Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Dev Dyn ; 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37870737

RESUMEN

BACKGROUND: Mutations of human WNT10A are associated with odonto-ectodermal dysplasia syndromes. Here, we present analyses of wnt10a loss-of-function mutants in the zebrafish. RESULTS: wnt10a mutant zebrafish embryos display impaired tooth development and a collapsing median fin fold (MFF). Rescue experiments show that wnt10a is essential for MFF maintenance both during embryogenesis and later metamorphosis. The MFF collapse could not be attributed to increased cell death or altered proliferation rates of MFF cell types. Rather, wnt10a mutants show reduced expression levels of dlx2a in distal-most MFF cells, followed by compromised expression of col1a1a and other extracellular matrix proteins encoding genes. Transmission electron microscopy analysis shows that although dermal MFF compartments of wnt10a mutants initially are of normal morphology, with regular collagenous actinotrichia, positioning of actinotrichia within the cleft of distal MFF cells becomes compromised, coinciding with actinotrichia shrinkage and MFF collapse. CONCLUSIONS: MFF collapse of wnt10a mutant zebrafish is likely caused by the loss of distal properties in the developing MFF, strikingly similar to the proposed molecular pathomechanisms underlying the teeth defects caused by the loss of Wnt10 in fish and mammals. In addition, it points to thus fur unknown mechanisms controlling the linear growth and stability of actinotrichia and their collagen fibrils.

2.
PLoS Pathog ; 14(6): e1007063, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29883484

RESUMEN

Neutrophils and macrophages provide the first line of cellular defence against pathogens once physical barriers are breached, but can play very different roles for each specific pathogen. This is particularly so for fungal pathogens, which can occupy several niches in the host. We developed an infection model of talaromycosis in zebrafish embryos with the thermally-dimorphic intracellular fungal pathogen Talaromyces marneffei and used it to define different roles of neutrophils and macrophages in infection establishment. This system models opportunistic human infection prevalent in HIV-infected patients, as zebrafish embryos have intact innate immunity but, like HIV-infected talaromycosis patients, lack a functional adaptive immune system. Importantly, this new talaromycosis model permits thermal shifts not possible in mammalian models, which we show does not significantly impact on leukocyte migration, phagocytosis and function in an established Aspergillus fumigatus model. Furthermore, the optical transparency of zebrafish embryos facilitates imaging of leukocyte/pathogen interactions in vivo. Following parenteral inoculation, T. marneffei conidia were phagocytosed by both neutrophils and macrophages. Within these different leukocytes, intracellular fungal form varied, indicating that triggers in the intracellular milieu can override thermal morphological determinants. As in human talaromycosis, conidia were predominantly phagocytosed by macrophages rather than neutrophils. Macrophages provided an intracellular niche that supported yeast morphology. Despite their minor role in T. marneffei conidial phagocytosis, neutrophil numbers increased during infection from a protective CSF3-dependent granulopoietic response. By perturbing the relative abundance of neutrophils and macrophages during conidial inoculation, we demonstrate that the macrophage intracellular niche favours infection establishment by protecting conidia from a myeloperoxidase-dependent neutrophil fungicidal activity. These studies provide a new in vivo model of talaromycosis with several advantages over previous models. Our findings demonstrate that limiting T. marneffei's opportunity for macrophage parasitism and thereby enhancing this pathogen's exposure to effective neutrophil fungicidal mechanisms may represent a novel host-directed therapeutic opportunity.


Asunto(s)
Aspergillus fumigatus/patogenicidad , Inmunidad Innata/inmunología , Macrófagos/inmunología , Neutrófilos/inmunología , Esporas Fúngicas/inmunología , Talaromyces/patogenicidad , Pez Cebra/inmunología , Animales , Leucocitos/inmunología , Leucocitos/microbiología , Macrófagos/microbiología , Ratones , Neutrófilos/microbiología , Peroxidasa/metabolismo , Fagocitosis , Pez Cebra/crecimiento & desarrollo , Pez Cebra/microbiología
3.
Blood ; 116(3): e1-11, 2010 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-20424185

RESUMEN

The Spi1/Pu.1 transcription factor plays a crucial role in myeloid cell development in vertebrates. Despite extensive studies of Spi1, the controlled gene group remains largely unknown. To identify genes dependent on Spi1, we used a microarray strategy using a knockdown approach in zebrafish embryos combined with fluorescence-activated cell sorting of myeloid cells from transgenic embryos. This approach of using knockdowns with specific green fluorescent protein-marked cell types was highly successful in identifying macrophagespecific genes in Spi1-directed innate immunity. We found a gene group downregulated on spi1 knockdown, which is also enriched in fluorescence-activated cell-sorted embryonic myeloid cells of a spi1:GFP transgenic line. This gene group, representing putative myeloidspecific Spi1 target genes, contained all 5 previously identified Spi1-dependent zebrafish genes as well as a large set of novel immune-related genes. Colocalization studies with neutrophil and macrophage markers revealed that genes cxcr3.2, mpeg1, ptpn6, and mfap4 were expressed specifically in early embryonic macrophages. In a functional approach, we demonstrated that gene cxcr3.2, coding for chemokine receptor 3.2, is involved in macrophage migration to the site of bacterial infection. Therefore, based on our combined transcriptome analyses, we discovered novel early macrophage-specific marker genes, including a signal transducer pivotal for macrophage migration in the innate immune response.


Asunto(s)
Inmunidad Innata/genética , Macrófagos/inmunología , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/inmunología , Transactivadores/genética , Transactivadores/inmunología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/inmunología , Animales , Animales Modificados Genéticamente , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Proteínas Fluorescentes Verdes/genética , Hematopoyesis/genética , Hematopoyesis/inmunología , Hibridación in Situ , Macrófagos/fisiología , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteína Tirosina Fosfatasa no Receptora Tipo 6/genética , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores CXCR3/genética , Proteínas Recombinantes/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Infecciones por Salmonella/genética , Infecciones por Salmonella/inmunología , Salmonella typhimurium , Transactivadores/antagonistas & inhibidores , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/inmunología
4.
Mol Immunol ; 63(2): 381-93, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25306962

RESUMEN

CD36 is a scavenger receptor which has been studied closely in mammals where it is expressed by many different cell types and plays a role in highly diverse processes, both homeostatic and pathologic. It is among other things important in the innate immune system, in angiogenesis, and in clearance of apoptotic cells, and it is also involved in lipid metabolism and atherosclerosis. Recently, in the cephalochordate amphioxus a primitive CD36 family member was described, which was present before the divergence of CD36 from other scavenger receptor B family members, SCARB1 and SCARB2. Not much is known on the Cd36 molecule in teleost fish. We therefore studied Cd36 in both zebrafish and common carp, two closely related cyprinid fish species. Whereas a single cd36 gene is present in zebrafish, carp has two cd36 genes, and all show conserved synteny compared to mammalian CD36. The gene expression of carp cd36 is high in brain, ovary and testis but absent in immune organs. Although in mammals CD36 expression in erythrocytes, monocytes and macrophages is high, gene expression studies in leukocyte subtypes of adult carp and zebrafish larvae, including thrombocytes and macrophages provided no indication for any substantial expression of cd36 in immune cell types. Surprisingly, analysis of the cd36 promoter region does show the presence of several binding sites for transcription factors known to regulate immune responses. Overexpression of carp cd36 locates the receptor on the cell surface of mammalian cell lines consistent with the predicted topology of cyprinid Cd36 with a large extracellular domain, two transmembrane domains, and short cytoplasmic tails at both ends. Gene expression of cd36 is down-regulated during infection of zebrafish with Mycobacterium marinum, whereas knockdown of cd36 in zebrafish larvae led to higher bacterial burden upon such infection. We discuss the putative role for Cd36 in immune responses of fish in the context of other members of the scavenger receptor class B family.


Asunto(s)
Antígenos CD36/genética , Carpas/genética , Proteínas de Peces/genética , Pez Cebra/genética , Secuencia de Aminoácidos , Animales , Antígenos CD36/química , Antígenos CD36/metabolismo , Embrión no Mamífero/metabolismo , Embrión no Mamífero/microbiología , Exones/genética , Proteínas de Peces/metabolismo , Regulación de la Expresión Génica , Genoma/genética , Células HEK293 , Humanos , Intrones/genética , Datos de Secuencia Molecular , Mycobacterium marinum/fisiología , Filogenia , Regiones Promotoras Genéticas/genética , Transporte de Proteínas , Alineación de Secuencia , Fracciones Subcelulares/metabolismo , Sintenía/genética , Pez Cebra/embriología , Pez Cebra/microbiología
5.
J Innate Immun ; 7(2): 136-52, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25247677

RESUMEN

Macrophage-expressed gene 1 (MPEG1) encodes an evolutionarily conserved protein with a predicted membrane attack complex/perforin domain associated with host defence against invading pathogens. In vertebrates, MPEG1/perforin-2 is an integral membrane protein of macrophages, suspected to be involved in the killing of intracellular bacteria by pore-forming activity. Zebrafish have 3 copies of MPEG1; 2 are expressed in macrophages, whereas the third could be a pseudogene. The mpeg1 and mpeg1.2 genes show differential regulation during infection of zebrafish embryos with the bacterial pathogens Mycobacterium marinum and Salmonella typhimurium. While mpeg1 is downregulated during infection with both pathogens, mpeg1.2 is infection inducible. Upregulation of mpeg1.2 is partially dependent on the presence of functional Mpeg1 and requires the Toll-like receptor adaptor molecule MyD88 and the transcription factor NFκB. Knockdown of mpeg1 alters the immune response to M. marinum infection and results in an increased bacterial burden. In Salmonella typhimurium infection, both mpeg1 and mpeg1.2 knockdown increase the bacterial burdens, but mpeg1 morphants show increased survival times. The combined results of these two in vivo infection models support the anti-bacterial function of the MPEG1/perforin-2 family and indicate that the intricate cross-regulation of the two mpeg1 copies aids the zebrafish host in combatting infection of various pathogens.


Asunto(s)
Antibacterianos/metabolismo , Macrófagos/fisiología , Proteínas de la Membrana/metabolismo , Infecciones por Mycobacterium no Tuberculosas/inmunología , Mycobacterium marinum/inmunología , Perforina/metabolismo , Salmonelosis Animal/inmunología , Salmonella typhimurium/inmunología , Proteínas de Pez Cebra/metabolismo , Animales , Células Cultivadas , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Interacciones Huésped-Patógeno , Inmunidad Innata/genética , Macrófagos/microbiología , Proteínas de la Membrana/genética , Factor 88 de Diferenciación Mieloide/metabolismo , FN-kappa B/metabolismo , Perforina/genética , Proteínas Citotóxicas Formadoras de Poros , Pez Cebra , Proteínas de Pez Cebra/genética
6.
Dev Comp Immunol ; 47(2): 223-33, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25086293

RESUMEN

Scavenger receptors on the cell surface of macrophages play an important role in host defence through their ability to bind microbial ligands and induce phagocytosis. Concurrently, signal transduction pathways are initiated that aid in defence mechanisms against the invading microbe. Here we report on the function of scavenger receptor Marco (Macrophage receptor with collagenous structure) during infection of zebrafish embryos with Mycobacterium marinum, a close relative of M. tuberculosis. Morpholino knockdown demonstrates that Marco is required for the rapid phagocytosis of M. marinum following intravenous infection. Furthermore, gene expression analysis shows that Marco controls the initial transient pro-inflammatory response to M. marinum and remains a determining factor for the immune response signature at later stages of infection. Increased bacterial burden following marco knockdown indicates that this scavenger receptor is important for control of M. marinum growth, likely due to delayed phagocytosis and reduced pro-inflammatory signalling observed under conditions of Marco deficiency.


Asunto(s)
Macrófagos/inmunología , Infecciones por Mycobacterium no Tuberculosas/veterinaria , Fagocitosis/genética , Receptores Depuradores/inmunología , Pez Cebra/inmunología , Animales , Carga Bacteriana , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , Inmunidad Innata , Macrófagos/microbiología , Morfolinos/genética , Infecciones por Mycobacterium no Tuberculosas/inmunología , Infecciones por Mycobacterium no Tuberculosas/microbiología , Mycobacterium marinum , Receptores Depuradores/antagonistas & inhibidores , Receptores Depuradores/genética , Transducción de Señal , Pez Cebra/genética
7.
J Vis Exp ; (61)2012 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-22453760

RESUMEN

Zebrafish (Danio rerio) embryos are increasingly used as a model for studying the function of the vertebrate innate immune system in host-pathogen interactions. The major cell types of the innate immune system, macrophages and neutrophils, develop during the first days of embryogenesis prior to the maturation of lymphocytes that are required for adaptive immune responses. The ease of obtaining large numbers of embryos, their accessibility due to external development, the optical transparency of embryonic and larval stages, a wide range of genetic tools, extensive mutant resources and collections of transgenic reporter lines, all add to the versatility of the zebrafish model. Salmonella enterica serovar Typhimurium (S. typhimurium) and Mycobacterium marinum can reside intracellularly in macrophages and are frequently used to study host-pathogen interactions in zebrafish embryos. The infection processes of these two bacterial pathogens are interesting to compare because S. typhimurium infection is acute and lethal within one day, whereas M. marinum infection is chronic and can be imaged up to the larval stage. The site of micro-injection of bacteria into the embryo determines whether the infection will rapidly become systemic or will initially remain localized. A rapid systemic infection can be established by micro-injecting bacteria directly into the blood circulation via the caudal vein at the posterior blood island or via the Duct of Cuvier, a wide circulation channel on the yolk sac connecting the heart to the trunk vasculature. At 1 dpf, when embryos at this stage have phagocytically active macrophages but neutrophils have not yet matured, injecting into the blood island is preferred. For injections at 2-3 dpf, when embryos also have developed functional (myeloperoxidase-producing) neutrophils, the Duct of Cuvier is preferred as the injection site. To study directed migration of myeloid cells towards local infections, bacteria can be injected into the tail muscle, otic vesicle, or hindbrain ventricle. In addition, the notochord, a structure that appears to be normally inaccessible to myeloid cells, is highly susceptible to local infection. A useful alternative for high-throughput applications is the injection of bacteria into the yolk of embryos within the first hours after fertilization. Combining fluorescent bacteria and transgenic zebrafish lines with fluorescent macrophages or neutrophils creates ideal circumstances for multi-color imaging of host-pathogen interactions. This video article will describe detailed protocols for intravenous and local infection of zebrafish embryos with S. typhimurium or M. marinum bacteria and for subsequent fluorescence imaging of the interaction with cells of the innate immune system.


Asunto(s)
Infecciones por Mycobacterium no Tuberculosas/microbiología , Mycobacterium marinum/patogenicidad , Infecciones por Salmonella/microbiología , Salmonella enterica/patogenicidad , Pez Cebra/microbiología , Animales , Modelos Animales de Enfermedad , Embrión no Mamífero/inmunología , Embrión no Mamífero/microbiología , Interacciones Huésped-Patógeno/inmunología , Inmunidad Innata/inmunología , Macrófagos/inmunología , Microinyecciones/métodos , Infecciones por Mycobacterium no Tuberculosas/inmunología , Neutrófilos/inmunología , Infecciones por Salmonella/inmunología , Pez Cebra/embriología , Pez Cebra/inmunología
8.
Methods Cell Biol ; 105: 273-308, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21951535

RESUMEN

The major cell types of the innate immune system, macrophages and neutrophils, develop during the first two days of zebrafish embryogenesis. The interaction of these immune cells with pathogenic microbes can excellently be traced in the optically transparent zebrafish embryos. Various tools and methods have recently been developed for visualizing and isolating the zebrafish embryonic innate immune cells, for establishing infections by different micro-injection techniques, and for analyzing the host innate immune response following microbial recognition. Here we provide practical guidelines for the application of these methodologies and review the current state of the art in zebrafish infectious disease research.


Asunto(s)
Biología Evolutiva/métodos , Técnicas de Silenciamiento del Gen/métodos , Genómica/métodos , Inmunidad Innata , Hibridación Fluorescente in Situ/métodos , Microinyecciones/métodos , Imagen Molecular/métodos , Pez Cebra/inmunología , Animales , Biomarcadores/análisis , Linaje de la Célula , Embrión no Mamífero , Citometría de Flujo , Ensayos Analíticos de Alto Rendimiento , Humanos , Macrófagos/inmunología , Neutrófilos/inmunología , Salmonelosis Animal/inmunología , Salmonelosis Animal/microbiología , Salmonella typhimurium/inmunología , Transgenes , Pez Cebra/embriología , Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA