Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Hippocampus ; 26(12): 1509-1514, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27569857

RESUMEN

Permanent vestibular loss has detrimental effects on the hippocampus, resulting in a disruption to spatial learning and memory, hippocampal theta rhythm and place cell field spatial coherence. Little is known about the vestibular system-related hippocampal cholinergic transmission. Since the pharmacological blockade of muscarinic acetylcholine (ACh) receptors within the hippocampus produces deficits in learning and memory, we hypothesized that ACh receptors may at least partly support the integration of vestibular input. Consequently, we examined the expression of M1 muscarinic ACh receptors in the hippocampus at 7 and 30 days following bilateral vestibular lesions (BVL) in rats using autoradiography. Animals were divided into sham (n = 12) and BVL (n = 11) groups. BVL animals received intratympanic injections of sodium arsanilate (30 mg/0.1 ml) under isoflurane anesthesia and sham animals received the same volume of saline. Analysis of the brain tissue revealed a significant reduction in the number of M1 receptors throughout the hippocampus and striatum at 30 days (P ≤ 0.0001), but not at 7 days following BVL. This suggests that the changes in learning and memory seen following vestibular damage may be in part due to the loss of M1 muscarinic receptors in the hippocampus and striatum. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Vestibulopatía Bilateral/metabolismo , Cuerpo Estriado/metabolismo , Hipocampo/metabolismo , Receptor Muscarínico M1/metabolismo , Animales , Ácido Arsanílico , Autorradiografía , Vestibulopatía Bilateral/patología , Cuerpo Estriado/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Regulación hacia Abajo , Hipocampo/patología , Masculino , Antagonistas Muscarínicos , Pirenzepina , Ratas Wistar , Factores de Tiempo , Tritio
2.
Cells ; 12(13)2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37443821

RESUMEN

Immunotherapy includes immune checkpoint inhibitors (ICI) such as antibodies targeting cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) or the programmed cell death protein/programmed death ligand 1 (PD-1/PD-L1) axis. Experimental and clinical evidence show that immunotherapy based on immune checkpoint inhibitors (ICI) provides long-term survival benefits to cancer patients in whom other conventional therapies have failed. However, only a minority of patients show high clinical benefits via the use of ICI alone. One of the major factors limiting the clinical benefits to ICI can be attributed to the lack of immune cell infiltration within the tumor microenvironment. Such tumors are classified as "cold/warm" or an immune "desert"; those displaying significant infiltration are considered "hot" or inflamed. This review will provide a brief summary of different tumor properties contributing to the establishment of cold tumors and describe major strategies that could reprogram non-inflamed cold tumors into inflamed hot tumors. More particularly, we will describe how targeting hypoxia can induce metabolic reprogramming that results in improving and extending the benefit of ICI.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Neoplasias , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias/tratamiento farmacológico , Inmunoterapia/métodos , Microambiente Tumoral
3.
Front Oncol ; 11: 626309, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33718194

RESUMEN

Autophagy is a highly regulated multi-step process that occurs at the basal level in almost all cells. Although the deregulation of the autophagy process has been described in several pathologies, the role of autophagy in cancer as a cytoprotective mechanism is currently well established and supported by experimental and clinical evidence. Our understanding of the molecular mechanism of the autophagy process has largely contributed to defining how we can harness this process to improve the benefit of cancer therapies. While the role of autophagy in tumor resistance to chemotherapy is extensively documented, emerging data point toward autophagy as a mechanism of cancer resistance to radiotherapy, targeted therapy, and immunotherapy. Therefore, manipulating autophagy has emerged as a promising strategy to overcome tumor resistance to various anti-cancer therapies, and autophagy modulators are currently evaluated in combination therapies in several clinical trials. In this review, we will summarize our current knowledge of the impact of genetically and pharmacologically modulating autophagy genes and proteins, involved in the different steps of the autophagy process, on the therapeutic benefit of various cancer therapies. We will also briefly discuss the challenges and limitations to developing potent and selective autophagy inhibitors that could be used in ongoing clinical trials.

4.
Oncogene ; 40(28): 4725-4735, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34155342

RESUMEN

Hypoxia is a key factor responsible for the failure of therapeutic response in most solid tumors and promotes the acquisition of tumor resistance to various antitumor immune effectors. Reshaping the hypoxic immune suppressive tumor microenvironment to improve cancer immunotherapy is still a relevant challenge. We investigated the impact of inhibiting HIF-1α transcriptional activity on cytotoxic immune cell infiltration into B16-F10 melanoma. We showed that tumors expressing a deleted form of HIF-1α displayed increased levels of NK and CD8+ effector T cells in the tumor microenvironment, which was associated with high levels of CCL2 and CCL5 chemokines. We showed that combining acriflavine, reported as a pharmacological agent preventing HIF-1α/HIF-1ß dimerization, dramatically improved the benefit of cancer immunotherapy based on TRP-2 peptide vaccination and anti-PD-1 blocking antibody. In melanoma patients, we revealed that tumors exhibiting high CCL5 are less hypoxic, and displayed high NK, CD3+, CD4+ and CD8+ T cell markers than those having low CCL5. In addition, melanoma patients with high CCL5 in their tumors survive better than those having low CCL5. This study provides the pre-clinical proof of concept for a novel triple combination strategy including blocking HIF-1α transcription activity along vaccination and PD-1 blocking immunotherapy.


Asunto(s)
Vacunas contra el Cáncer , Inmunoterapia , Vacunas de Subunidad
5.
Sci Rep ; 10(1): 21273, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-33277538

RESUMEN

Radiation-induced fibrosis (RIF) is the main late radiation toxicity in breast cancer patients. Most of the current 3D in vitro breast cancer models are composed by cancer cells only and are unable to reproduce the complex cellular homeostasis within the tumor microenvironment to study RIF mechanisms. In order to account complex cellular interactions within the tumor microenvironment, an advanced 3D spheroid model, consisting of the luminal breast cancer MCF-7 cells and MRC-5 fibroblasts, was developed. The spheroids were generated using the liquid overlay technique in culture media into 96-well plates previously coated with 1% agarose (m/v, in water). In total, 21 experimental setups were tested during the optimization of the model. The generated spheroids were characterized using fluorescence imaging, immunohistology and immunohistochemistry. The expression of ECM components was confirmed in co-culture spheroids. Using α-SMA staining, we confirmed the differentiation of healthy fibroblasts into myofibroblasts upon the co-culturing with cancer cells. The induction of fibrosis was studied in spheroids treated 24 h with 10 ng/mL TGF-ß and/or 2 Gy irradiation. Overall, the developed advanced 3D stroma-rich in vitro model of breast cancer provides a possibility to study fibrosis mechanisms taking into account 3D arrangement of the complex tumor microenvironment.


Asunto(s)
Neoplasias de la Mama , Técnicas de Cocultivo , Modelos Biológicos , Humanos , Células MCF-7 , Esferoides Celulares , Células Tumorales Cultivadas
6.
Neurosci Lett ; 683: 43-47, 2018 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-29936267

RESUMEN

There is substantial evidence that loss of vestibular function impairs spatial learning and memory related to hippocampal (HPC) function, as well as increasing evidence that striatal (Str) plasticity is also implicated. Since the N-methyl-d-aspartate (NMDA) subtype of glutamate receptor is considered essential to spatial memory, previous studies have investigated whether the expression of HPC NMDA receptors changes following vestibular loss; however, the results have been contradictory. Here we used a novel flow cytometric method to quantify the number of neurons expressing NMDA receptors in the HPC and Str following bilateral vestibular loss (BVL) in rats. At 7 and 30 days post-op., there was a significant increase in the number of HPC neurons expressing NMDA receptors in the BVL animals, compared to sham controls (P ≤ 0.004 and P ≤ 0.0001, respectively). By contrast, in the Str, at 7 days there was a significant reduction in the number of neurons expressing NMDA receptors in the BVL group (P ≤ 0.05); however, this difference had disappeared by 30 days post-op. These results suggest that BVL causes differential changes in the number of neurons expressing NMDA receptors in the HPC and Str, which may be related to its long-term impairment of spatial memory.


Asunto(s)
Cuerpo Estriado/metabolismo , Citometría de Flujo/métodos , Hipocampo/metabolismo , Neuronas/metabolismo , Receptores de N-Metil-D-Aspartato/biosíntesis , Vestíbulo del Laberinto/metabolismo , Animales , Cuerpo Estriado/citología , Oído Interno/citología , Oído Interno/metabolismo , Oído Interno/cirugía , Expresión Génica , Hipocampo/citología , Masculino , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/genética , Vestíbulo del Laberinto/citología , Vestíbulo del Laberinto/cirugía
7.
Endocr Connect ; 4(2): 117-27, 2015 06.
Artículo en Inglés | MEDLINE | ID: mdl-26034121

RESUMEN

Hirsutism induced by hyperandrogenism can be associated with polycystic ovary syndrome, 21-hydroxylase (OH) deficiency or androgen-secreting tumors, including ovarian and adrenal tumors. Adrenal androgen-secreting tumors are frequently malignant. Adrenal oncocytomas represent rare causes of hyperandrogenism. The aim of the study was to investigate steroidogenic enzyme expression and steroid secretion in an androgen-secreting adrenal oncocytoma in a young woman presenting with hirsutism. Hyperandrogenism was diagnosed on the basis of elevated plasma Δ4-androstenedione and testosterone levels. Pelvic ultrasound was normal, CT scanning revealed a right adrenal mass. Androgens were assessed in adrenal and ovarian vein samples and proved a right adrenal origin. Adrenalectomy normalized androgen levels and the adrenal tumor was diagnosed as an oncocytoma. Real time-PCR, immunohistochemistry and cell culture studies were performed on tumor explants to investigate the steroid secretion profile. Among enzymes required for cortisol synthesis, 17α-OH and 3ß-hydroxysteroid dehydrogenase 2 (3ß-HSD2) were highly expressed whereas 21-OH and 11ß-OH were weakly produced at the mRNA and/or protein levels. Enzymes involved in testosterone production, 17ß-HSD5 and 17ß-HSD3, were also detected. ACTH receptor was present in the tissue. Cortisol, Δ4-androstenedione and testosterone secretions by cultured cells were increased by ACTH. These results provide the first demonstration, to our knowledge, of abnormal expression profile of steroidogenic enzymes in an adrenocortical oncocytoma. Our results also indicate that Δ4-androstenedione hypersecretion resulted from high 17α-OH and 3ß-HSD2 expression in combination with low expression of 21-OH and 11ß-OH. Testosterone production was ascribed to occurrence of 17ß-HSD5 and 17ß-HSD3. Finally, our results indicate that androgen secretion was stimulated by ACTH.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA