Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Eur Radiol ; 33(12): 8833-8841, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37418025

RESUMEN

Radiology artificial intelligence (AI) projects involve the integration of integrating numerous medical devices, wireless technologies, data warehouses, and social networks. While cybersecurity threats are not new to healthcare, their prevalence has increased with the rise of AI research for applications in radiology, making them one of the major healthcare risks of 2021. Radiologists have extensive experience with the interpretation of medical imaging data but radiologists may not have the required level of awareness or training related to AI-specific cybersecurity concerns. Healthcare providers and device manufacturers can learn from other industry sector industries that have already taken steps to improve their cybersecurity systems. This review aims to introduce cybersecurity concepts as it relates to medical imaging and to provide background information on general and healthcare-specific cybersecurity challenges. We discuss approaches to enhancing the level and effectiveness of security through detection and prevention techniques, as well as ways that technology can improve security while mitigating risks. We first review general cybersecurity concepts and regulatory issues before examining these topics in the context of radiology AI, with a specific focus on data, training, data, training, implementation, and auditability. Finally, we suggest potential risk mitigation strategies. By reading this review, healthcare providers, researchers, and device developers can gain a better understanding of the potential risks associated with radiology AI projects, as well as strategies to improve cybersecurity and reduce potential associated risks. CLINICAL RELEVANCE STATEMENT: This review can aid radiologists' and related professionals' understanding of the potential cybersecurity risks associated with radiology AI projects, as well as strategies to improve security. KEY POINTS: • Embarking on a radiology artificial intelligence (AI) project is complex and not without risk especially as cybersecurity threats have certainly become more abundant in the healthcare industry. • Fortunately healthcare providers and device manufacturers have the advantage of being able to take inspiration from other industry sectors who are leading the way in the field. • Herein we provide an introduction to cybersecurity as it pertains to radiology, a background to both general and healthcare-specific cybersecurity challenges; we outline general approaches to improving security through both detection and preventative techniques, and instances where technology can increase security while mitigating risks.


Asunto(s)
Servicio de Radiología en Hospital , Radiología , Humanos , Inteligencia Artificial , Radiología/métodos , Radiólogos , Seguridad Computacional
2.
Comput Med Imaging Graph ; 115: 102391, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38718561

RESUMEN

Automated Motion Artefact Detection (MAD) in Magnetic Resonance Imaging (MRI) is a field of study that aims to automatically flag motion artefacts in order to prevent the requirement for a repeat scan. In this paper, we identify and tackle the three current challenges in the field of automated MAD; (1) reliance on fully-supervised training, meaning they require specific examples of Motion Artefacts (MA), (2) inconsistent use of benchmark datasets across different works and use of private datasets for testing and training of newly proposed MAD techniques and (3) a lack of sufficiently large datasets for MRI MAD. To address these challenges, we demonstrate how MAs can be identified by formulating the problem as an unsupervised Anomaly Detection (AD) task. We compare the performance of three State-of-the-Art AD algorithms DeepSVDD, Interpolated Gaussian Descriptor and FewSOME on two open-source Brain MRI datasets on the task of MAD and MA severity classification, with FewSOME achieving a MAD AUC >90% on both datasets and a Spearman Rank Correlation Coefficient of 0.8 on the task of MA severity classification. These models are trained in the few shot setting, meaning large Brain MRI datasets are not required to build robust MAD algorithms. This work also sets a standard protocol for testing MAD algorithms on open-source benchmark datasets. In addition to addressing these challenges, we demonstrate how our proposed 'anomaly-aware' scoring function improves FewSOME's MAD performance in the setting where one and two shots of the anomalous class are available for training. Code available at https://github.com/niamhbelton/Unsupervised-Brain-MRI-Motion-Artefact-Detection/.


Asunto(s)
Algoritmos , Artefactos , Encéfalo , Imagen por Resonancia Magnética , Movimiento (Física) , Imagen por Resonancia Magnética/métodos , Humanos , Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA