Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Am J Respir Cell Mol Biol ; 67(6): 623-631, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36036918

RESUMEN

The epithelium lining airspaces of the human lung is maintained by regional stem cells, including basal cells of pseudostratified airways and alveolar type 2 (AT2) pneumocytes of the gas-exchange region. Despite effective techniques for long-term preservation of airway basal cells, procedures for efficient preservation of functional epithelial cell types of the distal gas-exchange region are lacking. Here we detail a method for cryobanking of epithelial cells from either mouse or human lung tissue for preservation of their phenotypic and functional characteristics. Flow cytometric profiling, epithelial organoid-forming efficiency, and single-cell transcriptomic analysis were used to compare cells recovered from cryobanked tissue with those of freshly dissociated tissue. AT2 cells within single-cell suspensions of enzymatically digested cryobanked distal lung tissue retained expression of the pan-epithelial marker CD326 and the AT2 cell surface antigen recognized by monoclonal antibody HT II-280, allowing antibody-mediated enrichment and downstream analysis. Isolated AT2 cells from cryobanked tissue were comparable with those of freshly dissociated tissue both in their single-cell transcriptome and their capacity for in vitro organoid formation in three-dimensional cultures. We conclude that the cryobanking method described herein allows long-term preservation of distal human lung tissue for downstream analysis of lung cell function and molecular phenotype and is ideally suited for the creation of an easily accessible tissue resource for the research community.


Asunto(s)
Células Epiteliales , Pulmón , Humanos , Ratones , Animales , Diferenciación Celular/fisiología , Células Epiteliales/metabolismo , Células Epiteliales Alveolares/metabolismo , Fenotipo
2.
Cell Rep ; 35(5): 109055, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33905739

RESUMEN

Coronavirus disease 2019 (COVID-19) is the latest respiratory pandemic caused by severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2). Although infection initiates in the proximal airways, severe and sometimes fatal symptoms of the disease are caused by infection of the alveolar type 2 (AT2) cells of the distal lung and associated inflammation. In this study, we develop primary human lung epithelial infection models to understand initial responses of proximal and distal lung epithelium to SARS-CoV-2 infection. Differentiated air-liquid interface (ALI) cultures of proximal airway epithelium and alveosphere cultures of distal lung AT2 cells are readily infected by SARS-CoV-2, leading to an epithelial cell-autonomous proinflammatory response with increased expression of interferon signaling genes. Studies to validate the efficacy of selected candidate COVID-19 drugs confirm that remdesivir strongly suppresses viral infection/replication. We provide a relevant platform for study of COVID-19 pathobiology and for rapid drug screening against SARS-CoV-2 and emergent respiratory pathogens.


Asunto(s)
Células Epiteliales Alveolares/virología , Tratamiento Farmacológico de COVID-19 , COVID-19/patología , Pulmón/virología , SARS-CoV-2/efectos de los fármacos , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Adulto , Anciano , Alanina/análogos & derivados , Alanina/farmacología , Células Epiteliales Alveolares/metabolismo , COVID-19/metabolismo , COVID-19/virología , Preescolar , Descubrimiento de Drogas/métodos , Células Epiteliales/virología , Epitelio/metabolismo , Epitelio/virología , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Pulmón/patología , Masculino , Persona de Mediana Edad , Modelos Biológicos , Cultivo Primario de Células , Mucosa Respiratoria/virología , SARS-CoV-2/fisiología , Replicación Viral/efectos de los fármacos
3.
J Vis Exp ; (161)2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32773760

RESUMEN

Epithelial organoid models serve as valuable tools to study the basic biology of an organ system and for disease modeling. When grown as organoids, epithelial progenitor cells can self-renew and generate differentiating progeny that exhibit cellular functions similar to those of their in vivo counterparts. Herein we describe a step-by-step protocol to isolate region-specific progenitors from human lung and generate 3D organoid cultures as an experimental and validation tool. We define proximal and distal regions of the lung with the goal of isolating region-specific progenitor cells. We utilized a combination of enzymatic and mechanical dissociation to isolate total cells from the lung and trachea. Specific progenitor cells were then fractionated from the proximal or distal origin cells using fluorescence associated cell sorting (FACS) based on cell type-specific surface markers, such as NGFR for sorting basal cells and HTII-280 for sorting alveolar type II cells. Isolated basal or alveolar type II progenitors were used to generate 3D organoid cultures. Both distal and proximal progenitors formed organoids with a colony forming efficiency of 9-13% in distal region and 7-10% in proximal region when plated 5000 cell/well on day 30. Distal organoids maintained HTII-280+ alveolar type II cells in culture whereas proximal organoids differentiated into ciliated and secretory cells by day 30. These 3D organoid cultures can be used as an experimental tool for studying the cell biology of lung epithelium and epithelial mesenchymal interactions, as well as for the development and validation of therapeutic strategies targeting epithelial dysfunction in a disease.


Asunto(s)
Técnicas de Cultivo de Célula , Separación Celular/métodos , Células Epiteliales/citología , Pulmón/citología , Organoides/citología , Células Madre/citología , Diferenciación Celular , Fraccionamiento Celular , Humanos , Organoides/metabolismo , Coloración y Etiquetado
4.
Mol Cancer ; 3: 5, 2004 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-14741054

RESUMEN

BACKGROUND: Probe based detection assays form the mainstay of transcript quantification. Problems with these assays include varying hybridization efficiencies of the probes used for transcript quantification and the expense involved. We examined the ability of a standardized competitive RT-PCR (StaRT PCR) assay to quantify transcripts of 4 cell cycle associated genes (RB, E2F1, CDKN2A and PCNA) in two cell lines (T24 & LD419) and compared its efficacy with the established Taqman real time quantitative RT-PCR assay. We also assessed the sensitivity, reproducibility and consistency of StaRT PCR. StaRT PCR assay is based on the incorporation of competitive templates (CT) in precisely standardized quantities along with the native template (NT) in a PCR reaction. This enables transcript quantification by comparing the NT and CT band intensities at the end of the PCR amplification. The CT serves as an ideal internal control. The transcript numbers are expressed as copies per million transcripts of a control gene such as beta-actin (ACTB). RESULTS: The NT and CT were amplified at remarkably similar rates throughout the StaRT PCR amplification cycles, and the coefficient of variation was least (<3.8%) when the NT/CT ratio was kept as close to 1:1 as possible. The variability between the rates of amplification in different tubes subjected to the same StaRT PCR reaction was very low and within the range of experimental noise. Further, StaRT PCR was sensitive enough to detect variations as low as 10% in endogenous actin transcript quantity (p < 0.01 by the paired student's t-test). StaRT PCR correlated well with Taqman real time RT-PCR assay in terms of transcript quantification efficacy (p < 0.01 for all 4 genes by the Spearman Rank correlation method) and the ability to discriminate between cell types and confluence patterns. CONCLUSION: StaRT PCR is thus a reliable and sensitive technique that can be applied to medium-high throughput quantitative transcript measurement. Further, it correlates well with Taqman real time PCR in terms of quantitative and discriminatory ability. This label-free, inexpensive technique may provide the ability to generate prognostically important molecular signatures unique to individual tumors and may enable identification of novel therapeutic targets.


Asunto(s)
Unión Competitiva , Sistemas de Computación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/normas , Carcinoma de Células Transicionales/genética , Proteínas de Ciclo Celular/genética , Línea Celular , Línea Celular Tumoral , Sondas de ADN/genética , ADN de Neoplasias/genética , Proteínas de Unión al ADN/genética , Factores de Transcripción E2F , Factor de Transcripción E2F1 , Fibroblastos/química , Fibroblastos/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Genes Relacionados con las Neoplasias/genética , Genes p16 , Humanos , Técnicas de Amplificación de Ácido Nucleico/normas , Antígeno Nuclear de Célula en Proliferación/genética , ARN Neoplásico/genética , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Factores de Transcripción/genética , Neoplasias de la Vejiga Urinaria/genética
5.
Nat Biotechnol ; 29(12): 1132-44, 2011 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-22119741

RESUMEN

The International Stem Cell Initiative analyzed 125 human embryonic stem (ES) cell lines and 11 induced pluripotent stem (iPS) cell lines, from 38 laboratories worldwide, for genetic changes occurring during culture. Most lines were analyzed at an early and late passage. Single-nucleotide polymorphism (SNP) analysis revealed that they included representatives of most major ethnic groups. Most lines remained karyotypically normal, but there was a progressive tendency to acquire changes on prolonged culture, commonly affecting chromosomes 1, 12, 17 and 20. DNA methylation patterns changed haphazardly with no link to time in culture. Structural variants, determined from the SNP arrays, also appeared sporadically. No common variants related to culture were observed on chromosomes 1, 12 and 17, but a minimal amplicon in chromosome 20q11.21, including three genes expressed in human ES cells, ID1, BCL2L1 and HM13, occurred in >20% of the lines. Of these genes, BCL2L1 is a strong candidate for driving culture adaptation of ES cells.


Asunto(s)
Células Madre Embrionarias/citología , Crecimiento/genética , Células Madre Pluripotentes Inducidas/citología , Proteínas de Unión al ARN/metabolismo , Proteína bcl-X/metabolismo , Diferenciación Celular/genética , Línea Celular , Cromosomas Humanos Par 20/genética , Evolución Clonal/genética , Metilación de ADN , Etnicidad/genética , Regulación del Desarrollo de la Expresión Génica , Variación Genética , Genotipo , Humanos , Proteína 1 Inhibidora de la Diferenciación/genética , Proteína 1 Inhibidora de la Diferenciación/metabolismo , Polimorfismo de Nucleótido Simple , Proteínas de Unión al ARN/genética , Selección Genética/genética , Proteína bcl-X/genética
6.
In Vitro Cell Dev Biol Anim ; 46(3-4): 247-58, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20186512

RESUMEN

There are many reports of defined culture systems for the propagation of human embryonic stem cells in the absence of feeder cell support, but no previous study has undertaken a multi-laboratory comparison of these diverse methodologies. In this study, five separate laboratories, each with experience in human embryonic stem cell culture, used a panel of ten embryonic stem cell lines (including WA09 as an index cell line common to all laboratories) to assess eight cell culture methods, with propagation in the presence of Knockout Serum Replacer, FGF-2, and mouse embryonic fibroblast feeder cell layers serving as a positive control. The cultures were assessed for up to ten passages for attachment, death, and differentiated morphology by phase contrast microscopy, for growth by serial cell counts, and for maintenance of stem cell surface marker expression by flow cytometry. Of the eight culture systems, only the control and those based on two commercial media, mTeSR1 and STEMPRO, supported maintenance of most cell lines for ten passages. Cultures grown in the remaining media failed before this point due to lack of attachment, cell death, or overt cell differentiation. Possible explanations for relative success of the commercial formulations in this study, and the lack of success with other formulations from academic groups compared to previously published results, include: the complex combination of growth factors present in the commercial preparations; improved development, manufacture, and quality control in the commercial products; differences in epigenetic adaptation to culture in vitro between different ES cell lines grown in different laboratories.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Células Madre Embrionarias/citología , Animales , Adhesión Celular , Recuento de Células , Línea Celular , Proliferación Celular , Supervivencia Celular , Citometría de Flujo , Humanos , Ratones
7.
J Clin Oncol ; 25(34): 5352-8, 2007 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-18048815

RESUMEN

PURPOSE: The p53 gene status (mutation) and protein alterations (nuclear accumulation detectable by immunohistochemistry; p53 protein status) are associated with bladder cancer progression. Substantial discordance is documented between the p53 protein and gene status, yet no studies have examined the relationship between the gene-protein status and clinical outcome. This study evaluated the clinical relationship of the p53 gene and protein statuses. MATERIALS AND METHODS: The complete coding region of the p53 gene was queried using DNA from paraffin-embedded tissues and employing a p53 gene-sequencing chip. We compared p53 gene status, mutation site, and protein status with time to recurrence. RESULTS: The p53 gene and protein statuses show significant concordance, yet 35% of cases showed discordance. Exon 5 mutations demonstrated a wild-type protein status in 18 of 22 samples. Both the p53 gene and protein statuses were significantly associated with stage and clinical outcome. Specific mutation sites were associated with clinical outcome; tumors with exon 5 mutations showed the same outcome as those with the wild-type gene. Combining the p53 gene and protein statuses stratifies patients into three distinct groups, based on recurrence-free intervals: patients showing the best outcome (wild-type gene and unaltered protein), an intermediate outcome (either a mutated gene or an altered protein) and the worst outcome (a mutated gene and an altered protein). CONCLUSION: We show that evaluation of both the p53 gene and protein statuses provides information in assessing the clinical recurrence risk in bladder cancer and that the specific mutation site may be important in assessing recurrence risk. These findings may substantially impact the assessment of p53 alterations and the management of bladder cancer.


Asunto(s)
Carcinoma de Células Transicionales/genética , Carcinoma de Células Transicionales/terapia , Proteína p53 Supresora de Tumor/genética , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/terapia , Biomarcadores de Tumor/biosíntesis , Biomarcadores de Tumor/genética , Carcinoma de Células Transicionales/metabolismo , Carcinoma de Células Transicionales/patología , Exones , Genes p53 , Humanos , Mutación , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/metabolismo , Recurrencia Local de Neoplasia/patología , Recurrencia Local de Neoplasia/terapia , Estadificación de Neoplasias , Resultado del Tratamiento , Proteína p53 Supresora de Tumor/biosíntesis , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA