Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(46): e2210562119, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36343224

RESUMEN

The development of chimeric antigen receptor (CAR) T cell therapy has become a critical milestone in modern oncotherapy. Despite the remarkable in vitro effectiveness, the problem of safety and efficacy of CAR T cell therapy against solid tumors is challenged by the lack of tumor-specific antigens required to avoid on-target off-tumor effects. Spatially separating the cytotoxic function of CAR T cells from tumor antigen recognition provided by protein mediators allows for the precise control of CAR T cell cytotoxicity. Here, the high affinity and capability of the bacterial toxin-antitoxin barnase-barstar system were adopted to guide CAR T cells to solid tumors. The complementary modules based on (1) ankyrin repeat (DARPin)-barnase proteins and (2) barstar-based CAR (BsCAR) were designed to provide switchable targeting to tumor cells. The alteration of the DARPin-barnase switches enabled the targeting of different tumor antigens with a single BsCAR. A gradual increase in cytokine release and tunable BsCAR T cell cytotoxicity was achieved by varying DARPin-barnase loads. Switchable BsCAR T cell therapy was able to eradicate the HER2+ ductal carcinoma in vivo. Guiding BsCAR T cells by DARPin-barnase switches provides a universal approach for a controlled multitargeted adoptive immunotherapy.


Asunto(s)
Neoplasias , Linfocitos T , Humanos , Receptores de Antígenos de Linfocitos T , Inmunoterapia Adoptiva , Neoplasias/metabolismo , Antígenos de Neoplasias
2.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38473856

RESUMEN

Myelin basic protein (MBP) is the second most abundant protein in the central nervous system and is responsible for structural maintenance of the myelin sheath covering axons. Previously, we showed that MBP has a more proactive role in the oligodendrocyte homeostasis, interacting with membrane-associated proteins, including integral membrane protein 2B (ITM2B or Bri2) that is associated with familial dementias. Here, we report that the molecular dynamics of the in silico-generated MBP-Bri2 complex revealed that MBP covers a significant portion of the Bri2 ectodomain, assumingly trapping the furin cleavage site, while the surface of the BRICHOS domain, which is responsible for the multimerization and activation of the Bri2 high-molecular-weight oligomer chaperone function, remains unmasked. These observations were supported by the co-expression of MBP with Bri2, its mature form, and disease-associated mutants, which showed that in mammalian cells, MBP indeed modulates the post-translational processing of Bri2 by restriction of the furin-catalyzed release of its C-terminal peptide. Moreover, we showed that the co-expression of MBP and Bri2 also leads to an altered cellular localization of Bri2, restricting its membrane trafficking independently of the MBP-mediated suppression of the Bri2 C-terminal peptide release. Further investigations should elucidate if these observations have physiological meaning in terms of Bri2 as a MBP chaperone activated by the MBP-dependent postponement of Bri2 membrane trafficking.


Asunto(s)
Furina , Glicoproteínas de Membrana , Animales , Furina/metabolismo , Proteína Básica de Mielina , Proteínas de la Membrana/metabolismo , Péptidos , Mamíferos/metabolismo
3.
Biochemistry (Mosc) ; 88(12): 2063-2072, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38462450

RESUMEN

Genome stability is critical for normal functioning of cells, it depends on accuracy of DNA replication, chromosome segregation, and DNA repair. Cellular defense mechanisms against DNA damage are important for preventing cancer development and aging. The E3 ubiquitin ligase RNF168 of the RING superfamily is an essential component of the complex responsible for ubiquitination of the H2A/H2A.X histones near DNA double-strand breaks, which is a key step in attracting repair factors to the damage site. In this study, we unequivocally showed that RNF168 does not have the ability to directly distinguish architecture of polyubiquitin chains, except for the tropism of its two ubiquitin-binding domains UDM1/2 to K63 ubiquitin chains. Analysis of intracellular chromatosomal environment of the full-length RNF168 and its domains using the ligand-induced bioluminescence resonance energy transfer (BRET) revealed that the C-terminal part of UDM1 is associated with the K63 ubiquitin chains; RING and the N-terminal part of UDM2 are sterically close to the K63- and K48-ubiquitin chains, while the C-terminal part of UDM1 is co-localized with all possible ubiquitin variants. Our observations together with the available structural data suggest that the C-terminal part of UDM1 binds the K63 polyubiquitin chains on the linker histone H1; RING and the N-terminal part of UDM2 are located in the central part of nucleosome and sterically close to H1 and K48-ubiquitinated alternative substrates of RNF168, such as JMJD2A/B demethylases, while the C-terminal part of UDM1 is in the region of activated ubiquitin residue associated with E2 ubiquitin ligase, engaged by RNF168.


Asunto(s)
Ubiquitina-Proteína Ligasas , Ubiquitina , Ubiquitina-Proteína Ligasas/genética , Ubiquitina/metabolismo , Poliubiquitina/genética , Poliubiquitina/metabolismo , Ubiquitinación , Reparación del ADN , Daño del ADN
4.
Acta Neurochir Suppl ; 135: 375-383, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38153496

RESUMEN

Thoracic herniated disks are relatively rare. They account for approximately 2% of all intervertebral herniated disks in large series. Traditional surgery via laminectomy has frequently yielded disappointing results, although the recent literature reports that anterior calcified thoracic herniation was successfully treated with this approach. This issue has encouraged a search for alternatives, such as anterolateral, lateral, and posterolateral approaches to the thoracic spine. From January 2009 to December 2019, we selected 66 patients harboring a symptomatic median-paramedian herniated disk at the level of the thoracic spine, treated at the authors' institutions. The present experience would give further support to the use of costotrasversectomy, along with its "mini-invasive" modifications, as a suitable and safe approach for thoracic disk disease. Although we must admit that endoscopy is likely to become the gold standard of surgical method in the future and that the anterior approach with mini-toracotomy without rib removal will become popular, the future scenario could certainly reserve an important place for the approach we have used in the surgical management of this challenging spinal pathology, mainly because of the approach's versatility and short learning curve.


Asunto(s)
Degeneración del Disco Intervertebral , Desplazamiento del Disco Intervertebral , Humanos , Desplazamiento del Disco Intervertebral/diagnóstico por imagen , Desplazamiento del Disco Intervertebral/cirugía , Laminectomía , Columna Vertebral , Curva de Aprendizaje
5.
Proc Natl Acad Sci U S A ; 117(44): 27300-27306, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33087570

RESUMEN

Conventional "bulk" PCR often yields inefficient and nonuniform amplification of complex templates in DNA libraries, introducing unwanted biases. Amplification of single DNA molecules encapsulated in a myriad of emulsion droplets (emulsion PCR, ePCR) allows the mitigation of this problem. Different ePCR regimes were experimentally analyzed to identify the most robust techniques for enhanced amplification of DNA libraries. A phenomenological mathematical model that forms an essential basis for optimal use of ePCR for library amplification was developed. A detailed description by high-throughput sequencing of amplified DNA-encoded libraries highlights the principal advantages of ePCR over bulk PCR. ePCR outperforms PCR, reduces gross DNA errors, and provides a more uniform distribution of the amplified sequences. The quasi single-molecule amplification achieved via ePCR represents the fundamental requirement in case of complex DNA templates being prone to diversity degeneration and provides a way to preserve the quality of DNA libraries.


Asunto(s)
Emulsiones/química , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Reacción en Cadena de la Polimerasa/métodos , ADN/genética , Cartilla de ADN/genética , Biblioteca de Genes , Genoma/genética , Humanos , Modelos Teóricos , Técnicas de Amplificación de Ácido Nucleico/métodos , Moldes Genéticos
6.
Proc Natl Acad Sci U S A ; 117(37): 22841-22848, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32859757

RESUMEN

Quantum mechanics/molecular mechanics (QM/MM) maturation of an immunoglobulin (Ig) powered by supercomputation delivers novel functionality to this catalytic template and facilitates artificial evolution of biocatalysts. We here employ density functional theory-based (DFT-b) tight binding and funnel metadynamics to advance our earlier QM/MM maturation of A17 Ig-paraoxonase (WTIgP) as a reactibody for organophosphorus toxins. It enables regulation of biocatalytic activity for tyrosine nucleophilic attack on phosphorus. The single amino acid substitution l-Leu47Lys results in 340-fold enhanced reactivity for paraoxon. The computed ground-state complex shows substrate-induced ionization of the nucleophilic l-Tyr37, now H-bonded to l-Lys47, resulting from repositioning of l-Lys47. Multiple antibody structural homologs, selected by phenylphosphonate covalent capture, show contrasting enantioselectivities for a P-chiral phenylphosphonate toxin. That is defined by crystallographic analysis of phenylphosphonylated reaction products for antibodies A5 and WTIgP. DFT-b analysis using QM regions based on these structures identifies transition states for the favored and disfavored reactions with surprising results. This stereoselection analysis is extended by funnel metadynamics to a range of WTIgP variants whose predicted stereoselectivity is endorsed by experimental analysis. The algorithms used here offer prospects for tailored design of highly evolved, genetically encoded organophosphorus scavengers and for broader functionalities of members of the Ig superfamily, including cell surface-exposed receptors.

7.
Int J Mol Sci ; 24(11)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37298160

RESUMEN

Neutrophil Extracellular Traps (NETs) have been implicated in systemic lupus erythematosus (SLE) and antiphospholipid syndrome (APS) pathogenesis. The myeloperoxidase-deoxyribonucleic acid (MPO-DNA) complex and nucleosomes are serum markers of NETosis. The aim of this study was to assess these NETosis parameters as markers for SLE and APS diagnosis and their association with clinical features and disease activity. A total of 138 people were included in the cross-sectional study: 30 with SLE without APS, 47 with SLE and APS, 41 patients with primary antiphospholipid syndrome (PAPS), and 20 seemingly healthy individuals. Serum MPO-DNA complex and nucleosome levels were determined via an enzyme-linked immunosorbent assay (ELISA). Informed consent was obtained from all subjects involved in the study. The Ethics Committee of the V.A. Nasonova Research Institute of Rheumatology (Protocol No. 25 dated 23 December 2021) approved the study. In patients with SLE without APS, the levels of the MPO-DNA complex were significantly higher compared to patients with SLE with APS, with PAPS, and healthy controls (p < 0.0001). Among patients with a reliable diagnosis of SLE, 30 had positive values of the MPO-DNA complex, of whom 18 had SLE without APS, and 12 had SLE with APS. Patients with SLE and positive MPO-DNA complex levels were significantly more likely to have high SLE activity (χ2 = 5.25, p = 0.037), lupus glomerulonephritis (χ2 = 6.82, p = 0.009), positive antibodies to dsDNA (χ2 = 4.82, p = 0.036), and hypocomplementemia (χ2 = 6.72, p = 0.01). Elevated MPO-DNA levels were observed in 22 patients with APS: 12 with SLE with APS and 10 with PAPS. There were no significant associations between positive levels of the MPO-DNA complex and clinical and laboratory manifestations of APS. The concentration of nucleosomes was significantly lower in the group of SLE patients (±APS) compared to controls and PAPS (p < 0.0001). In SLE patients, the frequency of low nucleosome levels was associated with high SLE activity (χ2 = 13.4, p < 0.0001), lupus nephritis (χ2 = 4.1, p = 0.043), and arthritis (χ2 = 3.89, p = 0.048). An increase in the specific marker of NETosis, the MPO-DNA complex, was found in the blood serum of SLE patients without APS. Elevated levels of the MPO-DNA complex can be regarded as a promising biomarker of lupus nephritis, disease activity, and immunological disorders in SLE patients. Lower levels of nucleosomes were significantly associated with SLE (±APS). Low nucleosome levels were more common in patients with high SLE activity, lupus nephritis, and arthritis.


Asunto(s)
Síndrome Antifosfolípido , Artritis , Lupus Eritematoso Sistémico , Nefritis Lúpica , Humanos , Nucleosomas , Estudios Transversales , Artritis/complicaciones , ADN , Biomarcadores
8.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36768413

RESUMEN

Proteasomes exist in mammalian cells in multiple combinatorial variants due to the diverse regulatory particles and exchange of catalytic subunits. Here, using biotin carboxyl carrier domain of transcarboxylase from Propionibacterium shermanii fused with different proteasome subunits of catalytic and regulatory particles, we report comprehensive characterization of highly homogenous one-step purified human constitutive and immune 20S and 26S/30S proteasomes. Hydrolysis of a multiple sclerosis (MS) autoantigen, myelin basic protein (MBP), by engineered human proteasomes with different catalytic phenotypes, revealed that peptides which may be directly loaded on the HLA class I molecules are produced mainly by immunoproteasomes. We detected at least five MBP immunodominant core regions, namely, LPRHRDTGIL, SLPQKSHGR, QDENPVVHFF, KGRGLSLSRF and GYGGRASDY. All peptides, except QDENPVVHFF, which originates from the encephalitogenic MBP part, were associated with HLA I alleles considered to increase MS risk. Prediction of the affinity of HLA class I to this peptide demonstrated that MS-protective HLA-A*44 and -B*35 molecules are high-affinity binders, whereas MS-associated HLA-A*23, -A*24, -A*26 and -B*51 molecules tend to have moderate to low affinity. The HLA-A*44 molecules may bind QDENPVVHFF and its deamidated form in several registers with unprecedently high affinity, probably linking its distinct protective phenotype with thymic depletion of the repertoire of autoreactive cytotoxic T cells or induction of CD8+ regulatory T cells, specific to the encephalitogenic MBP peptide.


Asunto(s)
Esclerosis Múltiple , Proteína Básica de Mielina , Animales , Humanos , Proteína Básica de Mielina/metabolismo , Complejo de la Endopetidasa Proteasomal , Ligandos , Fragmentos de Péptidos , Péptidos/química , Esclerosis Múltiple/genética , Epítopos Inmunodominantes , Antígenos HLA-A , Mamíferos/metabolismo
9.
Biochemistry (Mosc) ; 86(Suppl 1): S71-S95, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33827401

RESUMEN

Covalent attachment of ubiquitin residue is not only the proteasomal degradation signal, but also a widespread posttranslational modification of cellular proteins in eukaryotes. One of the most important targets of the regulatory ubiquitination are histones. Localization of ubiquitin residue in different regions of the nucleosome attracts a strictly determined set of cellular factors with varied functionality. Depending on the type of histone and the particular lysine residue undergoing modification, histone ubiquitination can lead both to transcription activation and to gene repression, as well as contribute to DNA repair via different mechanisms. An extremely interesting feature of the family of RING E3 ubiquitin ligases catalyzing histone ubiquitination is the striking structural diversity of the domains providing high specificity of modification very similar initial targets. It is obvious that further elucidation of peculiarities of the ubiquitination system involved in histone modification, as well as understanding of physiological role of this process in the maintenance of homeostasis of both single cells and the entire organism, will substantially expand the possibilities of treating a number of socially significant diseases.


Asunto(s)
Código de Histonas , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Epigénesis Genética , Regulación de la Expresión Génica , Histonas/metabolismo , Humanos , Procesamiento Proteico-Postraduccional , Ubiquitina/metabolismo
10.
Int J Mol Sci ; 22(20)2021 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-34681871

RESUMEN

Infection caused by the severe acute respiratory syndrome coronavirus (SARS-CoV-2) in many cases is accompanied by the release of a large amount of proinflammatory cytokines in an event known as "cytokine storm", which is associated with severe coronavirus disease 2019 (COVID-19) cases and high mortality. The excessive production of proinflammatory cytokines is linked, inter alia, to the enhanced activity of receptors capable of recognizing the conservative regions of pathogens and cell debris, namely TLRs, TREM-1 and TNFR1. Here we report that peptides derived from innate immunity protein Tag7 inhibit activation of TREM-1 and TNFR1 receptors during acute inflammation. Peptides from the N-terminal fragment of Tag7 bind only to TREM-1, while peptides from the C-terminal fragment interact solely with TNFR1. Selected peptides are capable of inhibiting the production of proinflammatory cytokines both in peripheral blood mononuclear cells (PBMCs) from healthy donors and in vivo in the mouse model of acute lung injury (ALI) by diffuse alveolar damage (DAD). Treatment with peptides significantly decreases the infiltration of mononuclear cells to lungs in animals with DAD. Our findings suggest that Tag7-derived peptides might be beneficial in terms of the therapy or prevention of acute lung injury, e.g., for treating COVID-19 patients with severe pulmonary lesions.


Asunto(s)
Lesión Pulmonar Aguda/patología , Citocinas/química , Péptidos/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Receptor Activador Expresado en Células Mieloides 1/metabolismo , Lesión Pulmonar Aguda/metabolismo , Animales , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Humanos , Interferón gamma/genética , Interferón gamma/metabolismo , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Lipopolisacáridos/farmacología , Pulmón/metabolismo , Pulmón/patología , Activación de Linfocitos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos ICR , Péptidos/química , Péptidos/farmacología , Unión Proteica , Receptores Tipo I de Factores de Necrosis Tumoral/antagonistas & inhibidores , Receptor Activador Expresado en Células Mieloides 1/antagonistas & inhibidores
11.
FASEB J ; 33(6): 6852-6866, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30811957

RESUMEN

A majority of thousands of intracellular mammalian proteins are recognized by proteasome only being conjugated with ubiquitin (Ub), representing a universal degradation signal operated by the ubiquitination system. Ub-independent proteasome targeting is rationalized by the existence of 2 types of direct proteasome signals (DPSs), specific amino acid sequences or post-translational modifications, which are recognized by proteasome regulatory subunits. Historically, the first type was shown to exist in ornithine decarboxylase, whereas acetylation of core histones recently was reported as a second type of DPS. Here we declare a third type, representing charge-mediated DPS. This discovered DPS may be classified as a monopartite composition- but not sequence-dependent element of ∼70 Å in length enriched in basic and flexible amino acids. This type of degradation signal, which may be provided by cationic chemicals, is most efficiently engaged by proteasomes capped with regulator (REG)α or REGγ in an ATP-independent manner. Taken together, our findings suggest a novel modality of proteasome-substrate interrelation bypassing ubiquitination.-Kudriaeva, A., Kuzina, E. S., Zubenko, O., Smirnov, I. V., Belogurov, A. Charge-mediated proteasome targeting.


Asunto(s)
Autoantígenos/metabolismo , Cationes/metabolismo , Proteína Básica de Mielina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Animales , Cationes/química , Células HEK293 , Humanos , Hígado/enzimología , Ratones Endogámicos BALB C , Proteína Básica de Mielina/química , Procesamiento Proteico-Postraduccional , Proteolisis , Especificidad por Sustrato , Ubiquitina/metabolismo , Ubiquitinación
12.
Proc Natl Acad Sci U S A ; 114(10): 2550-2555, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28202731

RESUMEN

Ultrahigh-throughput screening (uHTS) techniques can identify unique functionality from millions of variants. To mimic the natural selection mechanisms that occur by compartmentalization in vivo, we developed a technique based on single-cell encapsulation in droplets of a monodisperse microfluidic double water-in-oil-in-water emulsion (MDE). Biocompatible MDE enables in-droplet cultivation of different living species. The combination of droplet-generating machinery with FACS followed by next-generation sequencing and liquid chromatography-mass spectrometry analysis of the secretomes of encapsulated organisms yielded detailed genotype/phenotype descriptions. This platform was probed with uHTS for biocatalysts anchored to yeast with enrichment close to the theoretically calculated limit and cell-to-cell interactions. MDE-FACS allowed the identification of human butyrylcholinesterase mutants that undergo self-reactivation after inhibition by the organophosphorus agent paraoxon. The versatility of the platform allowed the identification of bacteria, including slow-growing oral microbiota species that suppress the growth of a common pathogen, Staphylococcus aureus, and predicted which genera were associated with inhibitory activity.


Asunto(s)
Butirilcolinesterasa/química , Ensayos Analíticos de Alto Rendimiento/instrumentación , Técnicas Analíticas Microfluídicas/métodos , Paraoxon/química , Análisis de la Célula Individual/instrumentación , Antibiosis , Biodiversidad , Comunicación Celular , Emulsiones , Citometría de Flujo , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Técnicas Analíticas Microfluídicas/instrumentación , Aceites Volátiles/química , Fenotipo , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo , Agua/química
13.
Int J Mol Sci ; 21(17)2020 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-32872428

RESUMEN

Effective and versatile screening of the peptide ligands capable of selectively binding to diverse receptors is in high demand for the state-of-the-art technologies in life sciences, including probing of specificity of the cell surface receptors and drug development. Complex microenvironment and structure of the surface receptors significantly reduce the possibility to determine their specificity, especially when in vitro conditions are utilized. Previously, we designed a publicly available platform for the ultra-high-throughput screening (uHTS) of the specificity of surface-exposed receptors of the living eukaryotic cells, which was done by consolidating the phage display and flow cytometry techniques. Here, we significantly improved this methodology and designed the fADL-1e-based phage vectors that do not require a helper hyperphage for the virion assembly. The enhanced screening procedure was tested on soluble human leukocyte antigen (HLA) class II molecules and transgenic antigen-specific B cells that express recombinant lymphoid B-cell receptor (BCR). Our data suggest that the improved vector system may be successfully used for the comprehensive search of the receptor ligands in either cell-based or surface-immobilized assays.


Asunto(s)
Técnicas de Visualización de Superficie Celular/métodos , Antígenos de Histocompatibilidad Clase II/análisis , Receptores de Antígenos de Linfocitos B/análisis , Bacteriófago M13/genética , Línea Celular , Antígenos de Histocompatibilidad Clase II/genética , Humanos , Ligandos , Receptores de Antígenos de Linfocitos B/genética
14.
Bioconjug Chem ; 30(5): 1500-1506, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-31021608

RESUMEN

Specific recognition of ligands by surface receptors of eukaryotic cells is a fundamental process in sensing of the exogenous environment, including cell-to-cell communication. These interactions are therefore widely probed in both basic studies and drug development to enhance or interrupt them. Here, we designed a high-throughput publicly available platform for visualization and selection of eukaryotic cells according to the specificity of surface-exposed receptors by consolidation of phage display and flow cytometry techniques. Polypeptide ligands for membrane receptors are incorporated into every copy of p3 protein of M13K07 bacteriophage, which is intracellularly biotinylated to further accept PE-Cy7-labled streptavidin. Transgenic antigen-specific B-cells expressing membrane-tethered lymphoid B-cell receptor in a single-chain format interacted with engineered bacteriophages exposing the polypeptide ligand with an unprecedented selectivity of 97% and a false-positive detection value of 2.0%. Multivalent binding of the phage bioconjugates with the receptor provided significantly better specificity and sensitivity allowing application of engineered bacteriophage bioconjugates at a concentration 3 orders of magnitude lower in comparison with synthetic biotinylated peptide. We suggest that the platform described in this work may be applied either for routine staining or characterization of orphan membrane receptors exposed on the surface of living mammalian cells in their native environment.


Asunto(s)
Bacteriófagos/química , Receptores de Superficie Celular/química , Biotina/química , Técnicas de Visualización de Superficie Celular , Sondas Moleculares
15.
J Pept Sci ; 25(2): e3138, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30575224

RESUMEN

Plant secretome comprises dozens of secreted proteins. However, little is known about the composition of the whole secreted peptide pools and the proteases responsible for the generation of the peptide pools. The majority of studies focus on target detection and characterization of specific plant peptide hormones. In this study, we performed a comprehensive analysis of the whole extracellular peptidome, using moss Physcomitrella patens as a model. Hundreds of modified and unmodified endogenous peptides that originated from functional and nonfunctional protein precursors were identified. The plant proteases responsible for shaping the pool of endogenous peptides were predicted. Salicylic acid (SA) influenced peptide production in the secretome. The proteasome activity was altered upon SA treatment, thereby influencing the composition of the peptide pools. These results shed more light on the role of proteases and posttranslational modification in the "active management" of the extracellular peptide pool in response to stress conditions. It also identifies a list of potential peptide hormones in the moss secretome for further analysis.


Asunto(s)
Bryopsida/efectos de los fármacos , Bryopsida/metabolismo , Péptido Hidrolasas/metabolismo , Péptidos/metabolismo , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Ácido Salicílico/farmacología , Bryopsida/enzimología , Péptidos/química , Ácido Salicílico/química
16.
Mol Cell Proteomics ; 15(7): 2366-78, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27143409

RESUMEN

Acute inflammatory demyelinating polyneuropathy (AIDP) - the main form of Guillain-Barre syndrome-is a rare and severe disorder of the peripheral nervous system with an unknown etiology. One of the hallmarks of the AIDP pathogenesis is a significantly elevated cerebrospinal fluid (CSF) protein level. In this paper CSF peptidome and proteome in AIDP were analyzed and compared with multiple sclerosis and control patients. A total protein concentration increase was shown to be because of even changes in all proteins rather than some specific response, supporting the hypothesis of protein leakage from blood through the blood-nerve barrier. The elevated CSF protein level in AIDP was complemented by activization of protein degradation and much higher peptidome diversity. Because of the studies of the acute motor axonal form, Guillain-Barre syndrome as a whole is thought to be associated with autoimmune response against neurospecific molecules. Thus, in AIDP, autoantibodies against cell adhesion proteins localized at Ranvier's nodes were suggested as possible targets in AIDP. Indeed, AIDP CSF peptidome analysis revealed cell adhesion proteins degradation, however no reliable dependence on the corresponding autoantibodies levels was found. Proteome analysis revealed overrepresentation of Gene Ontology groups related to responses to bacteria and virus infections, which were earlier suggested as possible AIDP triggers. Immunoglobulin blood serum analysis against most common neuronal viruses did not reveal any specific pathogen; however, AIDP patients were more immunopositive in average and often had polyinfections. Cytokine analysis of both AIDP CSF and blood did not show a systemic adaptive immune response or general inflammation, whereas innate immunity cytokines were up-regulated. To supplement the widely-accepted though still unproven autoimmunity-based AIDP mechanism we propose a hypothesis of the primary peripheral nervous system damaging initiated as an innate immunity-associated local inflammation following neurotropic viruses egress, whereas the autoantibody production might be an optional complementary secondary process.


Asunto(s)
Autoanticuerpos/líquido cefalorraquídeo , Citocinas/sangre , Síndrome de Guillain-Barré/inmunología , Esclerosis Múltiple/inmunología , Proteómica/métodos , Adhesión Celular , Cromatografía Liquida , Femenino , Humanos , Inmunidad Innata , Masculino , Espectrometría de Masas en Tándem , Regulación hacia Arriba
17.
Molecules ; 22(5)2017 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-28505143

RESUMEN

Astrocytes are considered to be an important contributor to central nervous system (CNS) disorders, particularly multiple sclerosis. The transcriptome of these cells is greatly affected by cytokines released by lymphocytes, penetrating the blood-brain barrier-in particular, the classical pro-inflammatory cytokine interferon-gamma (IFNγ). We report here the transcriptomal profiling of astrocytes treated using IFNγ and benztropine, a putative remyelinization agent. Our findings indicate that the expression of genes involved in antigen processing and presentation in astrocytes are significantly upregulated upon IFNγ exposure, emphasizing the critical role of this cytokine in the redirection of immune response towards self-antigens. Data reported herein support previous observations that the IFNγ-induced JAK-STAT signaling pathway may be regarded as a valuable target for pharmaceutical interventions.


Asunto(s)
Astrocitos/metabolismo , Interferón gamma/farmacología , Animales , Astrocitos/efectos de los fármacos , Benzotropina/farmacología , Ratones , MicroARNs/genética , Remielinización/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Transcriptoma/genética
18.
FASEB J ; 29(5): 1901-13, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25634956

RESUMEN

Recent findings indicate that the ubiquitin-proteasome system is involved in the pathogenesis of cancer as well as autoimmune and several neurodegenerative diseases, and is thus a target for novel therapeutics. One disease that is related to aberrant protein degradation is multiple sclerosis, an autoimmune disorder involving the processing and presentation of myelin autoantigens that leads to the destruction of axons. Here, we show that brain-derived proteasomes from SJL mice with experimental autoimmune encephalomyelitis (EAE) in an ubiquitin-independent manner generate significantly increased amounts of myelin basic protein peptides that induces cytotoxic lymphocytes to target mature oligodendrocytes ex vivo. Ten times enhanced release of immunogenic peptides by cerebral proteasomes from EAE-SJL mice is caused by a dramatic shift in the balance between constitutive and ß1i(high) immunoproteasomes in the CNS of SJL mice with EAE. We found that during EAE, ß1i is increased in resident CNS cells, whereas ß5i is imported by infiltrating lymphocytes through the blood-brain barrier. Peptidyl epoxyketone specifically inhibits brain-derived ß1i(high) immunoproteasomes in vitro (kobs/[I] = 240 M(-1)s(-1)), and at a dose of 0.5 mg/kg, it ameliorates ongoing EAE in vivo. Therefore, our findings provide novel insights into myelin metabolism in pathophysiologic conditions and reveal that the ß1i subunit of the immunoproteasome is a potential target to treat autoimmune neurologic diseases.


Asunto(s)
Autoinmunidad/inmunología , Barrera Hematoencefálica/metabolismo , Encéfalo/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Activación de Linfocitos/inmunología , Proteína Básica de Mielina/metabolismo , Complejo de la Endopetidasa Proteasomal/inmunología , Animales , Western Blotting , Encéfalo/metabolismo , Encéfalo/patología , Células Cultivadas , Cromatografía Liquida , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Femenino , Técnicas para Inmunoenzimas , Ratones , Ratones Endogámicos BALB C , Proteína Básica de Mielina/inmunología , Vaina de Mielina/metabolismo , Subunidades de Proteína , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masas en Tándem , Ubiquitina/metabolismo
19.
Mediators Inflamm ; 2016: 2847232, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27239100

RESUMEN

We have previously shown that immunodominant MBP peptides encapsulated in mannosylated liposomes (Xemys) effectively suppressed experimental allergic encephalomyelitis (EAE). Within the frames of the successfully completed phase I clinical trial, we investigated changes in the serum cytokine profile after Xemys administration in MS patients. We observed a statistically significant decrease of MCP-1/CCL2, MIP-1ß/CCL4, IL-7, and IL-2 at the time of study completion. In contrast, the serum levels of TNF-α were remarkably elevated. Our data suggest that the administration of Xemys leads to a normalization of cytokine status in MS patients to values commonly reported for healthy subjects. These data are an important contribution for the upcoming Xemys clinical trials.


Asunto(s)
Quimiocina CCL2/sangre , Quimiocina CCL4/sangre , Interleucina-2/sangre , Liposomas/química , Esclerosis Múltiple/sangre , Esclerosis Múltiple/tratamiento farmacológico , Proteína Básica de Mielina/uso terapéutico , Factor de Necrosis Tumoral alfa/sangre , Adulto , Animales , Femenino , Humanos , Interleucina-7/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Esclerosis Múltiple/metabolismo , Adulto Joven
20.
Biotechnol Lett ; 38(7): 1173-80, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27099070

RESUMEN

OBJECTIVE: Myelin oligodendrocyte glycoprotein (MOG) is one of the major autoantigens in multiple sclerosis (MS), therefore selective depletion of autoreactive lymphocytes exposing MOG-specific B cell receptors (BCRs) would be beneficial in terms of MS treatment. RESULTS: Using E. coli we generated an efficient protocol for the purification of the recombinant immunotoxin DT-MOG composed of the extracellular Ig-like domain of MOG fused in frame with the catalytic and translocation subunits of diphtheria toxin (DT, Corynebacterium diphtheriae) under native conditions with a final yield of 1.5 mg per liter of culture medium. Recombinant DT-MOG was recognized in vitro by MOG-reactive antibodies and has catalytic activity comparable with wild-type DT. CONCLUSION: Enhanced pharmacokinetics (mean residence time in the bloodstream of 61 min) and minimized diminished nonspecific toxicity (LD50 = 1.76 mg/kg) of the DT-MOG makes it a potential candidate for the immunotherapy of MS.


Asunto(s)
Toxina Diftérica/metabolismo , Inmunoterapia/métodos , Inmunotoxinas/metabolismo , Glicoproteína Mielina-Oligodendrócito/inmunología , Receptores de Antígenos de Linfocitos B/metabolismo , Toxina Diftérica/genética , Toxina Diftérica/inmunología , Escherichia coli/genética , Escherichia coli/metabolismo , Inmunotoxinas/genética , Inmunotoxinas/inmunología , Receptores de Antígenos de Linfocitos B/genética , Receptores de Antígenos de Linfocitos B/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA