Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Philos Trans A Math Phys Eng Sci ; 379(2189): 20200052, 2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-33280559

RESUMEN

Inertial confinement fusion approaches involve the creation of high-energy-density states through compression. High gain scenarios may be enabled by the beneficial heating from fast electrons produced with an intense laser and by energy containment with a high-strength magnetic field. Here, we report experimental measurements from a configuration integrating a magnetized, imploded cylindrical plasma and intense laser-driven electrons as well as multi-stage simulations that show fast electrons transport pathways at different times during the implosion and quantify their energy deposition contribution. The experiment consisted of a CH foam cylinder, inside an external coaxial magnetic field of 5 T, that was imploded using 36 OMEGA laser beams. Two-dimensional (2D) hydrodynamic modelling predicts the CH density reaches [Formula: see text], the temperature reaches 920 eV and the external B-field is amplified at maximum compression to 580 T. At pre-determined times during the compression, the intense OMEGA EP laser irradiated one end of the cylinder to accelerate relativistic electrons into the dense imploded plasma providing additional heating. The relativistic electron beam generation was simulated using a 2D particle-in-cell (PIC) code. Finally, three-dimensional hybrid-PIC simulations calculated the electron propagation and energy deposition inside the target and revealed the roles the compressed and self-generated B-fields play in transport. During a time window before the maximum compression time, the self-generated B-field on the compression front confines the injected electrons inside the target, increasing the temperature through Joule heating. For a stronger B-field seed of 20 T, the electrons are predicted to be guided into the compressed target and provide additional collisional heating. This article is part of a discussion meeting issue 'Prospects for high gain inertial fusion energy (part 2)'.

2.
Phys Rev Lett ; 123(21): 215001, 2019 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-31809125

RESUMEN

Shocks are abundant both in astrophysical and laboratory systems. While the electric fields generated at shock fronts have recently attracted great attention, the associated self-generated magnetic field is rarely studied, despite its ability to significantly affect the shock profile in the nonideal geometry where density and temperature gradients are not parallel. We report here the observation of a magnetic field at the front of a Mach ∼6 shock propagating in a low-density helium gas system. Proton radiography from different projection angles not only confirms the magnetic field's existence, but also provides a quantitative measurement of the field strength in the range ∼5 to 7 T. X-ray spectrometry allowed inference of the density and temperature at the shock front, constraining the plasma conditions under which the magnetic and electric fields are generated. Simulations with the particle-in-cell code lsp attribute the self-generation of the magnetic field to the Biermann battery effect (∇n_{e}×∇T_{e}).

3.
Phys Rev Lett ; 122(15): 155002, 2019 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-31050520

RESUMEN

The rapid heating of a thin titanium foil by a high intensity, subpicosecond laser is studied by using a 2D narrow-band x-ray imaging and x-ray spectroscopy. A novel monochromatic imaging diagnostic tuned to 4.51 keV Ti Kα was used to successfully visualize a significantly ionized area (⟨Z⟩>17±1) of the solid density plasma to be within a ∼35 µm diameter spot in the transverse direction and 2 µm in depth. The measurements and a 2D collisional particle-in-cell simulation reveal that, in the fast isochoric heating of solid foil by an intense laser light, such a high ionization state in solid titanium is achieved by thermal diffusion from the hot preplasma in a few picoseconds after the pulse ends. The shift of Kα and formation of a missing Kα cannot be explained with the present atomic physics model. The measured Kα image is reproduced only when a phenomenological model for the Kα shift with a threshold ionization of ⟨Z⟩=17 is included. This work reveals how the ionization state and electron temperature of the isochorically heated nonequilibrium plasma are independently increased.

4.
Phys Rev Lett ; 118(20): 205001, 2017 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-28581770

RESUMEN

Collimated transport of ultrahigh intensity electron current was observed in cold and in laser-shocked vitreous carbon, in agreement with simulation predictions. The fast electron beams were created by coupling high-intensity and high-contrast laser pulses onto copper-coated cones drilled into the carbon samples. The guiding mechanism-observed only for times before the shock breakout at the inner cone tip-is due to self-generated resistive magnetic fields of ∼0.5-1 kT arising from the intense currents of fast electrons in vitreous carbon, by virtue of its specific high resistivity over the range of explored background temperatures. The spatial distribution of the electron beams, injected through the samples at different stages of compression, was characterized by side-on imaging of hard x-ray fluorescence.

5.
Phys Rev Lett ; 116(15): 155001, 2016 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-27127972

RESUMEN

The interaction of a multipicosecond, kilojoule laser pulse with a surface of a solid target has been shown to produce electrons with energies far beyond the free-electron ponderomotive limit m_{e}c^{2}a_{0}^{2}/2. Particle-in-cell simulations indicate that an increase in the pulse duration from 1 to 10 ps leads to the formation of a low-density shelf (about 10% of the critical density). The shelf extends over 100 µm toward the vacuum side, with a nonstationary potential barrier forming in that area. Electrons reflected from the barrier gain superponderomotive energy from the potential. Some electrons experience an even greater energy gain due to ponderomotive acceleration when their "dephasing rate" R=γ-p_{x}/m_{e}c drops well below unity, thus increasing acceleration by a factor of 1/R. Both 1D and 2D simulations indicate that these mechanisms are responsible for the generation of extensive thermal distributions with T_{e}>10 MeV and a high-energy cutoff of hundreds of MeV.

6.
Phys Rev Lett ; 115(5): 054801, 2015 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-26274422

RESUMEN

The first self-consistent hybrid particle-in-cell (PIC) simulation of intense proton beam transport and energy deposition in solid-density matter is presented. Both the individual proton slowing-down and the collective beam-plasma interaction effects are taken into account with a new dynamic proton stopping power module that has been added to a hybrid PIC code. In this module, the target local stopping power can be updated at each time step based on its thermodynamic state. For intense proton beams, the reduction of target stopping power from the cold condition due to continuous proton heating eventually leads to broadening of the particle range and energy deposition far beyond the Bragg peak. For tightly focused beams, large magnetic field growth in collective interactions results in self-focusing of the beam and much stronger localized heating of the target.

7.
Phys Rev Lett ; 114(4): 045001, 2015 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-25679896

RESUMEN

This Letter presents the first experimental demonstration of the capability to launch shocks of several-hundred Mbar in spherical targets--a milestone for shock ignition [R. Betti et al., Phys. Rev. Lett. 98, 155001 (2007)]. Using the temporal delay between the launching of the strong shock at the outer surface of the spherical target and the time when the shock converges at the center, the shock-launching pressure can be inferred using radiation-hydrodynamic simulations. Peak ablation pressures exceeding 300 Mbar are inferred at absorbed laser intensities of ∼3×10(15) W/cm2. The shock strength is shown to be significantly enhanced by the coupling of suprathermal electrons with a total converted energy of up to 8% of the incident laser energy. At the end of the laser pulse, the shock pressure is estimated to exceed ∼1 Gbar because of convergence effects.

8.
Phys Rev Lett ; 114(9): 095004, 2015 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-25793822

RESUMEN

Energy loss in the transport of a beam of relativistic electrons in warm dense aluminum is measured in the regime of ultrahigh electron beam current density over 2×10^{11} A/cm^{2} (time averaged). The samples are heated by shock compression. Comparing to undriven cold solid targets, the roles of the different initial resistivity and of the transient resistivity (upon target heating during electron transport) are directly observable in the experimental data, and are reproduced by a comprehensive set of simulations describing the hydrodynamics of the shock compression and electron beam generation and transport. We measured a 19% increase in electron resistive energy loss in warm dense compared to cold solid samples of identical areal mass.

9.
Phys Rev Lett ; 110(2): 025001, 2013 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-23383907

RESUMEN

The effect of target material on fast-electron transport is investigated using a high-intensity (0.7 ps, 10(20) W/cm2) laser pulse irradiated on multilayered solid Al targets with embedded transport (Au, Mo, Al) and tracer (Cu) layers, backed with millimeter-thick carbon foils to minimize refluxing. We consistently observed a more collimated electron beam (36% average reduction in fast-electron induced Cu Kα spot size) using a high- or mid-Z (Au or Mo) layer compared to Al. All targets showed a similar electron flux level in the central spot of the beam. Two-dimensional collisional particle-in-cell simulations showed formation of strong self-generated resistive magnetic fields in targets with a high-Z transport layer that suppressed the fast-electron beam divergence; the consequent magnetic channels guided the fast electrons to a smaller spot, in good agreement with experiments. These findings indicate that fast-electron transport can be controlled by self-generated resistive magnetic fields and may have important implications to fast ignition.

10.
Phys Rev E ; 108(3-2): 035202, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37849193

RESUMEN

Strong shocks are essential components in many high-energy-density environments such as inertial confinement fusion implosions. However, the experimental measurements of the spatial structures of such shocks are sparse. In this paper, the soft x-ray emission of a shock front in a helium gas mixture (90% helium, 10% neon) and a pure neon gas was spatially resolved using an imaging spectrometer. We observe that the shock width in the helium mixture gas is about twice as large as in the pure neon gas. Moreover, they exhibit different precursor layers, where electron temperature greatly exceeds ion temperature, extending for more than ∼350µm with the helium gas mixture but less than 30µm in the pure neon. At the shock front, calculations show that the electrons are strongly collisional with mean-free path two orders of magnitude shorter than the characteristic length of the shock. However, the helium ions can reach a kinetic regime as a consequence of their mean-free path being comparable to the scale of the shock. A radiation-hydrodynamic simulation demonstrates the impact of thermal conduction on the formation of the precursors with charge state, Z, playing a major role in heat flow and the precursor formation in both the helium mixture and the pure neon gases. Particle-in-cell simulations are also performed to study the ion kinetic effects on the formation of the observed precursors. A group of fast-streaming ions is observed leading the shock only in the helium gas mixture. Both effects explain the longer precursor layer in the helium shock.

11.
Phys Rev Lett ; 108(11): 115004, 2012 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-22540481

RESUMEN

The effect of increasing prepulse energy levels on the energy spectrum and coupling into forward-going electrons is evaluated in a cone-guided fast-ignition relevant geometry using cone-wire targets irradiated with a high intensity (10(20) W/cm(2)) laser pulse. Hot electron temperature and flux are inferred from Kα images and yields using hybrid particle-in-cell simulations. A two-temperature distribution of hot electrons was required to fit the full profile, with the ratio of energy in a higher energy (MeV) component increasing with a larger prepulse. As prepulse energies were increased from 8 mJ to 1 J, overall coupling from laser to all hot electrons entering the wire was found to fall from 8.4% to 2.5% while coupling into only the 1-3 MeV electrons dropped from 0.57% to 0.03%.

12.
Phys Rev Lett ; 109(14): 145006, 2012 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-23083255

RESUMEN

A novel time-resolved diagnostic is used to record the critical surface motion during picosecond-scale relativistic laser interaction with a solid target. Single-shot measurements of the specular light show a redshift decreasing with time during the interaction, corresponding to a slowing-down of the hole boring process into overdense plasma. On-shot full characterization of the laser pulse enables simulations of the experiment without any free parameters. Two-dimensional particle-in-cell simulations yield redshifts that agree with the data, and support a simple explanation of the slowing-down of the critical surface based on momentum conservation between ions and reflected laser light.

13.
Phys Rev Lett ; 109(25): 255002, 2012 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-23368474

RESUMEN

We present experimental and numerical results on intense-laser-pulse-produced fast electron beams transport through aluminum samples, either solid or compressed and heated by laser-induced planar shock propagation. Thanks to absolute K(α) yield measurements and its very good agreement with results from numerical simulations, we quantify the collisional and resistive fast electron stopping powers: for electron current densities of ≈ 8 × 10(10) A/cm(2) they reach 1.5 keV/µm and 0.8 keV/µm, respectively. For higher current densities up to 10(12)A/cm(2), numerical simulations show resistive and collisional energy losses at comparable levels. Analytical estimations predict the resistive stopping power will be kept on the level of 1 keV/µm for electron current densities of 10(14)A/cm(2), representative of the full-scale conditions in the fast ignition of inertially confined fusion targets.

14.
Phys Rev Lett ; 108(22): 225002, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23003606

RESUMEN

We report experimental evidence for a Rayleigh-Taylor-like instability driven by radiation pressure of an ultraintense (10(21) W/cm(2)) laser pulse. The instability is witnessed by the highly modulated profile of the accelerated proton beam produced when the laser irradiates a 5 nm diamondlike carbon (90% C, 10% H) target. Clear anticorrelation between bubblelike modulations of the proton beam and transmitted laser profile further demonstrate the role of the radiation pressure in modulating the foil. Measurements of the modulation wavelength, and of the acceleration from Doppler-broadening of back-reflected light, agree quantitatively with particle-in-cell simulations performed for our experimental parameters and which confirm the existence of this instability.

15.
Phys Rev E ; 105(4-2): 045205, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35590572

RESUMEN

The gas-puff Z pinch has a long history with myriad applications as an efficient neutron or x-ray source. Its simplicity as a load configuration makes it suitable for studying fundamental plasma physics phenomena such as instabilities and energy transport. For example, the implosion of cylindrical shells onto a fusion fuel are inherently susceptible to instability growth on their external surfaces; if such instabilities are unmitigated, then the consequences in terms of degraded performance can be substantial. Similarly, mitigating heat transport from a hot fuel to its colder surrounding container can make fusion conditions more easily achievable. Here we have conducted a systematic study of triple-nozzle (outer liner, inner liner, fuel) gas puffs using two-dimensional (2D) magnetohydrodynamic simulations to investigate the effect of load material on the relevant dynamics. Analogous to past studies on spherical blast waves and converging shock waves, a trend emerges linking increased radiative cooling, lower adiabatic index, and increased magneto-Rayleigh-Taylor instability growth. Notably, our results suggest that, for the present configuration, Ar radiates less than both Ne and Kr during the early stages of the implosion while mass is being swept up and perturbations begin to seed instability growth. Consequently, pinches with Ar on the outer surface exhibit more stable 2D behavior. Here we also present a parameter scan of thermonuclear neutron yield, Y, as a function of peak current, I_{pk} and dopant concentration with Ne or Ar, depending on the inner liner material. Above 6 MA, our results suggest Y∝I_{pk}^{5} and even substantial mixing (10% by volume) of Ne into the fuel does not drastically reduce yield, suggesting an Ar/Ne/fuel configuration may reliably achieve DD thermonuclear yields of 10^{13}-10^{14}/cm in the 10-20 MA range.

16.
Rev Sci Instrum ; 93(8): 083509, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36050081

RESUMEN

In this study, we present the absolute calibration of the conical crystal for the zinc spectrometer (ZSPEC), an x-ray spectrometer at the OMEGA laser facility at the Laboratory for Laser Energetics. The ZSPEC was originally designed to measure x-ray Thomson scattering using flat or cylindrically curved highly oriented pyrolytic graphite crystals centered around Zn He-alpha emission at 9 keV. To improve the useful spectral range and collection efficiency of the ZSPEC, a conical highly annealed pyrolytic graphite crystal was fabricated for the ZSPEC. The conically bent crystal in the Hall geometry produces a line focus perpendicular to the spectrometer axis, corresponding to the detector plane of electronic detectors at large scale laser facilities such as OMEGA, extending the useful range of the spectrometer to 7-11 keV. Using data collected using a microfocus Mo x-ray source, we determine important characteristics of ZSPEC such as the dispersion, spatial resolution, and absolute sensitivity of the instrument. A ray-trace model of ZSPEC provides another point of agreement in calculations of the ZSPEC dispersion and crystal response.

17.
Phys Rev E ; 105(5-2): 055206, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35706166

RESUMEN

Laser-accelerated proton beams are applicable to several research areas within high-energy density science, including warm dense matter generation, proton radiography, and inertial confinement fusion, which all involve transport of the beam through matter. We report on experimental measurements of intense proton beam transport through plastic foam blocks. The intense proton beam was accelerated by the 10ps, 700J OMEGA EP laser irradiating a curved foil target, and focused by an attached hollow cone. The protons then entered the foam block of density 0.38g/cm^{3} and thickness 0.55 or 1.00mm. At the rear of the foam block, a Cu layer revealed the cross section of the intense beam via proton- and hot electron-induced Cu-K_{α} emission. Images of x-ray emission show a bright spot on the rear Cu film indicative of a forward-directed beam without major breakup. 2D fluid-PIC simulations of the transport were conducted using a unique multi-injection source model incorporating energy-dependent beam divergence. Along with postprocessed calculations of the Cu-K_{α} emission profile, simulations showed that protons retain their ballistic transport through the foam and are able to heat the foam up to several keV in temperature. The total experimental emission profile for the 1.0mm foam agrees qualitatively with the simulated profile, suggesting that the protons indeed retain their beamlike qualities.

18.
Rev Sci Instrum ; 93(11): 113542, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36461474

RESUMEN

Magnetization of inertial confinement implosions is a promising means of improving their performance, owing to the potential reduction of energy losses within the target and mitigation of hydrodynamic instabilities. In particular, cylindrical implosions are useful for studying the influence of a magnetic field, thanks to their axial symmetry. Here, we present experimental results from cylindrical implosions on the OMEGA-60 laser using a 40-beam, 14.5 kJ, 1.5 ns drive and an initial seed magnetic field of B0 = 30 T along the axes of the targets, compared with reference results without an imposed B-field. Implosions were characterized using time-resolved x-ray imaging from two orthogonal lines of sight. We found that the data agree well with magnetohydrodynamic simulations, once radiation transport within the imploding plasma is considered. We show that for a correct interpretation of the data in these types of experiments, explicit radiation transport must be taken into account.

19.
Rev Sci Instrum ; 93(11): 115102, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36461483

RESUMEN

Talbot-Lau x-ray interferometry is a refraction-based diagnostic that can map electron density gradients through phase-contrast methods. The Talbot-Lau x-ray deflectometry (TXD) diagnostics have been deployed in several high energy density experiments. To improve diagnostic performance, a monochromatic TXD was implemented on the Multi-Tera Watt (MTW) laser using 8 keV multilayer mirrors (Δθ/θ = 4.5%-5.6%). Copper foil and wire targets were irradiated at 1014-1015 W/cm2. Laser pulse length (∼10 to 80 ps) and backlighter target configurations were explored in the context of Moiré fringe contrast and spatial resolution. Foil and wire targets delivered increased contrast <30%. The best spatial resolution (<6 µm) was measured for foils irradiated 80° from the surface. Further TXD diagnostic capability enhancement was achieved through the development of advanced data postprocessing tools. The Talbot Interferometry Analysis (TIA) code enabled x-ray refraction measurements from the MTW monochromatic TXD. Additionally, phase, attenuation, and dark-field maps of an ablating x-pinch load were retrieved through TXD. The images show a dense wire core of ∼60 µm diameter surrounded by low-density material of ∼40 µm thickness with an outer diameter ratio of ∼2.3. Attenuation at 8 keV was measured at ∼20% for the dense core and ∼10% for the low-density material. Instrumental and experimental limitations for monochromatic TXD diagnostics are presented. Enhanced postprocessing capabilities enabled by TIA are demonstrated in the context of high-intensity laser and pulsed power experimental data analysis. Significant advances in TXD diagnostic capabilities are presented. These results inform future diagnostic technique upgrades that will improve the accuracy of plasma characterization through TXD.

20.
Phys Rev E ; 106(5-2): 055205, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36559494

RESUMEN

The collisionless ion-Weibel instability is a leading candidate mechanism for the formation of collisionless shocks in many astrophysical systems, where the typical distance between particle collisions is much larger than the system size. Multiple laboratory experiments aimed at studying this process utilize laser-driven (I≳10^{15} W/cm^{2}), counterstreaming plasma flows (V≲2000 km/s) to create conditions unstable to Weibel-filamentation and growth. This technique intrinsically produces temporally varying plasma conditions at the midplane of the interaction where Weibel-driven B fields are generated and studied. Experiments discussed herein demonstrate robust formation of Weibel-driven B fields under multiple plasma conditions using CH, Al, and Cu plasmas. Linear theory based on benchmarked radiation-hydrodynamic FLASH calculations is compared with Fourier analyses of proton images taken ∼5-6 linear growth times into the evolution. The new analyses presented here indicate that the low-density, high-velocity plasma-conditions present during the first linear-growth time (∼300-500 ps) sets the spectral characteristics of Weibel filaments during the entire evolution. It is shown that the dominant wavelength (∼300µm) at saturation persists well into the nonlinear phase, consistent with theory under these experimental conditions. However, estimates of B-field strength, while difficult to determine accurately due to the path-integrated nature of proton imaging, are shown to be in the ∼10-30 T range, an order of magnitude above the expected saturation limit in homogenous plamas but consistent with enhanced B fields in the midplane due to temporally varying plasma conditions in experiments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA