Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Br J Haematol ; 204(2): 555-560, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37963444

RESUMEN

UMG1 is a unique epitope of CD43, not expressed by normal cells and tissues of haematopoietic and non-haematopoietic origin, except thymocytes and a minority (<5%) of peripheral blood T lymphocytes. By immunohistochemistry analysis of tissue microarray and pathology slides, we found high UMG1 expression in 20%-24% of diffuse large B-cell lymphomas (DLBCLs), including highly aggressive BCL2high and CD20low cases. UMG1 membrane expression was also found in DLBCL bone marrow-infiltrating cells and established cell lines. Targeting UMG1 with a novel asymmetric UMG1/CD3ε-bispecific T-cell engager (BTCE) induced redirected cytotoxicity against DLBCL cells and was synergistic with lenalidomide. We conclude that UMG1/CD3ε-BTCE is a promising therapeutic for DLBCLs.


Asunto(s)
Linfoma de Células B Grandes Difuso , Linfocitos T , Humanos , Linfocitos T/metabolismo , Linfoma de Células B Grandes Difuso/patología , Inmunohistoquímica
2.
Int J Mol Sci ; 25(5)2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38473887

RESUMEN

Aortic aneurysms are a serious health concern as their rupture leads to high morbidity and mortality. Abdominal aortic aneurysms (AAAs) and thoracic aortic aneurysms (TAAs) exhibit differences and similarities in their pathophysiological and pathogenetic features. AAA is a multifactorial disease, mainly associated with atherosclerosis, characterized by a relevant inflammatory response and calcification. TAA is rarely associated with atherosclerosis and in some cases is associated with genetic mutations such as Marfan syndrome (MFS) and bicuspid aortic valve (BAV). MFS-related and non-genetic or sporadic TAA share aortic degeneration with endothelial-to-mesenchymal transition (End-Mt) and fibrosis, whereas in BAV TAA, aortic degeneration with calcification prevails. microRNA (miRNAs) contribute to the regulation of aneurysmatic aortic remodeling. miRNAs are a class of non-coding RNAs, which post-transcriptionally regulate gene expression. In this review, we report the involvement of deregulated miRNAs in the different aortic remodeling characterizing AAAs and TAAs. In AAA, miRNA deregulation appears to be involved in parietal inflammatory response, smooth muscle cell (SMC) apoptosis and aortic wall calcification. In sporadic and MFS-related TAA, miRNA deregulation promotes End-Mt, SMC myofibroblastic phenotypic switching and fibrosis with glycosaminoglycan accumulation. In BAV TAA, miRNA deregulation sustains aortic calcification. Those differences may support the development of more personalized therapeutic approaches.


Asunto(s)
Aneurisma de la Aorta Torácica , Aneurisma de la Aorta , Aterosclerosis , Enfermedad de la Válvula Aórtica Bicúspide , Calcinosis , Síndrome de Marfan , MicroARNs , Humanos , Válvula Aórtica/patología , MicroARNs/metabolismo , Aneurisma de la Aorta/complicaciones , Aneurisma de la Aorta Torácica/genética , Síndrome de Marfan/genética , Calcinosis/patología , Fenotipo , Aterosclerosis/metabolismo , Fibrosis
3.
Eur J Immunol ; 52(8): 1350-1361, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35554927

RESUMEN

The GC reaction results in the selection of B cells acquiring effector Ig secreting ability by progressing toward plasmablastic differentiation. This transition is associated with exclusion from the GC microenvironment. The aberrant expansion of plasmablastic elements within the GC fringes configures an atypical condition, the biological characteristics of which have not been defined yet. We investigated the in situ immunophenotypical and transcriptional characteristics of a nonclonal germinotropic expansion of plasmablastic elements (GEx) occurring in the tonsil of a young patient. Compared to neighboring GC and perifollicular regions, the GEx showed a distinctive signature featuring key regulators of plasmacytic differentiation, cytokine signaling, and cell metabolism. The GEx signature was tested in the setting of diffuse large B-cell lymphoma (DLBCL) as a prototypical model of lymphomagenesis encompassing transformation at different stages of GC and post-GC functional differentiation. The signature outlined DLBCL clusters with different immune microenvironment composition and enrichment in genetic subtypes. This report represents the first insight into the transcriptional features of a germinotropic plasmablastic burst, shedding light into the molecular hallmarks of B cells undergoing plasmablastic differentiation and aberrant expansion within the noncanonical setting of the GC microenvironment.


Asunto(s)
Linfoma de Células B Grandes Difuso , Factor 88 de Diferenciación Mieloide , Antígenos CD79/genética , Antígenos CD79/metabolismo , Centro Germinal/metabolismo , Humanos , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/metabolismo , Linfoma de Células B Grandes Difuso/patología , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Células Plasmáticas/metabolismo , Transcriptoma , Microambiente Tumoral/genética
4.
Eur J Immunol ; 52(5): 784-799, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35338775

RESUMEN

Platelets regulate human inflammatory responses that lead to disease. However, the role of platelets in tuberculosis (TB) pathogenesis is still unclear. Here, we show that patients with active TB have a high number of platelets in peripheral blood and a low number of lymphocytes leading to a high platelets to lymphocytes ratio (PL ratio). Moreover, the serum concentration of different mediators promoting platelet differentiation or associated with platelet activation is increased in active TB. Immunohistochemistry analysis shows that platelets localise around the lung granuloma lesions in close contact with T lymphocytes and macrophages. Transcriptomic analysis of caseous tissue of human pulmonary TB granulomas, followed by Gene Ontology analysis, shows that 53 platelet activation-associated genes are highly expressed compared to the normal lung tissue. In vitro activated platelets (or their supernatants) inhibit BCG-induced T- lymphocyte proliferation and IFN-γ production. Likewise, platelets inhibit the growth of intracellular macrophages of Mycobacterium (M.) tuberculosis. Soluble factors released by activated platelets mediate both immunological and M. tuberculosis replication activities. Furthermore, proteomic and neutralisation studies (by mAbs) identify TGF-ß and PF4 as the factors responsible for inhibiting T-cell response and enhancing the mycobactericidal activity of macrophages, respectively. Altogether these results highlight the importance of platelets in TB pathogenesis.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Plaquetas , Humanos , Pulmón , Macrófagos , Proteómica , Linfocitos T
5.
Eur J Immunol ; 51(2): 445-458, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32920851

RESUMEN

B lymphocytes are among the cell types whose effector functions are modulated by mast cells (MCs). The B/MC crosstalk emerged in several pathological settings, notably the colon of inflammatory bowel disease (IBD) patients is a privileged site in which MCs and IgA+ cells physically interact. Herein, by inducing conditional depletion of MCs in red MC and basophil (RMB) mice, we show that MCs control B cell distribution in the gut and IgA serum levels. Moreover, in dextran sulfate sodium (DSS)-treated RMB mice, the presence of MCs is fundamental for the enlargement of the IgA+ population in the bowel and the increase of systemic IgA production. Since both conventional B-2 and peritoneal-derived B cells populate the intestine and communicate with MCs in physiological conditions and during inflammation, we further explored this interplay through the use of co-cultures. We show that MCs finely regulate different aspects of splenic B cell biology while peritoneal B cells are unresponsive to the supporting effects provided by MCs. Interestingly, peritoneal B cells induce a pro-inflammatory skewing in MCs, characterized by increased ST2 and TNF-α expression. Altogether, this study uncovers the versatility of the B/MC liaison and highlights key aspects for the resolution of intestinal inflammation.


Asunto(s)
Linfocitos B/metabolismo , Colon/inmunología , Inmunoglobulina A/inmunología , Mucosa Intestinal/inmunología , Mastocitos/inmunología , Animales , Colitis/inmunología , Colon/microbiología , Sulfato de Dextran/inmunología , Microbioma Gastrointestinal/inmunología , Inflamación/inmunología , Inflamación/microbiología , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/microbiología , Mucosa Intestinal/microbiología , Ratones , Ratones Endogámicos C57BL , Factor de Necrosis Tumoral alfa/inmunología
6.
Ann Plast Surg ; 86(6): 714-720, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33346554

RESUMEN

ABSTRACT: Calvarial defects can result from several causes. Tissue engineering hold the potential to restore native form and protective function. We have recently shown that stemness and differentiation ability of spheroids from adipose-derived stem cells (S-ASCs) promotes osteoblasts growth within Integra in a small vertebral lesion. In our study, we aimed to test osteogenic potential of S-ASCs in aiding regeneration of a calvarial defect. Groups containing Integra showed increased bone regeneration at the calvarial defect-Integra interface compared with the control group. In particular, S-ASC-derived osteoblasts group showed a superior calvarial remodeling than undifferentiated S-ASCs group. Clusters of ossification were observed in these both groups with enhanced microvasculature density and fibrosis. In conclusion, seeding of S-ASCs in dermal regeneration templates enhanced bone healing in a rabbit calvarial defect model. These findings could prompt the elective use of S-ASCs with enhanced multilineage differentiation potential for tissue engineering purposes.


Asunto(s)
Tejido Adiposo , Células Madre , Adipocitos , Animales , Regeneración Ósea , Diferenciación Celular , Células Cultivadas , Humanos , Osteogénesis , Conejos , Cráneo/cirugía
7.
Int J Mol Sci ; 22(18)2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34576040

RESUMEN

Takotsubo syndrome (TTS), recognized as stress's cardiomyopathy, or as left ventricular apical balloon syndrome in recent years, is a rare pathology, described for the first time by Japanese researchers in 1990. TTS is characterized by an interindividual heterogeneity in onset and progression, and by strong predominance in postmenopausal women. The clear causes of these TTS features are uncertain, given the limited understanding of this intriguing syndrome until now. However, the increasing frequency of TTS cases in recent years, and particularly correlated to the SARS-CoV-2 pandemic, leads us to the imperative necessity both of a complete knowledge of TTS pathophysiology for identifying biomarkers facilitating its management, and of targets for specific and effective treatments. The suspect of a genetic basis in TTS pathogenesis has been evidenced. Accordingly, familial forms of TTS have been described. However, a systematic and comprehensive characterization of the genetic or epigenetic factors significantly associated with TTS is lacking. Thus, we here conducted a systematic review of the literature before June 2021, to contribute to the identification of potential genetic and epigenetic factors associated with TTS. Interesting data were evidenced, but few in number and with diverse limitations. Consequently, we concluded that further work is needed to address the gaps discussed, and clear evidence may arrive by using multi-omics investigations.


Asunto(s)
COVID-19/complicaciones , Epigénesis Genética/inmunología , Heterogeneidad Genética , Predisposición Genética a la Enfermedad , Cardiomiopatía de Takotsubo/genética , Biomarcadores/análisis , COVID-19/inmunología , COVID-19/virología , Variaciones en el Número de Copia de ADN/inmunología , Sitios Genéticos/inmunología , Ventrículos Cardíacos/inmunología , Ventrículos Cardíacos/patología , Humanos , Anamnesis , Polimorfismo de Nucleótido Simple/inmunología , SARS-CoV-2/inmunología , Cardiomiopatía de Takotsubo/diagnóstico , Cardiomiopatía de Takotsubo/inmunología , Cardiomiopatía de Takotsubo/patología
8.
Medicina (Kaunas) ; 57(2)2021 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-33670362

RESUMEN

Background: Placental chorioangioma is the most common benign non-trophoblastic neoplasm of the placenta. Its clinical relevance lies in the size of the tumor since larger masses cause pregnancy complications, including an unfavorable neonatal outcome. Case presentation: We report the case of a 34-year-old second gravida and nullipara at the 35th week of gestation, admitted to the gynecological department for antibiotic-resistant fever. The cardiotocography performed during hospitalization showed an abnormal fetal pattern. A 2250 g newborn was delivered by cesarean section. No complications were observed during childbirth and postpartum was insignificant. On gross inspection a white fleshy intraparenchymal mass blooming on the maternal surface was noted; routinely stained sections revealed features consistent with chorioangioma with vascular channels lined by inconspicuous endothelial cells immunoreactive for CD31 and CD133. Focal expression of CD133 was also observed in placental villi. Discussion: CD133 expression indicated the presence of stem cells in chorioangioma, suggesting their possible role in the development of mesenchymal lesions including chorioangioma.


Asunto(s)
Hemangioma , Enfermedades Placentarias , Complicaciones Neoplásicas del Embarazo , Adulto , Cesárea , Células Endoteliales , Femenino , Hemangioma/diagnóstico , Humanos , Recién Nacido , Placenta , Enfermedades Placentarias/diagnóstico , Embarazo , Complicaciones Neoplásicas del Embarazo/diagnóstico
9.
Int J Cancer ; 144(10): 2613-2624, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30488605

RESUMEN

Hepatocellular carcinoma (HCC) is a highly malignant tumor that responds very poorly to existing therapies, most probably due to its extraordinary inter- and intra-tumor molecular heterogeneity. The modest therapeutic response to molecular targeted agents underlines the need for new therapeutic approaches for HCC. In our study, we took advantage of well-characterized human HCC cell lines, differing in transcriptomic subtypes, DNA mutation and amplification alterations, reflecting the heterogeneity of primary HCCs, to provide a preclinical evaluation of the specific heat shock protein 90 (HSP90) inhibitor AUY922 (luminespib). Indeed, HSP90 is highly expressed in different tumor types, but its role in hepatocarcinogenesis remains unclear. Here, we analyzed HSP90 expression in primary human HCC tissues and evaluated the antitumor effects of AUY922 in vitro as well as in vivo. HSP90 expression was significantly higher in HCC tissues than in cirrhotic peritumoral liver tissues. AUY922 treatment reduced the cell proliferation and viability of HCC cells in a dose-dependent manner, but did not do so for normal human primary hepatocytes. AUY922 treatment led to the upregulation of HSP70 and the simultaneous depletion of HSP90 client proteins. In addition, in a cell type-dependent manner, treatment induced either both caspase-dependent ß-catenin cleavage and the upregulation of p53, or Mcl-1 expression, or NUPR1 expression, which contributed to the increased efficacy of, or resistance to, treatment. Finally, in vivo AUY922 inhibited tumor growth in a xenograft model. In conclusion, HSP90 is a promising therapeutic target in HCC, and AUY922 could be a drug candidate for its treatment.


Asunto(s)
Antineoplásicos/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Proteínas HSP90 de Choque Térmico/metabolismo , Isoxazoles/uso terapéutico , Neoplasias Hepáticas/tratamiento farmacológico , Resorcinoles/uso terapéutico , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Adulto , Anciano , Anciano de 80 o más Años , Animales , Carcinoma Hepatocelular/metabolismo , Caspasas/metabolismo , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Masculino , Ratones Desnudos , Persona de Mediana Edad , Mutación/genética , Transcriptoma/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , beta Catenina/metabolismo
10.
J Autoimmun ; 103: 102288, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31213399

RESUMEN

Despite the advances in the treatment of rheumatoid arthritis (RA) achieved in the last few years, several patients are diagnosed late, do not respond to or have to stop therapy because of inefficacy and/or toxicity, leaving still a huge unmet need. Tissue-specific strategies have the potential to address some of these issues. The aim of the study is the development of a safe nanotechnology approach for tissue-specific delivery of drugs and diagnostic probes. CD34 + endothelial precursors were addressed in inflamed synovium using targeted biodegradable nanoparticles (tBNPs). These nanostructures were made of poly-lactic acid, poly-caprolactone, and PEG and then coated with a synovial homing peptide. Immunofluorescence analysis clearly demonstrated their capacity to selectively address CD34 + endothelial cells in synovial tissue obtained from human, mouse, and rat. Biodistribution studies in two different animal models of rheumatoid arthritis (antigen-induced arthritis/AIA and collagen-induced arthritis/CIA) confirmed the selective accumulation in inflamed joints but also evidenced the capacity of tBNP to detect early phases of the disease and the preferential liver elimination. The therapeutic effect of methotrexate (MTX)-loaded tBNPs were studied in comparison with conventional MTX doses. MTX-loaded tBNPs prevented and treated CIA and AIA at a lower dose and reduced administration frequency than MTX. Moreover, MTX-loaded tBNP showed a novel mechanism of action, in which the particles target and kill CD34 + endothelial progenitors, preventing neo-angiogenesis and, consequently, synovial inflammation. tBNPs represent a stable and safe platform to develop highly-sensitive imaging and therapeutic approaches in RA targeting specifically synovial neo-angiogenesis to reduce local inflammation.


Asunto(s)
Artritis Reumatoide/terapia , Células Endoteliales/inmunología , Inflamación/terapia , Metotrexato/uso terapéutico , Nanopartículas/uso terapéutico , Membrana Sinovial/inmunología , Membrana Sinovial/patología , Animales , Antígenos CD34/metabolismo , Modelos Animales de Enfermedad , Humanos , Nanopartículas/química , Neovascularización Patológica , Poliésteres/química , Ratas , Ratas Wistar
11.
BMC Cancer ; 18(1): 586, 2018 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-29792166

RESUMEN

BACKGROUND: CDCP1, a transmembrane protein with tumor pro-metastatic activity, was recently identified as a prognostic marker in TNBC, the most aggressive breast cancer subtype still lacking an effective molecular targeted therapy. The mechanisms driving CDCP1 over-expression are not fully understood, although several stimuli derived from tumor microenvironment, such as factors present in Wound Healing Fluids (WHFs), reportedly increase CDCP1 levels. METHODS: The expression of CDCP1, PDGFRß and ERK1/2cell was tested by Western blot after stimulation of MDA-MB-231 cells with PDGF-BB and, similarly, in presence or not of ERK1/2 inhibitor in a panel of TNBC cell lines. Knock-down of PDGFRß was established in MDA-MB-231 cells to detect CDCP1 upon WHF treatment. Immunohistochemical staining was used to detect the expression of CDCP1 and PDGFRß in TNBC clinical samples. RESULTS: We discovered that PDGF-BB-mediated activation of PDGFRß increases CDCP1 protein expression through the downstream activation of ERK1/2. Inhibition of ERK1/2 activity reduced per se CDCP1 expression, evidence strengthening its role in CDCP1 expression regulation. Knock-down of PDGFRß in TNBC cells impaired CDCP1 increase induced by WHF treatment, highlighting the role if this receptor as a central player of the WHF-mediated CDCP1 induction. A significant association between CDCP1 and PDGFRß immunohistochemical staining was observed in TNBC specimens, independently of CDCP1 gene gain, thus corroborating the relevance of the PDGF-BB/PDGFRß axis in the modulation of CDCP1 expression. CONCLUSION: We have identified PDGF-BB/PDGFRß-mediated pathway as a novel player in the regulation of CDCP1 in TNCBs through ERK1/2 activation. Our results provide the basis for the potential use of PDGFRß and ERK1/2 inhibitors in targeting the aggressive features of CDCP1-positive TNBCs.


Asunto(s)
Antígenos CD/metabolismo , Moléculas de Adhesión Celular/metabolismo , Regulación Neoplásica de la Expresión Génica , Sistema de Señalización de MAP Quinasas/genética , Proteínas de Neoplasias/metabolismo , Neoplasias de la Mama Triple Negativas/genética , Antígenos de Neoplasias , Becaplermina/farmacología , Línea Celular Tumoral , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Persona de Mediana Edad , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , ARN Interferente Pequeño/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Regulación hacia Arriba
12.
Mol Biol Rep ; 45(1): 1-7, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29238890

RESUMEN

The MinION is a miniaturized high-throughput next generation sequencing platform of novel conception. The use of nucleic acids derived from formalin-fixed paraffin-embedded samples is highly desirable, but their adoption for molecular assays is hurdled by the high degree of fragmentation and by the chemical-induced mutations stemming from the fixation protocols. In order to investigate the suitability of MinION sequencing on formalin-fixed paraffin-embedded samples, the presence and frequency of BRAF c.1799T > A mutation was investigated in two archival tissue specimens of Hairy cell leukemia and Hairy cell leukemia Variant. Despite the poor quality of the starting DNA, BRAF mutation was successfully detected in the Hairy cell leukemia sample with around 50% of the reads obtained within 2 h of the sequencing start. Notably, the mutational burden of the Hairy cell leukemia sample as derived from nanopore sequencing proved to be comparable to a sensitive method for the detection of point mutations, namely the Digital PCR, using a validated assay. Nanopore sequencing can be adopted for targeted sequencing of genetic lesions on critical DNA samples such as those extracted from archival routine formalin-fixed paraffin-embedded samples. This result let speculating about the possibility that the nanopore sequencing could be trustably adopted for the real-time targeted sequencing of genetic lesions. Our report opens the window for the adoption of nanopore sequencing in molecular pathology for research and diagnostics.


Asunto(s)
ADN de Neoplasias/genética , Leucemia de Células Pilosas/genética , Proteínas Proto-Oncogénicas B-raf/genética , Biomarcadores de Tumor/genética , Análisis Mutacional de ADN/métodos , ADN de Neoplasias/análisis , Pruebas Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Leucemia de Células Pilosas/enzimología , Técnicas de Diagnóstico Molecular/métodos , Mutación , Nanoporos , Reacción en Cadena de la Polimerasa/métodos , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN/métodos
13.
Cancer Immunol Res ; 12(4): 413-426, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38349973

RESUMEN

Neutrophils are the most abundant leukocytes in human blood and play a primary role in resistance against invading microorganisms and in the acute inflammatory response. However, their role in colitis and colitis-associated colorectal cancer is still under debate. This study aims to dissect the role of neutrophils in these pathologic contexts by using a rigorous genetic approach. Neutrophil-deficient mice (Csf3r-/- mice) were used in classic models of colitis and colitis-associated colorectal cancer and the role of neutrophils was assessed by histologic, cellular, and molecular analyses coupled with adoptive cell transfer. We also performed correlative analyses using human datasets. Csf3r-/- mice showed increased susceptibility to colitis and colitis-associated colorectal cancer compared with control Csf3r+/+ mice and adoptive transfer of neutrophils in Csf3r-/- mice reverted the phenotype. In colitis, Csf3r-/- mice showed increased bacterial invasion and a reduced number of healing ulcers in the colon, indicating a compromised regenerative capacity of epithelial cells. Neutrophils were essential for γδ T-cell polarization and IL22 production. In patients with ulcerative colitis, expression of CSF3R was positively correlated with IL22 and IL23 expression. Moreover, gene signatures associated with epithelial-cell development, proliferation, and antimicrobial response were enriched in CSF3Rhigh patients. Our data support a model where neutrophils mediate protection against intestinal inflammation and colitis-associated colorectal cancer by controlling the intestinal microbiota and driving the activation of an IL22-dependent tissue repair pathway.


Asunto(s)
Colitis Ulcerosa , Neoplasias Asociadas a Colitis , Neutrófilos , Animales , Humanos , Ratones , Carcinogénesis , Colitis/patología , Colitis Ulcerosa/metabolismo , Neoplasias Asociadas a Colitis/patología , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Ratones Noqueados , Neutrófilos/inmunología , Neutrófilos/metabolismo
14.
JCI Insight ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954474

RESUMEN

Beside suppressing immune responses, regulatory T cells (Tregs) maintain tissue homeostasis and control systemic metabolism. Whether iron is involved in Treg-mediated tolerance is completely unknown. Here, we showed that the transferrin receptor CD71 was upregulated on activated Tregs infiltrating human liver cancer. Mice with a Treg-restricted CD71 deficiency spontaneously developed a scurfy-like disease, caused by impaired perinatal Treg expansion. CD71-null Tregs displayed decreased proliferation and tissue-Treg signature loss. In perinatal life, CD71 deficiency in Tregs triggered hepatic iron overload response, characterized by increased hepcidin transcription and iron accumulation in macrophages. Lower bacterial diversity, and reduction of beneficial species, were detected in the fecal microbiota of CD71 conditional knock-out neonates. Our findings indicate that CD71-mediated iron absorption is required for Treg perinatal expansion and related to systemic iron homeostasis and bacterial gut colonization. Therefore, we hypothesize that Tregs establish nutritional tolerance through competition for iron during bacterial colonization after birth.

15.
EBioMedicine ; 101: 105003, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38340557

RESUMEN

BACKGROUND: Tertiary Lymphoid Structures (TLS) correlate with positive outcomes in patients with NSCLC and the efficacy of immune checkpoint blockade (ICB) in cancer. The actin regulatory protein hMENA undergoes tissue-specific splicing, producing the epithelial hMENA11a linked to favorable prognosis in early NSCLC, and the mesenchymal hMENAΔv6 found in invasive cancer cells and pro-tumoral cancer-associated fibroblasts (CAFs). This study investigates how hMENA isoforms in tumor cells and CAFs relate to TLS presence, localization and impact on patient outcomes and ICB response. METHODS: Methods involved RNA-SEQ on NSCLC cells with depleted hMENA isoforms. A retrospective observational study assessed tissues from surgically treated N0 patients with NSCLC, using immunohistochemistry for tumoral and stromal hMENA isoforms, fibronectin, and TLS presence. ICB-treated patient tumors were analyzed using Nanostring nCounter and GeoMx spatial transcriptomics. Multiparametric flow cytometry characterized B cells and tissue-resident memory T cells (TRM). Survival and ICB response were estimated in the cohort and validated using bioinformatics pipelines in different datasets. FINDINGS: Findings indicate that hMENA11a in NSCLC cells upregulates the TLS regulator LTßR, decreases fibronectin, and favors CXCL13 production by TRM. Conversely, hMENAΔv6 in CAFs inhibits LTßR-related NF-kB pathway, reduces CXCL13 secretion, and promotes fibronectin production. These patterns are validated in N0 NSCLC tumors, where hMENA11ahigh expression, CAF hMENAΔv6low, and stromal fibronectinlow are associated with intratumoral TLS, linked to memory B cells and predictive of longer survival. The hMENA isoform pattern, fibronectin, and LTßR expression broadly predict ICB response in tumors where TLS indicates an anti-tumor immune response. INTERPRETATION: This study uncovers hMENA alternative splicing as an unexplored contributor to TLS-related Tumor Immune Microenvironment (TIME) and a promising biomarker for clinical outcomes and likely ICB responsiveness in N0 patients with NSCLC. FUNDING: This work is supported by AIRC (IG 19822), ACC (RCR-2019-23669120), CAL.HUB.RIA Ministero Salute PNRR-POS T4, "Ricerca Corrente" granted by the Italian Ministry of Health.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Estructuras Linfoides Terciarias , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Fibronectinas , Inhibidores de Puntos de Control Inmunológico , Proteínas de Microfilamentos/metabolismo , Línea Celular Tumoral , Isoformas de Proteínas , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Microambiente Tumoral
16.
Blood Adv ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38861355

RESUMEN

Burkitt lymphoma (BL) is characterized by tumor microenvironment (TME) in which macrophages represent the main component, determining a distinct histological appearance known as "starry sky" pattern. However, in some instances, BL may exhibit a granulomatous reaction that has been previously linked to a favorable prognosis and spontaneous regression. The aim of our study was to deeply characterize the immune landscape of 7 cases of EBV + BL with granulomatous reaction compared to 8 cases of EBV + BL and 8 EBV- BL, both with typical "starry sky" pattern, by Gene expression profiling performed on the NanoString nCounter platform. Subsequently, the data were validated by multiplex and combined immunostaining. Based on unsupervised clustering of differentially expressed genes, BL samples formed 3 distinct clusters differentially enriched in BL with a diffuse granulomatous reaction (cluster 1), EBV+ BL with typical starry sky pattern (Cluster 2), EBV - BL with typical "starry sky" (cluster 3). We observed variations in the immune response signature among BL with granulomatous reaction and BL with typical "starry sky", both EBV + and EBV -. The TME signature in BL with diffuse granulomatous reaction showed a proinflammatory response, while BLs with "starry sky" were characterized by up-regulation of M2- polarization and pro-tumor response. Moreover, the analysis of additional signatures revealed an up-regulation of Dark zone-signature and epigenetic-signature in BL with typical "starry sky". Tumor associated macrophages (TAM) and epigenetic regulators may be promising targets for additional therapies in BL lymphoma opening novel immunotherapeutic strategies.

17.
Res Sq ; 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38562878

RESUMEN

The germinal center (GC) dark zone (DZ) and light zone (LZ) regions spatially separate expansion and diversification from selection of antigen-specific B-cells to ensure antibody affinity maturation and B cell memory. The DZ and LZ differ significantly in their immune composition despite the lack of a physical barrier, yet the determinants of this polarization are poorly understood. This study provides novel insights into signals controlling asymmetric T-cell distribution between DZ and LZ regions. We identify spatially-resolved DNA damage response and chromatin compaction molecular features that underlie DZ T-cell exclusion. The DZ spatial transcriptional signature linked to T-cell immune evasion clustered aggressive Diffuse Large B-cell Lymphomas (DLBCL) for differential T cell infiltration. We reveal the dependence of the DZ transcriptional core signature on the ATR kinase and dissect its role in restraining inflammatory responses contributing to establishing an immune-repulsive imprint in DLBCL. These insights may guide ATR-focused treatment strategies bolstering immunotherapy in tumors marked by DZ transcriptional and chromatin-associated features.

19.
Cell Death Discov ; 9(1): 116, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37019893

RESUMEN

Pancreatic cancer (PC) has a very low survival rate mainly due to late diagnosis and refractoriness to therapies. The latter also cause adverse effects negatively affecting the patients' quality of life, often requiring dose reduction or discontinuation of scheduled treatments, compromising the chances of cure. We explored the effects of a specific probiotic blend on PC mice xenografted with KRAS wild-type or KRASG12D mutated cell lines alone or together with gemcitabine+nab-paclitaxel treatment to then assess tumor volume and clinical pathological variables. Beside a semi-quantitative histopathological evaluation of murine tumor and large intestine samples, histochemical and immunohistochemical analyses were carried out to evaluate collagen deposition, proliferation index Ki67, immunological microenvironment tumor-associated, DNA damage markers and also mucin production. Blood cellular and biochemical parameters and serum metabolomics were further analyzed. 16S sequencing was performed to analyze the composition of fecal microbiota. Gemcitabine+nab-paclitaxel treatment impaired gut microbial profile in KRAS wild-type and KRASG12D mice. Counteracting gemcitabine+nab-paclitaxel- induced dysbiosis through the administration of probiotics ameliorated chemotherapy side effects and decreased cancer-associated stromatogenesis. Milder intestinal damage and improved blood count were also observed upon probiotics treatment as well as a positive effect on fecal microbiota, yielding an increase in species richness and in short chain fatty acids producing- bacteria. Mice' serum metabolomic profiles revealed significant drops in many amino acids upon probiotics administration in KRAS wild-type mice while in animals transplanted with PANC-1 KRASG12D mutated all treated groups showed a sharp decline in serum levels of bile acids with respect to control mice. These results suggest that counteracting gemcitabine+nab-paclitaxel-induced dysbiosis ameliorates chemotherapy side effects by restoring a favorable microbiota composition. Relieving adverse effects of the chemotherapy through microbiota manipulation could be a desirable strategy in order to improve pancreatic cancer patients' quality of life and to increase the chance of cure.

20.
Front Cell Dev Biol ; 10: 933113, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35874810

RESUMEN

Tertiary lymphoid structures (TLS) are ectopic lymphoid organs that have been observed in chronic inflammatory conditions including cancer, where they are thought to exert a positive effect on prognosis. Both immune and non-immune cells participate in the genesis of TLS by establishing complex cross-talks requiring both soluble factors and cell-to-cell contact. Several immune cell types, including T follicular helper cells (Tfh), regulatory T cells (Tregs), and myeloid cells, may accumulate in TLS, possibly promoting or inhibiting their development. In this manuscript, we propose to review the available evidence regarding specific aspects of the TLS formation in solid cancers, including 1) the role of stromal cell composition and architecture in the recruitment of specific immune subpopulations and the formation of immune cell aggregates; 2) the contribution of the myeloid compartment (macrophages and neutrophils) to the development of antibody responses and the TLS formation; 3) the immunological and metabolic mechanisms dictating recruitment, expansion and plasticity of Tregs into T follicular regulatory cells, which are potentially sensitive to immunotherapeutic strategies directed to costimulatory receptors or checkpoint molecules.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA