Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell ; 173(6): 1439-1453.e19, 2018 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-29856956

RESUMEN

The absence of cancer-restricted surface markers is a major impediment to antigen-specific immunotherapy using chimeric antigen receptor (CAR) T cells. For example, targeting the canonical myeloid marker CD33 in acute myeloid leukemia (AML) results in toxicity from destruction of normal myeloid cells. We hypothesized that a leukemia-specific antigen could be created by deleting CD33 from normal hematopoietic stem and progenitor cells (HSPCs), thereby generating a hematopoietic system resistant to CD33-targeted therapy and enabling specific targeting of AML with CAR T cells. We generated CD33-deficient human HSPCs and demonstrated normal engraftment and differentiation in immunodeficient mice. Autologous CD33 KO HSPC transplantation in rhesus macaques demonstrated long-term multilineage engraftment of gene-edited cells with normal myeloid function. CD33-deficient cells were impervious to CD33-targeting CAR T cells, allowing for efficient elimination of leukemia without myelotoxicity. These studies illuminate a novel approach to antigen-specific immunotherapy by genetically engineering the host to avoid on-target, off-tumor toxicity.


Asunto(s)
Células Madre Hematopoyéticas/citología , Inmunoterapia/métodos , Leucemia Mieloide Aguda/terapia , ARN Guía de Kinetoplastida/genética , Lectina 3 Similar a Ig de Unión al Ácido Siálico/genética , Linfocitos T/inmunología , Animales , Diferenciación Celular , Línea Celular Tumoral , Linaje de la Célula , Electroporación , Femenino , Hematopoyesis , Humanos , Leucemia Mieloide Aguda/inmunología , Macaca mulatta , Masculino , Ratones , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Trasplante de Neoplasias , Especies Reactivas de Oxígeno , Linfocitos T/citología
2.
Immunity ; 49(3): 464-476.e4, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30193847

RESUMEN

According to the established model of murine innate lymphoid cell (ILC) development, helper ILCs develop separately from natural killer (NK) cells. However, it is unclear how helper ILCs and NK cells develop in humans. Here we elucidated key steps of NK cell, ILC2, and ILC3 development within human tonsils using ex vivo molecular and functional profiling and lineage differentiation assays. We demonstrated that while tonsillar NK cells, ILC2s, and ILC3s originated from a common CD34-CD117+ ILC precursor pool, final steps of ILC2 development deviated independently and became mutually exclusive from those of NK cells and ILC3s, whose developmental pathways overlapped. Moreover, we identified a CD34-CD117+ ILC precursor population that expressed CD56 and gave rise to NK cells and ILC3s but not to ILC2s. These data support a model of human ILC development distinct from the mouse, whereby human NK cells and ILC3s share a common developmental pathway separate from ILC2s.


Asunto(s)
Células Asesinas Naturales/inmunología , Linfocitos/inmunología , Tonsila Palatina/inmunología , Animales , Antígenos CD34/metabolismo , Antígeno CD56/metabolismo , Diferenciación Celular , Linaje de la Célula , Células Cultivadas , Perfilación de la Expresión Génica , Humanos , Inmunidad Innata , Activación de Linfocitos , Ratones , Proteínas Proto-Oncogénicas c-kit/metabolismo
3.
Blood ; 139(9): 1340-1358, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-34788382

RESUMEN

Dysregulated cellular differentiation is a hallmark of acute leukemogenesis. Phosphatases are widely suppressed in cancers but have not been traditionally associated with differentiation. In this study, we found that the silencing of protein phosphatase 2A (PP2A) directly blocks differentiation in acute myeloid leukemia (AML). Gene expression and mass cytometric profiling revealed that PP2A activation modulates cell cycle and transcriptional regulators that program terminal myeloid differentiation. Using a novel pharmacological agent, OSU-2S, in parallel with genetic approaches, we discovered that PP2A enforced c-Myc and p21 dependent terminal differentiation, proliferation arrest, and apoptosis in AML. Finally, we demonstrated that PP2A activation decreased leukemia-initiating stem cells, increased leukemic blast maturation, and improved overall survival in murine Tet2-/-Flt3ITD/WT and human cell-line derived xenograft AML models in vivo. Our findings identify the PP2A/c-Myc/p21 axis as a critical regulator of the differentiation/proliferation switch in AML that can be therapeutically targeted in malignancies with dysregulated maturation fate.


Asunto(s)
Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Leucemia Mieloide Aguda/metabolismo , Proteína Fosfatasa 2/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Animales , Línea Celular Tumoral , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Humanos , Leucemia Mieloide Aguda/genética , Ratones , Ratones Noqueados , Proteína Fosfatasa 2/genética , Proteínas Proto-Oncogénicas c-myc/genética
4.
Am J Hematol ; 99(5): 890-899, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38444268

RESUMEN

Natural killer (NK)-cells have potent anti-tumor effects, yet it remains unclear if they are effective for patients with relapsed acute myeloid leukemia (AML). In a phase I clinical trial, we treated 12 patients (median age 60 years) with refractory AML (median 5 lines of prior therapy, median bone marrow blast count of 47%) with fludarabine/cytarabine followed by 6 infusions of NK-cells expanded from haploidentical donors using K562 feeder cells expressing membrane-bound IL21 and 4-1BBL. Patients received 106-107/kg/dose. No toxicity or graft-versus-host disease (GVHD) was observed and MTD was not reached. Seven patients (58.3%) responded and achieved a complete remission (CR) with/without count recovery. Median time to best response was 48 days. Five responding patients proceeded to a haploidentical transplant from the same donor. After a median follow-up of 52 months, 1-year overall survival (OS) for the entire group was 41.7%, better for patients who responded with CR/CRi (57.14%), and for patients who responded and underwent transplantation (60%). Persistence and expansion of donor-derived NK-cells were identified in patients' blood, and serum IFNγ levels rose concurrently with NK cell infusions. A higher count-functional inhibitory KIR was associated with higher likelihood of achieving CR/CRi. In conclusion, we observed a significant response to ex vivo expanded NK-cell administration in refractory AML patients without adverse effects.


Asunto(s)
Enfermedad Injerto contra Huésped , Leucemia Mieloide Aguda , Humanos , Persona de Mediana Edad , Células Asesinas Naturales/patología , Enfermedad Injerto contra Huésped/etiología , Citarabina , Haplotipos
5.
J Infect Dis ; 227(6): 788-799, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36583990

RESUMEN

BACKGROUND: Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 virus-specific cytotoxic T-cell lymphocytes (vCTLs) could provide a promising modality in COVID-19 treatment. We aimed to screen, manufacture, and characterize SARS-CoV-2-vCTLs generated from convalescent COVID-19 donors using the CliniMACS Cytokine Capture System (CCS). METHODS: Donor screening was done by stimulation of convalescent COVID-19 donor peripheral blood mononuclear cells with viral peptides and identification of interferonγ (IFN-γ)+ CD4 and CD8 T cells using flow cytometry. Clinical-grade SARS-CoV-2-vCTLs were manufactured using the CliniMACS CCS. The enriched SARS-CoV-2-vCTLs were characterized by T-cell receptor sequencing, mass cytometry, and transcriptome analysis. RESULTS: Of the convalescent donor blood samples, 93% passed the screening criteria for clinical manufacture. Three validation runs resulted in enriched T cells that were 79% (standard error of the mean 21%) IFN-γ+ T cells. SARS-CoV-2-vCTLs displayed a highly diverse T-cell receptor repertoire with enhancement of both memory CD8 and CD4 T cells, especially in CD8 TEM, CD4 TCM, and CD4 TEMRA cell subsets. SARS-CoV-2-vCTLs were polyfunctional with increased gene expression in T-cell function, interleukin, pathogen defense, and tumor necrosis factor superfamily pathways. CONCLUSIONS: Highly functional SARS-CoV-2-vCTLs can be rapidly generated by direct cytokine enrichment (12 hours) from convalescent donors. CLINICAL TRIALS REGISTRATION: NCT04896606.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Linfocitos T Citotóxicos , Leucocitos Mononucleares , Tratamiento Farmacológico de COVID-19 , Linfocitos T CD8-positivos , Linfocitos T CD4-Positivos , Citocinas , Interferón gamma
6.
Int J Mol Sci ; 23(13)2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35806069

RESUMEN

The neonatal Fc receptor (FcRn) is responsible for recycling of IgG antibodies and albumin throughout the body. This mechanism has been exploited for pharmaceutic delivery across an array of diseases to either enhance or diminish this function. Monoclonal antibodies and albumin-bound nanoparticles are examples of FcRn-dependent anti-cancer therapeutics. Despite its importance in drug delivery, little is known about FcRn expression in circulating immune cells. Through time-of-flight mass cytometry (CyTOF) we were able to characterize FcRn expression in peripheral blood mononuclear cell (PBMC) populations of pancreatic ductal adenocarcinoma (PDAC) patients and non-cancer donors. Furthermore, we were able to replicate these findings in an orthotopic murine model of PDAC. Altogether, we found that in both patients and mice with PDAC, FcRn was elevated in migratory and resident classical dendritic cell type 2 (cDC2) as well as monocytic and granulocytic myeloid-derived suppressor cell (MDSC) populations compared to tumor-free controls. Furthermore, PBMCs from PDAC patients had elevated monocyte, dendritic cells and MDSCs relative to non-cancer donor PBMCs. Future investigations into FcRn activity may further elucidate possible mechanisms of poor efficacy of antibody immunotherapies in patients with PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Albúminas , Animales , Antígenos de Histocompatibilidad Clase I , Leucocitos Mononucleares/metabolismo , Ratones , Monocitos/metabolismo , Receptores Fc , Neoplasias Pancreáticas
7.
Cytometry A ; 99(10): 1042-1053, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33476084

RESUMEN

The identification and discrimination of viable cells is important to understand how experimental variables may influence biochemical processes such as cell metabolism, cell cycle, and signaling pathways. Cisplatin is commonly used as a viability stain in mass cytometry studies, however, recent work by Mei et al. has demonstrated that cisplatin can also be used to label antibodies, complicating the simultaneous use of the platinum measurement channels for both antibody and viability staining. This study demonstrates that other metal salts (hafnium chloride, niobium chloride, and zirconium chloride) can serve as substitutes for cisplatin in viability staining. These stains yield similar fractions of live and dead cells and stain the same dead cells in parallel high parameter analyses. In addition, this study demonstrates how a variety of protein antigen viability markers (pRb, Ki-67, Histone H1, cleaved PARP, and GAPDH) can be used to discriminate live and dead cell populations, without the need for a separate viability staining step. As few as two of these protein antigen viability markers can help identify live and dead cell populations in fixed samples and can identify the same viable cells in high dimensional analyses with or without use of viability stain information. This study demonstrates several alternative approaches to mass cytometry viability assessment that can facilitate use of platinum isotopes for antibody staining and enables identification of live and dead cell populations in samples for which a separate viability stain is not practical.


Asunto(s)
Colorantes , Recuento de Células , Coloración y Etiquetado
8.
Invest New Drugs ; 38(2): 340-349, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31102119

RESUMEN

Activating FLT3 internal tandem duplication (FLT3-ITD) mutations in acute myeloid leukemia (AML) associate with inferior outcomes. We determined that pacritinib, a JAK2/FLT3 inhibitor, has in vitro activity against FLT3-ITD and tyrosine kinase domain (TKD) mutations. Therefore, we conducted a phase I study of pacritinib in combination with chemotherapy in AML patients with FLT3 mutations to determine the pharmacokinetics and preliminary toxicity and clinical activity. Pacritinib was administered at a dose of 100 mg or 200 mg twice daily following a 3 + 3 dose-escalation in combination with cytarabine and daunorubicin (cohort A) or with decitabine induction (cohort B). A total of thirteen patients were enrolled (five in cohort A; eight in cohort B). Dose limiting toxicities include hemolytic anemia and grade 3 QTc prolongation in two patients who received 100 mg. Complete remission was achieved in two patients in cohort A, one of whom had a minor D835Y clone at baseline. One patient in cohort B achieved morphologic leukemia free state. Seven patients (two in cohort A; five in cohort B) had stable disease. In conclusion, pacritinib, an inhibitor of FLT3-ITD and resistant-conferring TKD mutations, was well tolerated and demonstrated preliminary anti-leukemic activity in combination with chemotherapy in patients with FLT3 mutations.


Asunto(s)
Antineoplásicos/uso terapéutico , Hidrocarburos Aromáticos con Puentes/uso terapéutico , Janus Quinasa 2/antagonistas & inhibidores , Leucemia Mieloide Aguda/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirimidinas/uso terapéutico , Tirosina Quinasa 3 Similar a fms/antagonistas & inhibidores , Adulto , Anciano , Antineoplásicos/efectos adversos , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Hidrocarburos Aromáticos con Puentes/efectos adversos , Hidrocarburos Aromáticos con Puentes/farmacocinética , Hidrocarburos Aromáticos con Puentes/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Citarabina/efectos adversos , Citarabina/uso terapéutico , Daunorrubicina/efectos adversos , Daunorrubicina/uso terapéutico , Decitabina/efectos adversos , Decitabina/uso terapéutico , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Humanos , Estimación de Kaplan-Meier , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/mortalidad , Masculino , Persona de Mediana Edad , Mutación , Proyectos Piloto , Inhibidores de Proteínas Quinasas/efectos adversos , Inhibidores de Proteínas Quinasas/farmacocinética , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/efectos adversos , Pirimidinas/farmacocinética , Pirimidinas/farmacología , Tirosina Quinasa 3 Similar a fms/genética , Tirosina Quinasa 3 Similar a fms/metabolismo
9.
Proc Natl Acad Sci U S A ; 114(23): E4641-E4647, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28533390

RESUMEN

Epithelial growth factor-like 7 (EGFL7) is a protein that is secreted by endothelial cells and plays an important role in angiogenesis. Although EGFL7 is aberrantly overexpressed in solid tumors, its role in leukemia has not been evaluated. Here, we report that levels of both EGFL7 mRNA and EGFL7 protein are increased in blasts of patients with acute myeloid leukemia (AML) compared with normal bone marrow cells. High EGFL7 mRNA expression associates with lower complete remission rates, and shorter event-free and overall survival in older (age ≥60 y) and younger (age <60 y) patients with cytogenetically normal AML. We further show that AML blasts secrete EGFL7 protein and that higher levels of EGFL7 protein are found in the sera from AML patients than in sera from healthy controls. Treatment of patient AML blasts with recombinant EGFL7 in vitro leads to increases in leukemic blast cell growth and levels of phosphorylated AKT. EGFL7 blockade with an anti-EGFL7 antibody reduced the growth potential and viability of AML cells. Our findings demonstrate that increased EGFL7 expression and secretion is an autocrine mechanism supporting growth of leukemic blasts in patients with AML.


Asunto(s)
Factores de Crecimiento Endotelial/genética , Factores de Crecimiento Endotelial/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Proteínas Angiogénicas/antagonistas & inhibidores , Proteínas Angiogénicas/genética , Proteínas Angiogénicas/metabolismo , Animales , Anticuerpos Bloqueadores/farmacología , Proteínas de Unión al Calcio , Estudios de Casos y Controles , Línea Celular Tumoral , Proliferación Celular , Supervivencia sin Enfermedad , Familia de Proteínas EGF , Factores de Crecimiento Endotelial/antagonistas & inhibidores , Femenino , Humanos , Leucemia Mieloide Aguda/terapia , Masculino , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Persona de Mediana Edad , Pronóstico , Proteínas/metabolismo , Proteínas/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Factores de Riesgo , Regulación hacia Arriba , Adulto Joven
10.
Cytometry A ; 95(8): 898-909, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31120628

RESUMEN

Mass cytometry (MCM; CyTOF) utilizes isotopically purified metal-tagged antibodies for single-cell analysis and can analyze more than 40 parameters simultaneously with minimum signal spillover to other mass channels as compared to fluorescent flow cytometry. In spite of this improvement, various factors such as metal oxidation, abundance sensitivity related spillover, and metal impurities can cause measurable amounts of spillover in MCM that can potentially lead to misinterpretation of data. Linear spillover can be corrected by applying compensation; however, we demonstrate that at high signal intensities, MCM channel spillovers are frequently nonlinear. This report describes a simple method to correct for nonlinear signal spillover (due to abundance sensitivity, isotopic contamination, or oxide formation) that can occur at high signal intensity through the use of unlabeled competitor antibodies to the specific metal-tagged antibodies causing spillover. This method significantly decreased high signal intensity and nonlinear spillover to other mass channels while maintaining saturating antibody concentrations, thereby facilitating accurate staining and compensation. In contrast, the common method of using under-titrated antibodies to overcome spillover lead to staining intensity that varied with cell numbers and antigen abundance. We demonstrate that this technique reduces total signal without significantly altering immunophenotypic or functional measurement of relative antigen levels and could be used to enable improved linear compensation of signal spillovers from high abundance antigens. STATEMENT OF SIGNIFICANCE: Mass cytometry is becoming a well-established technology for comprehensive analysis of complex biological samples, due to its ability to enable measurement of more than 40 simultaneous parameters. Due to the use of isotopically pure metal-tagged antibodies, measurement channel spillover in mass cytometry is drastically lower than in fluorescent cytometry but can still occur due to metal oxidation, isotopic impurities, or abundance sensitivity when mass signals have high intensity. We show in this report that high abundance antigens with high signal intensity exhibit non-linear mass channel spillovers that cannot be easily compensated. We also demonstrate a simple method for the use of unlabeled competitor antibody to decrease antigen signal intensity while maintaining antigen abundance to allow for more accurate linear compensation. This method performs more consistently than the commonly used approach of using under-titrated antibodies. We believe that this report has immediate practical utility for researchers using mass cytometry and can be broadly utilized to enable compensation of mass cytometry data when needed. We thus feel that this article merits publication as a Brief Report in Cytometry Part A. © 2019 International Society for Advancement of Cytometry.


Asunto(s)
Anticuerpos/inmunología , Citometría de Flujo/métodos , Inmunofenotipificación/métodos , Análisis de la Célula Individual/métodos , Anticuerpos/farmacología , Humanos , Inmunoconjugados/farmacología , Espectrometría de Masas/métodos
11.
Cytometry A ; 93(11): 1141-1149, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30378741

RESUMEN

Cell cycle analysis is a recognized and important application of flow cytometry and, more recently, mass cytometry (MCM). Both technologies have been utilized for analysis of the cell cycle state of ex vivo samples from patients with hematologic malignancies. Clinical samples are frequently stored for hours at room temperature or cryogenically frozen before processing and analysis; however, how these processing methods alter cell cycle state is not well described. To understand how storage time and temperature affect the analysis of cell cycle distribution by MCM, two leukemia cell lines, HL-60 and MOLM13, and primary human cells from three human bone marrow aspirates were stored and frozen under a variety of conditions that are likely to be encountered in a clinical setting. Our findings indicate that short delays in sample processing (less than 1 h), have little to no effect on cell cycle distribution, while longer delays or cryopreservation cause significant disruptions to the cell cycle fraction characterized by consistent reductions in IdU incorporation and variable alterations in other cell cycle phases. Analysis of the recovery of cryopreserved leukemia cell lines and marrow cells demonstrated that cell cycle alterations persist for at least 48 h after thawing. Our findings demonstrate that accurate cell cycle analysis requires that samples be processed rapidly after collection, and that cryopreservation significantly alters cell cycle fractions. Measurement of IdU incorporation was the most sensitive to both delays in processing and cryopreservation, while estimation of the total cycling cell fraction using Ki-67 or phosphorylated retinoblastoma protein were least altered by the conditions tested. These findings provide guidance for the ideal approach to collection of samples for cell cycle analysis and can aid interpretation of cell cycle data from samples that cannot be collected under ideal circumstances. © 2018 International Society for Advancement of Cytometry.


Asunto(s)
Ciclo Celular/fisiología , Citometría de Flujo/métodos , Línea Celular Tumoral , Criopreservación/métodos , Células HL-60 , Humanos , Antígeno Ki-67/metabolismo , Leucemia/metabolismo , Leucemia/patología , Proteína de Retinoblastoma/metabolismo , Temperatura
14.
Hum Mol Genet ; 21(5): 1172-83, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22106380

RESUMEN

Bloom's syndrome (BS) is an autosomal recessive disorder that is invariably characterized by severe growth retardation and cancer predisposition. The Bloom's syndrome helicase (BLM), mutations of which lead to BS, localizes to promyelocytic leukemia protein bodies and to the nucleolus of the cell, the site of RNA polymerase I-mediated ribosomal RNA (rRNA) transcription. rRNA transcription is fundamental for ribosome biogenesis and therefore protein synthesis, cellular growth and proliferation; its inhibition limits cellular growth and proliferation as well as bodily growth. We report that nucleolar BLM facilitates RNA polymerase I-mediated rRNA transcription. Immunofluorescence studies demonstrate the dependance of BLM nucleolar localization upon ongoing RNA polymerase I-mediated rRNA transcription. In vivo protein co-immunoprecipitation demonstrates that BLM interacts with RPA194, a subunit of RNA polymerase I. (3)H-uridine pulse-chase assays demonstrate that BLM expression is required for efficient rRNA transcription. In vitro helicase assays demonstrate that BLM unwinds GC-rich rDNA-like substrates that form in the nucleolus and normally inhibit progression of the RNA polymerase I transcription complex. These studies suggest that nucleolar BLM modulates rDNA structures in association with RNA polymerase I to facilitate RNA polymerase I-mediated rRNA transcription. Given the intricate relationship between rDNA metabolism and growth, our data may help in understanding the etiology of proportional dwarfism in BS.


Asunto(s)
ARN Polimerasa I/metabolismo , ARN Ribosómico/genética , RecQ Helicasas/metabolismo , Transcripción Genética , Línea Celular , Línea Celular Tumoral , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , ADN/química , ADN/metabolismo , ADN Ribosómico/química , ADN Ribosómico/metabolismo , Dactinomicina/farmacología , Humanos , Conformación de Ácido Nucleico , Unión Proteica , Subunidades de Proteína/metabolismo , ARN Polimerasa I/antagonistas & inhibidores , RecQ Helicasas/genética , Proteínas Recombinantes de Fusión/metabolismo
15.
Cytometry A ; 85(12): 1011-9, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25274027

RESUMEN

Fluorescent cellular barcoding and mass-tag cellular barcoding are cytometric methods that enable high sample throughput, minimize inter-sample variation, and reduce reagent consumption. Previously employed barcoding protocols require that barcoding be performed after surface marker staining, complicating combining the technique with measurement of alcohol-sensitive surface epitopes. This report describes a method of barcoding fixed cells after a transient partial permeabilization with 0.02% saponin that results in efficient and consistent barcode staining with fluorescent or mass-tagged reagents while preserving surface marker staining. This approach simplifies barcoding protocols and allows direct comparison of surface marker staining of multiple samples without concern for variations in the antibody cocktail volume, antigen-antibody ratio, or machine sensitivity. Using this protocol, cellular barcoding can be used to reliably detect subtle differences in surface marker expression.


Asunto(s)
Citofotometría/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Imagen Óptica/métodos , Saponinas , Humanos , Células Jurkat , Células U937
16.
Mol Ther Oncol ; 32(2): 200820, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38933492

RESUMEN

The prognosis for children with recurrent and/or refractory neuroblastoma (NB) is dismal. The receptor tyrosine kinase-like orphan receptor 1 (ROR1), which is highly expressed on the surface of NB cells, provides a potential target for novel immunotherapeutics. Anti-ROR1 chimeric antigen receptor engineered ex vivo expanded peripheral blood natural killer (anti-ROR1 CAR exPBNK) cells represent this approach. N-803 is an IL-15 superagonist with enhanced biological activity. In this study, we investigated the in vitro and in vivo anti-tumor effects of anti-ROR1 CAR exPBNK cells with or without N-803 against ROR1+ NB models. Compared to mock exPBNK cells, anti-ROR1 CAR exPBNK cells had significantly enhanced cytotoxicity against ROR1+ NB cells, and N-803 further increased cytotoxicity. High-dimensional analysis revealed that N-803 enhanced Stat5 phosphorylation and Ki67 levels in both exPBNK and anti-ROR1 CAR exPBNK cells with or without NB cells. In vivo, anti-ROR1 CAR exPBNK plus N-803 significantly (p < 0.05) enhanced survival in human ROR1+ NB xenografted NSG mice compared to anti-ROR1 CAR exPBNK alone. Our results provide the rationale for further development of anti-ROR1 CAR exPBNK cells plus N-803 as a novel combination immunotherapeutic for patients with recurrent and/or refractory ROR1+ NB.

17.
Mol Ther Oncol ; 32(2): 200808, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38784952

RESUMEN

Low-grade glioma (LGG) is the most common brain tumor affecting pediatric patients (pLGG) and BRAF mutations constitute the most frequent genetic alterations. Within the spectrum of pLGGs, approximately 70%-80% of pediatric patients diagnosed with transforming pleomorphic xanthoastrocytoma (PXA) harbor the BRAF V600E mutation. However, the impact of glioma BRAF V600E cell regulation of tumor-infiltrating immune cells and their contribution to tumor progression remains unclear. Moreover, the efficacy of BRAF inhibitors in treating pLGGs is limited compared with their impact on BRAF-mutated melanoma. Here we report a novel immunocompetent RCAS-BRAF V600E murine glioma model. Pathological assessment indicates this model seems to be consistent with diffuse gliomas and morphological features of PXA. Our investigations revealed distinct immune cell signatures associated with increased trafficking and activation within the tumor microenvironment (TME). Intriguingly, immune system activation within the TME also generated a pronounced inflammatory response associated with dysfunctional CD8+ T cells, increased presence of immunosuppressive myeloid cells and regulatory T cells. Further, our data suggests tumor-induced inflammatory processes, such as cytokine storm. These findings suggest a complex interplay between tumor progression and the robust inflammatory response within the TME in preclinical BRAF V600E LGGs, which may significantly influence animal survival.

18.
Cells ; 12(16)2023 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-37626855

RESUMEN

Cellular senescence is a durable cell cycle arrest as a result of the finite proliferative capacity of cells. Senescence responds to both intrinsic and extrinsic cellular stresses, such as aging, mitochondrial dysfunction, irradiation, and chemotherapy. Here, we report on the use of mass cytometry (MC) to analyze multiple model systems and demonstrate MC as a platform for senescence analysis at the single-cell level. We demonstrate changes to p16 expression, cell cycling fraction, and histone tail modifications in several established senescent model systems and using isolated human T cells. In bone marrow mesenchymal stromal cells (BMSCs), we show increased p16 expression with subsequent passage as well as a reduction in cycling cells and open chromatin marks. In WI-38 cells, we demonstrate increased p16 expression with both culture-induced senescence and oxidative stress-induced senescence (OSIS). We also use Wanderlust, a trajectory analysis tool, to demonstrate how p16 expression changes with histone tail modifications and cell cycle proteins. Finally, we demonstrate that repetitive stimulation of human T cells with CD3/CD28 beads induces an exhausted phenotype with increased p16 expression. This p16-expressing population exhibited higher expression of exhaustion markers such as EOMES and TOX. This work demonstrates that MC is a useful platform for studying senescence at a single-cell protein level, and is capable of measuring multiple markers of senescence at once with high confidence, thereby improving our understanding of senescent pathways.


Asunto(s)
Histonas , Investigación , Humanos , Envejecimiento , Antígenos CD28 , Ciclo Celular
19.
Cell Rep ; 42(8): 112891, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37516967

RESUMEN

Gliomas are one of the leading causes of cancer-related death in the adolescent and young adult (AYA) population. Two-thirds of AYA glioma patients are affected by low-grade gliomas (LGGs), but there are no specific treatments. Malignant progression is supported by the immunosuppressive stromal component of the tumor microenvironment (TME) exacerbated by M2 macrophages and a paucity of cytotoxic T cells. A single intravenous dose of engineered bone-marrow-derived myeloid cells that release interleukin-2 (GEMys-IL2) was used to treat mice with LGGs. Our results demonstrate that GEMys-IL2 crossed the blood-brain barrier, infiltrated the TME, and reprogrammed the immune cell composition and transcriptome. Moreover, GEMys-IL2 extended survival in an LGG immunocompetent mouse model. Here, we report the efficacy of an in vivo approach that demonstrates the potential for a cell-mediated innate immunotherapy designed to enhance the recruitment of activated effector T and natural killer cells within the glioma TME.

20.
Leuk Lymphoma ; 64(13): 2091-2100, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37665178

RESUMEN

Selinexor, an oral inhibitor of the nuclear transport protein Exportin-1, shows promising single-agent activity in clinical trials of relapsed/refractory (R/R) acute myeloid leukemia (AML) and preclinical synergy with topoisomerase (topo) IIα inhibitors. We conducted a phase 1, dose-escalation study of selinexor with mitoxantrone, etoposide, and cytarabine (MEC) in 23 patients aged < 60 years with R/R AML. Due to dose-limiting hyponatremia in 2 patients on dose level 2 (selinexor 40 mg/m2), the maximum tolerated dose was 30 mg/m2. The most common grade ≥ 3 treatment-related non-hematologic toxicities were febrile neutropenia, catheter-related infections, diarrhea, hyponatremia, and sepsis. The overall response rate was 43% with 6 patients (26%) achieving complete remission (CR), 2 (9%) with CR with incomplete count recovery, and 2 (9%) with a morphologic leukemia-free state. Seven of 10 responders proceeded to allogeneic stem cell transplantation. The combination of selinexor with MEC is a feasibile treatment option for patients with R/R AML.


Asunto(s)
Hiponatremia , Leucemia Mieloide Aguda , Adulto , Humanos , Hiponatremia/inducido químicamente , Hiponatremia/tratamiento farmacológico , Leucemia Mieloide Aguda/etiología , Mitoxantrona/uso terapéutico , Etopósido/uso terapéutico , Citarabina/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Terapia Recuperativa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA