Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Chem Inf Model ; 62(22): 5622-5633, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36351167

RESUMEN

The development of accurate transferable force fields is key to realizing the full potential of atomistic modeling in the study of biological processes such as protein-ligand binding for drug discovery. State-of-the-art transferable force fields, such as those produced by the Open Force Field Initiative, use modern software engineering and automation techniques to yield accuracy improvements. However, force field torsion parameters, which must account for many stereoelectronic and steric effects, are considered to be less transferable than other force field parameters and are therefore often targets for bespoke parametrization. Here, we present the Open Force Field QCSubmit and BespokeFit software packages that, when combined, facilitate the fitting of torsion parameters to quantum mechanical reference data at scale. We demonstrate the use of QCSubmit for simplifying the process of creating and archiving large numbers of quantum chemical calculations, by generating a dataset of 671 torsion scans for druglike fragments. We use BespokeFit to derive individual torsion parameters for each of these molecules, thereby reducing the root-mean-square error in the potential energy surface from 1.1 kcal/mol, using the original transferable force field, to 0.4 kcal/mol using the bespoke version. Furthermore, we employ the bespoke force fields to compute the relative binding free energies of a congeneric series of inhibitors of the TYK2 protein, and demonstrate further improvements in accuracy, compared to the base force field (MUE reduced from 0.560.390.77 to 0.420.280.59 kcal/mol and R2 correlation improved from 0.720.350.87 to 0.930.840.97).


Asunto(s)
Proteínas , Programas Informáticos , Ligandos , Proteínas/química , Entropía , Unión Proteica
2.
Phys Chem Chem Phys ; 22(19): 10609-10623, 2020 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-31670326

RESUMEN

We describe a new computer implementation of electron transfer (ET) theory in extended systems treated by periodic density functional theory (DFT), including the calculation of the electronic coupling transition element VAB. In particular, the development opens up the full characterization of electron transfer in the solid state. The approach is valid for any single-determinant wavefunction with localized character representing the electronic structure of the system, from Hartree-Fock (HF) theory, to density functional theory (DFT), hybrid DFT theory, DFT+U theory, and constrained DFT (cDFT) theory. The implementation in CP2K reuses the high-performance functions of the code. The computational cost is equivalent to only one iteration of an HF calculation. We present test calculations for electron transfer in a number of systems, including a 1D-model of ferric oxide, hematite Fe2O3, rutile TiO2, and finally bismuth vanadate BiVO4.

3.
Digit Discov ; 2(4): 1178-1187, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38013814

RESUMEN

The Lennard-Jones potential is the most widely-used function for the description of non-bonded interactions in transferable force fields for the condensed phase. This is not because it has an optimal functional form, but rather it is a legacy resulting from when computational expense was a major consideration and this potential was particularly convenient numerically. At present, it persists because the effort that would be required to re-write molecular modelling software and train new force fields has, until now, been prohibitive. Here, we present Smirnoff-plugins as a flexible framework to extend the Open Force Field software stack to allow custom force field functional forms. We deploy Smirnoff-plugins with the automated Open Force Field infrastructure to train a transferable, small molecule force field based on the recently-proposed double exponential functional form, on over 1000 experimental condensed phase properties. Extensive testing of the resulting force field shows improvements in transfer free energies, with acceptable conformational energetics, run times and convergence properties compared to state-of-the-art Lennard-Jones based force fields.

4.
Sci Data ; 10(1): 11, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36599873

RESUMEN

Machine learning potentials are an important tool for molecular simulation, but their development is held back by a shortage of high quality datasets to train them on. We describe the SPICE dataset, a new quantum chemistry dataset for training potentials relevant to simulating drug-like small molecules interacting with proteins. It contains over 1.1 million conformations for a diverse set of small molecules, dimers, dipeptides, and solvated amino acids. It includes 15 elements, charged and uncharged molecules, and a wide range of covalent and non-covalent interactions. It provides both forces and energies calculated at the ωB97M-D3(BJ)/def2-TZVPPD level of theory, along with other useful quantities such as multipole moments and bond orders. We train a set of machine learning potentials on it and demonstrate that they can achieve chemical accuracy across a broad region of chemical space. It can serve as a valuable resource for the creation of transferable, ready to use potential functions for use in molecular simulations.

5.
J Chem Theory Comput ; 19(11): 3251-3275, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37167319

RESUMEN

We introduce the Open Force Field (OpenFF) 2.0.0 small molecule force field for drug-like molecules, code-named Sage, which builds upon our previous iteration, Parsley. OpenFF force fields are based on direct chemical perception, which generalizes easily to highly diverse sets of chemistries based on substructure queries. Like the previous OpenFF iterations, the Sage generation of OpenFF force fields was validated in protein-ligand simulations to be compatible with AMBER biopolymer force fields. In this work, we detail the methodology used to develop this force field, as well as the innovations and improvements introduced since the release of Parsley 1.0.0. One particularly significant feature of Sage is a set of improved Lennard-Jones (LJ) parameters retrained against condensed phase mixture data, the first refit of LJ parameters in the OpenFF small molecule force field line. Sage also includes valence parameters refit to a larger database of quantum chemical calculations than previous versions, as well as improvements in how this fitting is performed. Force field benchmarks show improvements in general metrics of performance against quantum chemistry reference data such as root-mean-square deviations (RMSD) of optimized conformer geometries, torsion fingerprint deviations (TFD), and improved relative conformer energetics (ΔΔE). We present a variety of benchmarks for these metrics against our previous force fields as well as in some cases other small molecule force fields. Sage also demonstrates improved performance in estimating physical properties, including comparison against experimental data from various thermodynamic databases for small molecule properties such as ΔHmix, ρ(x), ΔGsolv, and ΔGtrans. Additionally, we benchmarked against protein-ligand binding free energies (ΔGbind), where Sage yields results statistically similar to previous force fields. All the data is made publicly available along with complete details on how to reproduce the training results at https://github.com/openforcefield/openff-sage.


Asunto(s)
Benchmarking , Proteínas , Ligandos , Proteínas/química , Termodinámica , Entropía
6.
ACS Appl Mater Interfaces ; 10(49): 42417-42426, 2018 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-30451490

RESUMEN

Size- and shape-dependent electrochemical activity of nanostructures reveals relationships between nanostructure design and electrochemical performance. However, electrochemical performance of aspect-ratio-tunable quasi-two-dimensional (2D) nanomaterials with anisotropic properties has not been fully investigated. We prepared monodispersed hexagonal covellite (CuS) nanoplatelets (NPls) of fixed thickness (∼2 nm) but broadly tunable diameter (from 8 to >100 nm). These span a range of aspect ratios, from ∼4 to >50, connecting quasi-isotropic and quasi-2D regimes. Tests of electrochemical activity of the NPls for the oxygen reduction reaction in alkaline solution showed improved activity with increasing diameter. Combining experimental results with density functional theory calculations, we attribute size-dependent enhancement to anisotropy of conductivity and electrochemical activity. The lowest computed oxygen adsorption energy was on Cu sites exposed by cleaving covellite along (001) planes through tetrahedrally coordinated Cu atoms. The specific surface area of these planes, which are the top and bottom surfaces of the NPls, remains constant with changing diameter, for fixed NPl thickness. However, charge transport through the electrocatalyst film improves with increasing NPl diameter. These CuS NPl-carbon nanocatalysts provide inspiration for creating well-controlled layered nanomaterials for electrochemical applications and open up opportunities to design new electrocatalysts using transition-metal sulfides.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA