Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chembiochem ; 24(7): e202200713, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36653306

RESUMEN

The increasing application of recombinant enzymes demands not only effective and sustainable fermentation, but also highly efficient downstream processing and further stabilization of the enzymes by immobilization. In this study, a novel approach for the isolation and immobilization of His-tagged transaminase from Chromobacterium violaceum (CvTA) has been developed. A recombinant of CvTA was simultaneously isolated and immobilized by binding on silica nanoparticles (SNPs) with metal affinity linkers and additionally within poly(lactic acid) (PLA) nanofibers. The linker length and the nature of the metal ion significantly affected the enzyme binding efficiency and biocatalytic activity of CvTA-SNPs. The formation of PLA nanofibers by electrospinning enabled rapid embedding of CvTA-SNPs biocatalysts and ensured enhanced stability and activity. The developed advanced immobilization method reduces the time required for enzyme isolation, purification and immobilization by more than fourfold compared to a classical stepwise technique.


Asunto(s)
Enzimas Inmovilizadas , Nanocompuestos , Enzimas Inmovilizadas/metabolismo , Transaminasas , Poliésteres , Lipasa , Metales
2.
Molecules ; 24(22)2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31731791

RESUMEN

This article overviews the numerous immobilization methods available for various biocatalysts such as whole-cells, cell fragments, lysates or enzymes which do not require preliminary enzyme purification and introduces an advanced approach avoiding the costly and time consuming downstream processes required by immobilization of purified enzyme-based biocatalysts (such as enzyme purification by chromatographic methods and dialysis). Our approach is based on silica shell coated magnetic nanoparticles as solid carriers decorated with mixed functions having either coordinative binding ability (a metal ion complexed by a chelator anchored to the surface) or covalent bond-forming ability (an epoxide attached to the surface via a proper linker) enabling a single operation enrichment and immobilization of a recombinant phenylalanine ammonia-lyase from parsley fused to a polyhistidine affinity tag.


Asunto(s)
Enzimas Inmovilizadas , Petroselinum/enzimología , Fenilanina Amoníaco-Liasa , Proteínas de Plantas , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/aislamiento & purificación , Fenilanina Amoníaco-Liasa/química , Fenilanina Amoníaco-Liasa/aislamiento & purificación , Proteínas de Plantas/química , Proteínas de Plantas/aislamiento & purificación , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación
3.
ChemSusChem ; 15(2): e202102284, 2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-34913608

RESUMEN

Nanostructured but micro-sized biocatalysts were created by bottom-up technology using multi-functionalized silica nanoparticles (NPs) as nano-sized building blocks to form cross-linked enzyme-adhered nanoparticles (CLEANs) as robust micro-sized particles with beneficial internal structure and good mechanical properties. Systematic surface modification of NPs with a grafting mixture consisting of organosilanes with reactive (aminopropyl) and inert (e. g., vinyl, propyl, phenyl, or octyl) functions resulted in functional NPs enabling cross-linking agents, such as glutardialdehyde or bisepoxides (glycerol diglycidyl ether, neopentylglycol diglycidyl ether, and poly(propylene glycol) diglycidyl ether), to bind and cross-link enzymes covalently and to form macroporous microparticles. These CLEANs were able to diminish several weaknesses of traditional cross-linked enzyme aggregates as biocatalysts, such as poor mechanical resistance, difficult recovery, and storage, strengthening their use for packed-bed enzyme reactors. Lipase B from Candida antarctica (CaLB) was selected as model enzyme for development of robust CLEANs, which were successfully tested for various industrially relevant applications including a kinetic resolution of a racemic alcohol and the production of various natural fragrance compounds under continuous-flow conditions.


Asunto(s)
Enzimas Inmovilizadas , Nanopartículas , Biocatálisis , Estabilidad de Enzimas , Enzimas Inmovilizadas/metabolismo , Proteínas Fúngicas/metabolismo , Lipasa/metabolismo , Dióxido de Silicio
4.
RSC Adv ; 9(16): 9193-9197, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35517692

RESUMEN

A green and facile method has been developed for the preparation of in situ immobilized gold nanoparticles (AuNPs) using agarose as a reducing and stabilizing agent. The size of the synthesized AuNPs ranges between 10 and 100 nm, and their average size can be controlled by the concentrations of the agarose and gold salt. The agarose matrix as a mild and green reaction medium can provide a good dispersion environment for forming AuNPs, and the hydrogel can be well homogenized with polyacrylic macroporous microbeads as well, which can adsorb and stabilize the particles leading to the simultaneous synthesis and immobilization of AuNPs avoiding harmful inorganic compounds or organic solvents. The supported gold nanocatalyst was successfully applied as a catalyst in packed bed reactors for efficient NaBH4-mediated reduction of p-nitrophenol in continuous-flow mode.

5.
ChemCatChem ; 10(16): 3490-3499, 2018 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-30263083

RESUMEN

An easy to use method combining the selectivity of metal chelate affinity binding with strong covalent linking was developed for immobilization of non-specific acid phosphatases bearing a His-tag from crude cell lysate. Silica nanoparticles were grafted with aminopropyl functions which were partially transformed further with EDTA dianhydride to chelators. The heterofunctionalized nanoparticles charged with Ni2+ as the most appropriate metal ion were applied as support. First, the His-tagged phosphatases were selectively bound to the metal-chelate functions of the support. Then, the enzyme-charged silica nanoparticles were further stabilized by forming a covalent linkage between nucleophilic moieties at the enzyme surface and free amino groups of the support using neopentylglycol diglycidylether as the most effective bifunctional linking agent. The phosphatase biocatalysts obtained by this method exhibited better phosphate transfer activity with a range of alcohols and PPi as phosphate donor in aqueous medium applying batch and continuous-flow modes than the ones immobilized on conventional supports. Furthermore, this novel strategy opens up novel possibility for efficient immobilization of other His-tagged recombinant enzymes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA