RESUMEN
BACKGROUND: A safe, effective vaccine is essential to eradicating human immunodeficiency virus (HIV) infection. A canarypox-protein HIV vaccine regimen (ALVAC-HIV plus AIDSVAX B/E) showed modest efficacy in reducing infection in Thailand. An analogous regimen using HIV-1 subtype C virus showed potent humoral and cellular responses in a phase 1-2a trial in South Africa. Efficacy data and additional safety data were needed for this regimen in a larger population in South Africa. METHODS: In this phase 2b-3 trial, we randomly assigned 5404 adults without HIV-1 infection to receive the vaccine (2704 participants) or placebo (2700 participants). The vaccine regimen consisted of injections of ALVAC-HIV at months 0 and 1, followed by four booster injections of ALVAC-HIV plus bivalent subtype C gp120-MF59 adjuvant at months 3, 6, 12, and 18. The primary efficacy outcome was the occurrence of HIV-1 infection from randomization to 24 months. RESULTS: In January 2020, prespecified criteria for nonefficacy were met at an interim analysis; further vaccinations were subsequently halted. The median age of the trial participants was 24 years; 70% of the participants were women. The incidence of adverse events was similar in the vaccine and placebo groups. During the 24-month follow-up, HIV-1 infection was diagnosed in 138 participants in the vaccine group and in 133 in the placebo group (hazard ratio, 1.02; 95% confidence interval, 0.81 to 1.30; P = 0.84). CONCLUSIONS: The ALVAC-gp120 regimen did not prevent HIV-1 infection among participants in South Africa despite previous evidence of immunogenicity. (HVTN 702 ClinicalTrials.gov number, NCT02968849.).
Asunto(s)
Vacunas contra el SIDA , Adyuvantes Inmunológicos , Infecciones por VIH/prevención & control , VIH-1 , Inmunogenicidad Vacunal , Polisorbatos , Escualeno , Vacunas contra el SIDA/inmunología , Adolescente , Adulto , Virus de la Viruela de los Canarios , Método Doble Ciego , Femenino , Vectores Genéticos , VIH-1/genética , Humanos , Inmunización Secundaria , Masculino , Sudáfrica , Insuficiencia del Tratamiento , Adulto JovenRESUMEN
BACKGROUND: Whether a broadly neutralizing antibody (bnAb) can be used to prevent human immunodeficiency virus type 1 (HIV-1) acquisition is unclear. METHODS: We enrolled at-risk cisgender men and transgender persons in the Americas and Europe in the HVTN 704/HPTN 085 trial and at-risk women in sub-Saharan Africa in the HVTN 703/HPTN 081 trial. Participants were randomly assigned to receive, every 8 weeks, infusions of a bnAb (VRC01) at a dose of either 10 or 30 mg per kilogram (low-dose group and high-dose group, respectively) or placebo, for 10 infusions in total. HIV-1 testing was performed every 4 weeks. The VRC01 80% inhibitory concentration (IC80) of acquired isolates was measured with the TZM-bl assay. RESULTS: Adverse events were similar in number and severity among the treatment groups within each trial. Among the 2699 participants in HVTN 704/HPTN 085, HIV-1 infection occurred in 32 in the low-dose group, 28 in the high-dose group, and 38 in the placebo group. Among the 1924 participants in HVTN 703/HPTN 081, infection occurred in 28 in the low-dose group, 19 in the high-dose group, and 29 in the placebo group. The incidence of HIV-1 infection per 100 person-years in HVTN 704/HPTN 085 was 2.35 in the pooled VRC01 groups and 2.98 in the placebo group (estimated prevention efficacy, 26.6%; 95% confidence interval [CI], -11.7 to 51.8; P = 0.15), and the incidence per 100 person-years in HVTN 703/HPTN 081 was 2.49 in the pooled VRC01 groups and 3.10 in the placebo group (estimated prevention efficacy, 8.8%; 95% CI, -45.1 to 42.6; P = 0.70). In prespecified analyses pooling data across the trials, the incidence of infection with VRC01-sensitive isolates (IC80 <1 µg per milliliter) per 100 person-years was 0.20 among VRC01 recipients and 0.86 among placebo recipients (estimated prevention efficacy, 75.4%; 95% CI, 45.5 to 88.9). The prevention efficacy against sensitive isolates was similar for each VRC01 dose and trial; VRC01 did not prevent acquisition of other HIV-1 isolates. CONCLUSIONS: VRC01 did not prevent overall HIV-1 acquisition more effectively than placebo, but analyses of VRC01-sensitive HIV-1 isolates provided proof-of-concept that bnAb prophylaxis can be effective. (Supported by the National Institute of Allergy and Infectious Diseases; HVTN 704/HPTN 085 and HVTN 703/HPTN 081 ClinicalTrials.gov numbers, NCT02716675 and NCT02568215.).
Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Anticuerpos ampliamente neutralizantes/uso terapéutico , Anticuerpos Anti-VIH/uso terapéutico , Infecciones por VIH/prevención & control , VIH-1 , Adolescente , Adulto , África del Sur del Sahara/epidemiología , Américas/epidemiología , Anticuerpos Monoclonales/efectos adversos , Anticuerpos ampliamente neutralizantes/efectos adversos , Método Doble Ciego , Europa (Continente)/epidemiología , Femenino , Anticuerpos Anti-VIH/efectos adversos , Infecciones por VIH/epidemiología , VIH-1/efectos de los fármacos , Humanos , Incidencia , Masculino , Prueba de Estudio Conceptual , Adulto JovenRESUMEN
BACKGROUND: HVTN 100 evaluated the safety and immunogenicity of an HIV subtype C pox-protein vaccine regimen, investigating a 12-month booster to extend vaccine-induced immune responses. METHODS AND FINDINGS: A phase 1-2 randomized double-blind placebo-controlled trial enrolled 252 participants (210 vaccine/42 placebo; median age 23 years; 43% female) between 9 February 2015 and 26 May 2015. Vaccine recipients received ALVAC-HIV (vCP2438) alone at months 0 and 1 and with bivalent subtype C gp120/MF59 at months 3, 6, and 12. Antibody (IgG, IgG3 binding, and neutralizing) and CD4+ T-cell (expressing interferon-gamma, interleukin-2, and CD40 ligand) responses were evaluated at month 6.5 for all participants and at months 12, 12.5, and 18 for a randomly selected subset. The primary analysis compared IgG binding antibody (bAb) responses and CD4+ T-cell responses to 3 vaccine-matched antigens at peak (month 6.5 versus 12.5) and durability (month 12 versus 18) timepoints; IgG responses to CaseA2_gp70_V1V2.B, a primary correlate of risk in RV144, were also compared at these same timepoints. Secondary and exploratory analyses compared IgG3 bAb responses, IgG bAb breadth scores, neutralizing antibody (nAb) responses, antibody-dependent cellular phagocytosis, CD4+ polyfunctionality responses, and CD4+ memory sub-population responses at the same timepoints. Vaccines were generally safe and well tolerated. During the study, there were 2 deaths (both in the vaccine group and both unrelated to study products). Ten participants became HIV-infected during the trial, 7% (3/42) of placebo recipients and 3% (7/210) of vaccine recipients. All 8 serious adverse events were unrelated to study products. Less waning of immune responses was seen after the fifth vaccination than after the fourth, with higher antibody and cellular response rates at month 18 than at month 12: IgG bAb response rates to 1086.C V1V2, 21.0% versus 9.7% (difference = 11.3%, 95% CI = 0.6%-22.0%, P = 0.039), and ZM96.C V1V2, 21.0% versus 6.5% (difference = 14.5%, 95% CI = 4.1%-24.9%, P = 0.004). IgG bAb response rates to all 4 primary V1V2 antigens were higher 2 weeks after the fifth vaccination than 2 weeks after the fourth vaccination: 87.7% versus 75.4% (difference = 12.3%, 95% CI = 1.7%-22.9%, P = 0.022) for 1086.C V1V2, 86.0% versus 63.2% (difference = 22.8%, 95% CI = 9.1%-36.5%, P = 0.001) for TV1c8.2.C V1V2, 67.7% versus 44.6% (difference = 23.1%, 95% CI = 10.4%-35.7%, P < 0.001) for ZM96.C V1V2, and 81.5% versus 60.0% (difference = 21.5%, 95% CI = 7.6%-35.5%, P = 0.002) for CaseA2_gp70_V1V2.B. IgG bAb response rates to the 3 primary vaccine-matched gp120 antigens were all above 90% at both peak timepoints, with no significant differences seen, except a higher response rate to ZM96.C gp120 at month 18 versus month 12: 64.5% versus 1.6% (difference = 62.9%, 95% CI = 49.3%-76.5%, P < 0.001). CD4+ T-cell response rates were higher at month 18 than month 12 for all 3 primary vaccine-matched antigens: 47.3% versus 29.1% (difference = 18.2%, 95% CI = 2.9%-33.4%, P = 0.021) for 1086.C, 61.8% versus 38.2% (difference = 23.6%, 95% CI = 9.5%-37.8%, P = 0.001) for TV1.C, and 63.6% versus 41.8% (difference = 21.8%, 95% CI = 5.1%-38.5%, P = 0.007) for ZM96.C, with no significant differences seen at the peak timepoints. Limitations were that higher doses of gp120 were not evaluated, this study was not designed to investigate HIV prevention efficacy, and the clinical significance of the observed immunological effects is uncertain. CONCLUSIONS: In this study, a 12-month booster of subtype C pox-protein vaccines restored immune responses, and slowed response decay compared to the 6-month vaccination. TRIAL REGISTRATION: ClinicalTrials.gov NCT02404311. South African National Clinical Trials Registry (SANCTR number: DOH--27-0215-4796).
Asunto(s)
Vacunas contra el SIDA/uso terapéutico , Anticuerpos Neutralizantes/inmunología , Linfocitos T CD4-Positivos/inmunología , Infecciones por VIH/prevención & control , Proteínas del Virus de la Inmunodeficiencia Humana/inmunología , Inmunización Secundaria , Inmunoglobulina G/inmunología , Vacunas contra el SIDA/inmunología , Adulto , Artralgia/inducido químicamente , Método Doble Ciego , Femenino , Cefalea/inducido químicamente , Humanos , Inmunogenicidad Vacunal , Reacción en el Punto de Inyección , Inyecciones Intramusculares , Masculino , Sudáfrica , Adulto JovenRESUMEN
Background: It is important to identify vaccine-induced immune responses that predict the preventative efficacy of a human immunodeficiency virus (HIV)-1 vaccine. We assessed T-cell response markers as correlates of risk in the HIV Vaccine Trials Network (HVTN) 505 HIV-1 vaccine efficacy trial. Methods: 2504 participants were randomized to DNA/rAd5 vaccine or placebo, administered at weeks 0, 4, 8, and 24. Peripheral blood mononuclear cells were obtained at week 26 from all 25 primary endpoint vaccine cases and 125 matched vaccine controls, and stimulated with vaccine-insert-matched peptides. Primary variables were total HIV-1-specific CD4+ T-cell magnitude and Env-specific CD4+ polyfunctionality. Four secondary variables were also assessed. Immune responses were evaluated as predictors of HIV-1 infection among vaccinees using Cox proportional hazards models. Machine learning analyses identified immune response combinations best predicting HIV-1 infection. Results: We observed an unexpectedly strong inverse correlation between Env-specific CD8+ immune response magnitude and HIV-1 infection risk (hazard ratio [HR] = 0.18 per SD increment; P = .04) and between Env-specific CD8+ polyfunctionality and infection risk (HR = 0.34 per SD increment; P < .01). Conclusions: Further research is needed to determine if these immune responses are predictors of vaccine efficacy or markers of natural resistance to HIV-1 infection.
Asunto(s)
Vacunas contra el SIDA/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Infecciones por VIH/inmunología , Vacunas contra el SIDA/administración & dosificación , Adenoviridae/genética , Análisis de Varianza , Biología Computacional , Citocinas/inmunología , Vectores Genéticos , Infecciones por VIH/prevención & control , Humanos , Aprendizaje Automático , RiesgoRESUMEN
BACKGROUND: A safe and effective vaccine for the prevention of human immunodeficiency virus type 1 (HIV-1) infection is a global priority. We tested the efficacy of a DNA prime-recombinant adenovirus type 5 boost (DNA/rAd5) vaccine regimen in persons at increased risk for HIV-1 infection in the United States. METHODS: At 21 sites, we randomly assigned 2504 men or transgender women who have sex with men to receive the DNA/rAd5 vaccine (1253 participants) or placebo (1251 participants). We assessed HIV-1 acquisition from week 28 through month 24 (termed week 28+ infection), viral-load set point (mean plasma HIV-1 RNA level 10 to 20 weeks after diagnosis), and safety. The 6-plasmid DNA vaccine (expressing clade B Gag, Pol, and Nef and Env proteins from clades A, B, and C) was administered at weeks 0, 4, and 8. The rAd5 vector boost (expressing clade B Gag-Pol fusion protein and Env glycoproteins from clades A, B, and C) was administered at week 24. RESULTS: In April 2013, the data and safety monitoring board recommended halting vaccinations for lack of efficacy. The primary analysis showed that week 28+ infection had been diagnosed in 27 participants in the vaccine group and 21 in the placebo group (vaccine efficacy, -25.0%; 95% confidence interval, -121.2 to 29.3; P=0.44), with mean viral-load set points of 4.46 and 4.47 HIV-1 RNA log10 copies per milliliter, respectively. Analysis of all infections during the study period (41 in the vaccine group and 31 in the placebo group) also showed lack of vaccine efficacy (P=0.28). The vaccine regimen had an acceptable side-effect profile. CONCLUSIONS: The DNA/rAd5 vaccine regimen did not reduce either the rate of HIV-1 acquisition or the viral-load set point in the population studied. (Funded by the National Institute of Allergy and Infectious Diseases; ClinicalTrials.gov number, NCT00865566.).
Asunto(s)
Vacunas contra el SIDA/inmunología , Infecciones por VIH/prevención & control , VIH-1 , Vacunas de ADN/inmunología , Vacunas contra el SIDA/efectos adversos , Adulto , Método Doble Ciego , Femenino , Infecciones por VIH/epidemiología , Infecciones por VIH/inmunología , VIH-1/genética , VIH-1/aislamiento & purificación , Humanos , Fenómenos Inmunogenéticos , Incidencia , Masculino , Persona de Mediana Edad , ARN Viral/sangre , Personas Transgénero , Insuficiencia del Tratamiento , Vacunas de ADN/efectos adversos , Carga Viral , Adulto JovenRESUMEN
BACKGROUND: Modest efficacy was reported for the HIV vaccine tested in the RV144 trial, which comprised a canarypox vector (ALVAC) and envelope (env) glycoprotein (gp120). These vaccine components were adapted to express HIV-1 antigens from strains circulating in South Africa, and the adjuvant was changed to increase immunogenicity. Furthermore, 12-month immunisation was added to improve durability. In the HIV Vaccine Trials Network (HVTN) 100 trial, we aimed to assess this new regionally adapted regimen for advancement to efficacy testing. METHODS: HVTN 100 is a phase 1/2, randomised controlled, double-blind trial at six community research sites in South Africa. We randomly allocated adults (aged 18-40 years) without HIV infection and at low risk of HIV infection to either the vaccine regimen (intramuscular injection of ALVAC-HIV vector [vCP2438] at 0, 1, 3, 6, and 12 months plus bivalent subtype C gp120 and MF59 adjuvant at 3, 6, and 12 months) or placebo, in a 5:1 ratio. Randomisation was done by computer-generated list. Participants, investigators, and those assessing outcomes were masked to random assignments. Primary outcomes included safety and immune responses associated with correlates of HIV risk in RV144, 2 weeks after vaccination at 6 months (month 6·5). We compared per-protocol participants (ie, those who completed the first four vaccinations and provided samples at month 6·5) from HVTN 100 with stored RV144 samples assayed contemporaneously. This trial is registered with the South African National Clinical Trials Registry (DOH-27-0215-4796) and ClinicalTrials.gov (NCT02404311). FINDINGS: Between Feb 9, 2015, and May 26, 2015, 252 participants were enrolled, of whom 210 were assigned vaccine and 42 placebo. 222 participants were included in the per-protocol analysis (185 vaccine and 37 placebo). 185 (100%) vaccine recipients developed IgG binding antibodies to all three vaccine-matched gp120 antigens with significantly higher titres (3·6-8·8 fold; all p<0·0001) than the corresponding vaccine-matched responses of RV144. The CD4+ T-cell response to the ZM96.C env protein in HVTN 100 was 56·4% (n=102 responders), compared with a response of 41·4% (n=79 responders) to 92TH023.AE in RV144 (p=0·0050). The IgG response to the 1086.C variable loops 1 and 2 (V1V2) env antigen in HVTN 100 was 70·5% (95% CI 63·5-76·6; n=129 responders), lower than the response to V1V2 in RV144 (99·0%, 95% CI 96·4-99·7; n=199 responders). INTERPRETATION: Although the IgG response to the HVTN 100 vaccine was lower than that reported in RV144, it exceeded the predicted 63% threshold needed for 50% vaccine efficacy using a V1V2 correlate of protection model. Thus, the subtype C HIV vaccine regimen qualified for phase 2b/3 efficacy testing, a critical next step of vaccine development. FUNDING: US National Institute of Allergy and Infectious Diseases (NIAID), and Bill & Melinda Gates Foundation.
Asunto(s)
Vacunas contra el SIDA/inmunología , Proteína gp120 de Envoltorio del VIH/inmunología , Infecciones por VIH/prevención & control , VIH-1/inmunología , Vacunas contra el SIDA/administración & dosificación , Vacunas contra el SIDA/efectos adversos , Adyuvantes Inmunológicos/administración & dosificación , Adolescente , Adulto , Método Doble Ciego , Femenino , Vectores Genéticos , Anticuerpos Anti-VIH/sangre , Proteína gp120 de Envoltorio del VIH/administración & dosificación , Proteína gp120 de Envoltorio del VIH/genética , Infecciones por VIH/inmunología , Humanos , Inmunoglobulina G/sangre , Masculino , Polisorbatos/administración & dosificación , Sudáfrica/epidemiología , Escualeno/administración & dosificación , Vacunación , Adulto JovenRESUMEN
BACKGROUND: Anti-HIV-1 broadly neutralizing antibodies (bnAbs) have been developed as potential agents for prevention of HIV-1 infection. The HIV Vaccine Trials Network and the HIV Prevention Trials Network are conducting the Antibody Mediated Prevention (AMP) trials to assess whether, and how, intravenous infusion of the anti-CD4 binding site bnAb, VRC01, prevents HIV-1 infection. These are the first test-of-concept studies to assess HIV-1 bnAb prevention efficacy in humans. METHODS: The AMP trials are two parallel phase 2b HIV-1 prevention efficacy trials conducted in two cohorts: 2700 HIV-uninfected men and transgender persons who have sex with men in the United States, Peru, Brazil, and Switzerland; and 1500 HIV-uninfected sexually active women in seven countries in sub-Saharan Africa. Participants are randomized 1:1:1 to receive an intravenous infusion of 10 mg/kg VRC01, 30 mg/kg VRC01, or a control preparation every 8 weeks for a total of 10 infusions. Each trial is designed (1) to assess overall prevention efficacy (PE) pooled over the two VRC01 dose groups vs. control and (2) to assess VRC01 dose and laboratory markers as correlates of protection (CoPs) against overall and genotype- and phenotype-specific infection. RESULTS: Each AMP trial is designed to have 90% power to detect PE > 0% if PE is ≥ 60%. The AMP trials are also designed to identify VRC01 properties (i.e., concentration and effector functions) that correlate with protection and to provide insight into mechanistic CoPs. CoPs are assessed using data from breakthrough HIV-1 infections, including genetic sequences and sensitivities to VRC01-mediated neutralization and Fc effector functions. CONCLUSIONS: The AMP trials test whether VRC01 can prevent HIV-1 infection in two study populations. If affirmative, they will provide information for estimating the optimal dosage of VRC01 (or subsequent derivatives) and identify threshold levels of neutralization and Fc effector functions associated with high-level protection, setting a benchmark for future vaccine evaluation and constituting a bridge to other bnAb approaches for HIV-1 prevention.
RESUMEN
BACKGROUND: The Phase 2b double-blinded, randomized Phambili/HVTN 503 trial evaluated safety and efficacy of the MRK Ad5 gag/pol/nef subtype B HIV-1 preventive vaccine vs placebo in sexually active HIV-1 seronegative participants in South Africa. Enrollment and vaccinations stopped and participants were unblinded but continued follow-up when the Step study evaluating the same vaccine in the Americas, Caribbean, and Australia was unblinded for non-efficacy. Final Phambili analyses found more HIV-1 infections amongst vaccine than placebo recipients, impelling the HVTN 503-S recall study. METHODS: HVTN 503-S sought to enroll all 695 HIV-1 uninfected Phambili participants, provide HIV testing, risk reduction counseling, physical examination, risk behavior assessment and treatment assignment recall. After adding HVTN 503-S data, HIV-1 infection hazard ratios (HR vaccine vs. placebo) were estimated by Cox models. RESULTS: Of the 695 eligible, 465 (67%) enrolled with 230 from the vaccine group and 235 from the placebo group. 38% of the 184 Phambili dropouts were enrolled. Enrollment did not differ by treatment group, gender, or baseline HSV-2. With the additional 1286 person years of 503-S follow-up, the estimated HR over Phambili and HVTN 503-S follow-up was 1.52 (95% CI 1.08-2.15, p = 0.02, 82 vaccine/54 placebo infections). The HR was significant for men (HR = 2.75, 95% CI 1.49, 5.06, p = 0.001) but not for women (HR = 1.12, 95% CI 0.73, 1.72, p = 0.62). CONCLUSION: The additional follow-up from HVTN 503-S supported the Phambili finding of increased HIV-1 acquisition among vaccinated men and strengthened the evidence of lack of vaccine effect among women. TRIAL REGISTRATION: clinicaltrials.gov NCT00413725 SA National Health Research Database DOH-27-0207-1539.