the pharmaceutical industry. Hence, we evaluated the XF96 Extracellular Flux Analyzer, a 96-well platform that measures changes in the oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) of cells. The sensitivity of the platform was bench-marked with known modulators of oxidative phosphorylation and glycolysis. Sixteen therapeutic agents were screened in HepG2 cells for mitochondrial effects. Four of these compounds, thiazolidinediones, were also tested in primary feline cardiomyocytes for cell-type specific effects. We show that the XF96 platform is a robust, sensitive system for analyzing drug-induced mitochondrial impairment in whole cells. We identified changes in cellular respiration and acidification upon addition of therapeutic agents reported to have a mitochondrial effect. Furthermore, we show that respiration and acidification changes upon addition of the thiazoldinediones were cell-type specific, with the rank order of mitochondrial impairment in whole cells being in accord with the known adverse effects of these drugs.


Asunto(s)
Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/metabolismo , Consumo de Oxígeno/efectos de los fármacos , Tiazolidinedionas/farmacología , Animales , Gatos , Evaluación Preclínica de Medicamentos/métodos , Femenino , Glucólisis/efectos de los fármacos , Células Hep G2 , Humanos , Masculino , Mitocondrias Cardíacas/patología , Miocitos Cardíacos/patología , Fosforilación Oxidativa/efectos de los fármacos
9.
J Vasc Res ; 49(2): 89-100, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22249024

RESUMEN

BACKGROUND: Poly-N-acetyl glucosamine nanofibers derived from a marine diatom have been used to increase cutaneous wound healing. These nanofibers exert their activity by specifically activating integrins, which makes them a useful tool for dissecting integrin-mediated pathways. We have shown that short-fiber poly-N-acetyl glucosamine nanofiber (sNAG) treatment of endothelial cells results in increased cell motility and metabolic rate in the absence of increased cell proliferation. RESULTS: Using a Seahorse Bioanalyzer to measure oxygen consumption in real time, we show that sNAG treatment increases oxygen consumption rates, correlated with an integrin-dependent activation of Akt1. Akt1 activation leads to an increase in the expression of the transcriptional coactivator, peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α). This is not due to increased mitochondrial biogenesis, but is associated with an increase in the expression of pyruvate dehydrogenase kinase 4 (PDK4), suggesting regulation of fatty acid oxidation. Blockade of fatty acid oxidation with etomoxir, an O-carnitine palmitoyltransferase-1 inhibitor, blocks the sNAG-dependent increased oxygen consumption. (3)H-palmitate uptake experiments indicate a PDK4-dependent increase in fatty acid oxidation, which is required for nanofiber-induced cell motility. CONCLUSIONS: Our findings imply a linear pathway whereby an integrin-dependent activation of Akt1 leads to increased PGC-1α and PDK4 expression resulting in increased energy production by fatty acid oxidation.


Asunto(s)
Acetilglucosamina/farmacología , Ácidos Grasos/metabolismo , Proteínas de Choque Térmico/biosíntesis , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factores de Transcripción/biosíntesis , Carnitina O-Palmitoiltransferasa/antagonistas & inhibidores , Compuestos Epoxi/farmacología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Nanofibras , Oxidación-Reducción , PPAR gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Proteínas Quinasas/biosíntesis , Proteínas Serina-Treonina Quinasas/metabolismo , Regulación hacia Arriba
10.
Cancer Res ; 82(10): 1969-1990, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35404405

RESUMEN

Mitochondria and endoplasmic reticulum (ER) share structural and functional networks and activate well-orchestrated signaling processes to shape cells' fate and function. While persistent ER stress (ERS) response leads to mitochondrial collapse, moderate ERS promotes mitochondrial function. Strategies to boost antitumor T-cell function by targeting ER-mitochondria cross-talk have not yet been exploited. Here, we used carbon monoxide (CO), a short-lived gaseous molecule, to test whether engaging moderate ERS conditions can improve mitochondrial and antitumor functions in T cells. In melanoma antigen-specific T cells, CO-induced transient activation of ERS sensor protein kinase R-like endoplasmic reticulum kinase (PERK) significantly increased antitumor T-cell function. Furthermore, CO-induced PERK activation temporarily halted protein translation and induced protective autophagy, including mitophagy. The use of LC3-GFP enabled differentiation between the cells that prepare themselves to undergo active autophagy (LC3-GFPpos) and those that fail to enter the process (LC3-GFPneg). LC3-GFPpos T cells showed strong antitumor potential, whereas LC3-GFPneg cells exhibited a T regulatory-like phenotype, harbored dysfunctional mitochondria, and accumulated abnormal metabolite content. These anomalous ratios of metabolites rendered the cells with a hypermethylated state and distinct epigenetic profile, limiting their antitumor activity. Overall, this study shows that ERS-activated autophagy pathways modify the mitochondrial function and epigenetically reprogram T cells toward a superior antitumor phenotype to achieve robust tumor control. SIGNIFICANCE: Transient activation of ER stress with carbon monoxide drives mitochondrial biogenesis and protective autophagy that elicits superior antitumor T-cell function, revealing an approach to improving adoptive cell efficacy therapy.


Asunto(s)
Monóxido de Carbono , eIF-2 Quinasa , Apoptosis , Autofagia , Monóxido de Carbono/farmacología , Estrés del Retículo Endoplásmico/fisiología , Humanos , Linfocitos T/metabolismo , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo
11.
Hepatol Commun ; 5(6): 976-991, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34141984

RESUMEN

The electron transfer flavoprotein (ETF) complex, made up of the ETF alpha subunit (ETFA), ETF beta subunit (ETFB), and ETF dehydrogenase (ETFDH), regulates fatty acid ß-oxidation activity while scavenging leaked electrons through flavin adenine dinucleotide (FAD)/reduced form FAD (FADH2) redox reactions in mitochondria. Here, we hypothesized that ETF dysfunction-mediated FAD deficiency may result in increased mitochondrial oxidative stress and steatosis and subsequent liver injury. We report that etfa haploinsufficiency caused hyperlipidemia, hypercholesterolemia, and hepatic steatosis and injury in adult zebrafish. Further, etfa+/ - mutant livers had reduced levels of FAD and glutathione and an increase in reactive oxygen species. Because FAD depletion might be critical in the pathogenesis of the liver lesion identified in etfa+/ - mutants, we used riboflavin to elevate FAD levels in the liver and found that riboflavin supplementation significantly suppressed hepatic steatosis and injury in etfa+/ - mutants through suppression of oxidative stress and de novo lipogenesis in the liver. Additionally, we found that adenosine triphosphate-linked mitochondrial oxygen consumption and mitochondrial membrane potential were reduced in etfa+/ - primary hepatocytes and that riboflavin supplementation corrected these defects. Conclusion: FAD depletion caused by etfa haploinsufficiency plays a key role in hepatic steatosis and oxidative stress-mediated hepatic injury in adult zebrafish. This raises the possibility that people with ETFA haploinsufficiency have a high risk for developing liver disease.

12.
Anal Biochem ; 404(1): 75-81, 2010 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-20465991

RESUMEN

Mitochondria are a common target of toxicity for drugs and other chemicals and result in decreased aerobic metabolism and cell death. In contrast, mitochondrial biogenesis restores cell vitality, and there is a need for new agents to induce biogenesis. Current cell-based models of mitochondrial biogenesis or toxicity are inadequate because cultured cell lines are highly glycolytic with minimal aerobic metabolism and altered mitochondrial physiology. In addition, there are no high-throughput real-time assays that assess mitochondrial function. We adapted primary cultures of renal proximal tubular cells (RPTCs) that exhibit in vivo levels of aerobic metabolism, are not glycolytic, and retain higher levels of differentiated functions and used the Seahorse Bioscience analyzer to measure mitochondrial function in real time in multiwell plates. Using uncoupled respiration as a marker of electron transport chain (ETC) integrity, the nephrotoxicants cisplatin, HgCl(2), and gentamicin exhibited mitochondrial toxicity prior to decreases in basal respiration and cell death. Conversely, using FCCP (carbonylcyanide p-trifluoromethoxyphenylhydrazone)-uncoupled respiration as a marker of maximal ETC activity, 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI), SRT1720, resveratrol, daidzein, and metformin produced mitochondrial biogenesis in RPTCs. The merger of the RPTC model and multiwell respirometry results in a single high-throughput assay to measure mitochondrial biogenesis and toxicity and nephrotoxic potential.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Mitocondrias/metabolismo , Anfetaminas/farmacología , Animales , Antiinfecciosos/toxicidad , Antineoplásicos/toxicidad , Apoptosis , Carbonil Cianuro m-Clorofenil Hidrazona/análogos & derivados , Carbonil Cianuro m-Clorofenil Hidrazona/farmacología , Respiración de la Célula/efectos de los fármacos , Células Cultivadas , Cisplatino/toxicidad , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Gentamicinas/toxicidad , Túbulos Renales Proximales/citología , Cloruro de Mercurio/toxicidad , Consumo de Oxígeno , Smegmamorpha/metabolismo
13.
Front Pharmacol ; 11: 577, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32457608

RESUMEN

Gynecologic cancers are among the most lethal cancers found in women, and, advanced stage cancers are still a treatment challenge. Ion channels are known to contribute to cellular homeostasis in all cells and mounting evidence indicates that ion channels could be considered potential therapeutic targets against cancer. Nevertheless, the pharmacologic effect of targeting ion channels in cancer is still understudied. We found that the expression of Kir6.2/SUR2 potassium channel is a potential favorable prognostic factor in gynecologic cancers. Also, pharmacological stimulation of the Kir6.2/SUR2 channel activity with the selective activator molecule minoxidil arrests tumor growth in a xenograft model of ovarian cancer. Investigation on the mechanism linking the Kir6.2/SUR2 to tumor growth revealed that minoxidil alters the metabolic and oxidative state of cancer cells by producing mitochondrial disruption and extensive DNA damage. Consequently, application of minoxidil results in activation of a caspase-3 independent cell death pathway. Our data show that repurposing of FDA approved K+ channel activators may represent a novel, safe adjuvant therapeutic approach to traditional chemotherapy for the treatment of gynecologic cancers.

14.
Nat Biomed Eng ; 4(4): 446-462, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32284552

RESUMEN

Environmental factors are the largest contributors to cardiovascular disease. Here we show that cardiac organoids that incorporate an oxygen-diffusion gradient and that are stimulated with the neurotransmitter noradrenaline model the structure of the human heart after myocardial infarction (by mimicking the infarcted, border and remote zones), and recapitulate hallmarks of myocardial infarction (in particular, pathological metabolic shifts, fibrosis and calcium handling) at the transcriptomic, structural and functional levels. We also show that the organoids can model hypoxia-enhanced doxorubicin cardiotoxicity. Human organoids that model diseases with non-genetic pathological factors could help with drug screening and development.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Corazón/efectos de los fármacos , Modelos Cardiovasculares , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Organoides/efectos de los fármacos , Cardiotoxicidad/metabolismo , Cardiotoxicidad/patología , Desarrollo de Medicamentos , Humanos , Infarto del Miocardio/inducido químicamente , Infarto del Miocardio/genética , Organoides/metabolismo , Organoides/patología , Oxígeno/metabolismo
15.
Nat Commun ; 10(1): 1296, 2019 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-30899002

RESUMEN

The dysregulation of Fbxo4-cyclin D1 axis occurs at high frequency in esophageal squamous cell carcinoma (ESCC), where it promotes ESCC development and progression. However, defining a therapeutic vulnerability that results from this dysregulation has remained elusive. Here we demonstrate that Rb and mTORC1 contribute to Gln-addiction upon the dysregulation of the Fbxo4-cyclin D1 axis, which leads to the reprogramming of cellular metabolism. This reprogramming is characterized by reduced energy production and increased sensitivity of ESCC cells to combined treatment with CB-839 (glutaminase 1 inhibitor) plus metformin/phenformin. Of additional importance, this combined treatment has potent efficacy in ESCC cells with acquired resistance to CDK4/6 inhibitors in vitro and in xenograft tumors. Our findings reveal a molecular basis for cancer therapy through targeting glutaminolysis and mitochondrial respiration in ESCC with dysregulated Fbxo4-cyclin D1 axis as well as cancers resistant to CDK4/6 inhibitors.


Asunto(s)
Antineoplásicos/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias Esofágicas/tratamiento farmacológico , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Regulación Neoplásica de la Expresión Génica , Glutamina/metabolismo , Hipoglucemiantes/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Animales , Bencenoacetamidas/farmacología , Línea Celular Tumoral , Ciclina D1/genética , Ciclina D1/metabolismo , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 4 Dependiente de la Ciclina/genética , Quinasa 4 Dependiente de la Ciclina/metabolismo , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/genética , Quinasa 6 Dependiente de la Ciclina/metabolismo , Resistencia a Antineoplásicos/genética , Sinergismo Farmacológico , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/genética , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/metabolismo , Carcinoma de Células Escamosas de Esófago/patología , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Glutaminasa/antagonistas & inhibidores , Glutaminasa/genética , Glutaminasa/metabolismo , Glutamina/antagonistas & inhibidores , Humanos , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Metformina/farmacología , Ratones , Terapia Molecular Dirigida , Fenformina/farmacología , Proteína de Retinoblastoma/genética , Proteína de Retinoblastoma/metabolismo , Transducción de Señal , Tiadiazoles/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Front Physiol ; 10: 1588, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32116733

RESUMEN

Salt-sensitive (SS) hypertension is accompanied with an early onset of proteinuria, which results from the loss of glomerular podocytes. Here, we hypothesized that glomerular damage in the SS hypertension occurs in part due to mitochondria dysfunction, and we used a unique model of freshly isolated glomeruli to test this hypothesis. In order to mimic SS hypertension, we used Dahl SS rats, an established animal model. Animals were fed a 0.4% NaCl (normal salt, NS) diet or challenged with a high salt (HS) 4% NaCl diet for 21 days to induce an increase in blood pressure (BP). Similar to previous studies, we found that HS diet caused renal hypertrophy, increased BP, glomerulosclerosis, and renal lesions such as fibrosis and protein casts. We did not observe changes in mitochondrial biogenesis in the renal cortex or isolated glomeruli fractions. However, Seahorse assay performed on freshly isolated glomeruli revealed that basal mitochondrial respiration, maximal respiration, and spare respiratory capacity were lower in the HS compared to the NS group. Using confocal imaging and staining for mitochondrial H2O2 using mitoPY1, we detected an intensified response to an acute H2O2 application in the podocytes of the glomeruli isolated from the HS diet fed group. TEM analysis showed that glomerular mitochondria from the HS diet fed group have structural abnormalities (swelling, enlargement, less defined cristae). Therefore, we report that glomerular mitochondria in SS hypertension are functionally and structurally defective, and this impairment could eventually lead to loss of podocytes and proteinuria. Thus, the glomerular-mitochondria axis can be targeted in novel treatment strategies for hypertensive glomerulosclerosis.

17.
Cell Rep ; 28(7): 1879-1893.e7, 2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31412253

RESUMEN

Sphingosine 1-phosphate (S1P), a bioactive lysophospholipid generated by sphingosine kinase 1 (SphK1), regulates lymphocyte egress into circulation via S1P receptor 1 (S1PR1) signaling, and it controls the differentiation of regulatory T cells (Tregs) and T helper-17 cells. However, the mechanisms by which receptor-independent SphK1-mediated intracellular S1P levels modulate T cell functionality remains unknown. We show here that SphK1-deficient T cells maintain central memory phenotype and exhibit higher mitochondrial respiration and reduced differentiation to Tregs. Mechanistically, we discovered a direct correlation between SphK1-generated S1P and lipid transcription factor PPARγ (peroxisome proliferator-activated receptor gamma) activity, which in turn regulates lipolysis in T cells. Genetic and pharmacologic inhibition of SphK1 improved metabolic fitness and anti-tumor activity of T cells against murine melanoma. Further, inhibition of SphK1 and PD1 together led to improved control of melanoma. Overall, these data highlight the clinical potential of limiting SphK1/S1P signaling for enhancing anti-tumor-adoptive T cell therapy.


Asunto(s)
Reprogramación Celular , Regulación Neoplásica de la Expresión Génica , Lisofosfolípidos/metabolismo , Melanoma Experimental/patología , PPAR gamma/fisiología , Fosfotransferasas (Aceptor de Grupo Alcohol)/fisiología , Esfingosina/análogos & derivados , Linfocitos T/inmunología , Animales , Femenino , Masculino , Melanoma Experimental/inmunología , Melanoma Experimental/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación Oxidativa , Receptores de Lisoesfingolípidos/metabolismo , Transducción de Señal , Esfingosina/metabolismo , Linfocitos T/metabolismo
18.
Cell Rep ; 25(6): 1469-1484.e5, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30404003

RESUMEN

Patients with mtDNA depletion syndrome 3 (MTDPS3) often die as children from liver failure caused by severe reduction in mtDNA content. The identification of treatments has been impeded by an inability to culture and manipulate MTDPS3 primary hepatocytes. Here we generated DGUOK-deficient hepatocyte-like cells using induced pluripotent stem cells (iPSCs) and used them to identify drugs that could improve mitochondrial ATP production and mitochondrial function. Nicotinamide adenine dinucleotide (NAD) was found to improve mitochondrial function in DGUOK-deficient hepatocyte-like cells by activating the peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α). NAD treatment also improved ATP production in MTDPS3-null rats and in hepatocyte-like cells that were deficient in ribonucleoside-diphosphate reductase subunit M2B (RRM2B), suggesting that it could be broadly effective. Our studies reveal that DGUOK-deficient iPSC-derived hepatocytes recapitulate the pathophysiology of MTDPS3 in culture and can be used to identify therapeutics for mtDNA depletion syndromes.


Asunto(s)
ADN Mitocondrial/genética , Hepatocitos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , NAD/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Secuencia de Bases , Diferenciación Celular , Respiración de la Célula , Femenino , Glucosa/metabolismo , Glucólisis , Hepatocitos/citología , Hepatocitos/ultraestructura , Humanos , Células Madre Pluripotentes Inducidas/citología , Masculino , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Mutación/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Ratas , Ribonucleótido Reductasas/metabolismo , Síndrome
19.
Am J Cardiovasc Dis ; 6(2): 46-54, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27335690

RESUMEN

UNLABELLED: Estrogen-related Receptors (ERR) are members of the steroid hormone receptor superfamily of transcription factors that regulate expression of genes required for energy metabolism including mitochondrial biogenesis, fatty acid oxidation and oxidative phosphorylation. While ERRα and EPPγ isoforms are known to share a wide array of target genes in the adult myocardium, the function of ERRß has not been characterized in cardiomyocytes. The purpose of this study was to determine the role of ERRß in regulating energy metabolism in adult cardiomyocytes in primary culture. Adult feline cardiomyocytes were electrically stimulated to contract in either hypoxia (0.5% O2) or normoxia (21% O2). As compared to baseline values measured in normoxia, ERRß mRNA levels increased significantly after 8 hours of hypoxia and remained elevated over 24 h. Conversely, ERRß mRNA decreased to normoxic levels after 4 hours of reoxygenation. Hypoxia increased expression of the α and ß isoforms of Peroxisome Proliferator-Activated Receptor γ Coactivator-1 (PGC-1) mRNA by 6-fold and 3-fold, respectively. Knockdown of ERRß expression via adenoviral-mediated delivery of ERRß shRNA blocked hypoxia-induced increases in PGC-1ß mRNA, but not PGC-1α mRNA. Loss of ERRß had no effect on mtDNA content as measured after 24 h of hypoxia. To determine whether loss of ERRß affected mitochondrial function, oxygen consumption rates (OCR) were measured in contracting versus quiescent cardiomyocytes in normoxia. OCR was significantly lower in contracting cardiomyocytes expressing ERRß shRNA than scrambled shRNA controls. Maximal OCR also was reduced by ERRß knockdown. IN CONCLUSION: 1) hypoxia increases in ERRß mRNA expression in contracting cardiomyocytes; 2) ERRß is required for induction of the PGC-1ß isoform in response to hypoxia; 3) ERRß expression is required to sustain OCR in normoxic conditions.

20.
Toxicol Sci ; 146(2): 226-34, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25926417

RESUMEN

Previous high-throughput screens to identify mitochondrial toxicants used immortalized cell lines and focused on changes in mitochondrial membrane potential, which may not be sufficient and do not identify different types of mitochondrial dysfunction. Primary cultures of renal proximal tubule cells (RPTC) were examined with the Seahorse Extracellular Flux Analyzer to screen 676 compounds (5 µM; 1 h) from the ToxCast Phase II library for mitochondrial toxicants. Of the 676 compounds, 19 were classified as cytotoxicants, 376 were electron transport chain (ETC) inhibitors, and 5 were uncouplers. The remaining 276 compounds were examined after a 5-h exposure to identify slower acting mitochondrial toxicants. This experiment identified 3 cytotoxicants, 110 ETC inhibitors, and 163 compounds with no effect. A subset of the ToxCast Phase II library was also examined in immortalized human renal cells (HK2) to determine differences in susceptibility to mitochondrial toxicity. Of the 131 RPTC ETC inhibitors tested, only 14 were ETC inhibitors in HK2 cells. Of the 5 RPTC uncouplers, 1 compound was an uncoupler in HK2 cells. These results demonstrate that 73% (491/676) of the compounds in the ToxCast Phase II library compounds exhibit RPTC mitochondrial toxicity, overwhelmingly ETC inhibition. In contrast, renal HK2 cells are markedly less sensitive and only identified 6% of the compounds as mitochondrial toxicants. We suggest caution is needed when studying mitochondrial toxicity in immortalized cell lines. This information will provide mechanisms and chemical-based criteria for assessing and predicting mitochondrial liabilities of new drugs, consumer products, and environmental agents.


Asunto(s)
Respiración de la Célula/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento , Mitocondrias/efectos de los fármacos , Pruebas de Toxicidad , Animales , Línea Celular , Transporte de Electrón/efectos de los fármacos , Femenino , Humanos , Conejos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA