Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Theor Appl Genet ; 135(8): 2747-2767, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35737008

RESUMEN

KEY MESSAGE: This study performed comprehensive analyses on the predictive abilities of single-trait and two multi-trait models in three populations. Our results demonstrated the superiority of multi-traits over single-trait models across seven agronomic and four to seven disease resistance traits of different genetic architecture. The predictive ability of multi-trait and single-trait prediction models has not been investigated on diverse traits evaluated under organic and conventional management systems. Here, we compared the predictive abilities of 25% of a testing set that has not been evaluated for a single trait (ST), not evaluated for multi-traits (MT1), and evaluated for some traits but not others (MT2) in three spring wheat populations genotyped either with the wheat 90K single nucleotide polymorphisms array or DArTseq. Analyses were performed on seven agronomic traits evaluated under conventional and organic management systems, four to seven disease resistance traits, and all agronomic and disease resistance traits simultaneously. The average prediction accuracies of the ST, MT1, and MT2 models varied from 0.03 to 0.78 (mean 0.41), from 0.05 to 0.82 (mean 0.47), and from 0.05 to 0.92 (mean 0.67), respectively. The predictive ability of the MT2 model was significantly greater than the ST model in all traits and populations except common bunt with the MT1 model being intermediate between them. The MT2 model increased prediction accuracies over the ST and MT1 models in all traits by 9.0-82.4% (mean 37.3%) and 2.9-82.5% (mean 25.7%), respectively, except common bunt that showed up to 7.7% smaller accuracies in two populations. A joint analysis of all agronomic and disease resistance traits further improved accuracies within the MT1 and MT2 models on average by 21.4% and 17.4%, respectively, as compared to either the agronomic or disease resistance traits, demonstrating the high potential of the multi-traits models in improving prediction accuracies.


Asunto(s)
Resistencia a la Enfermedad , Triticum , Resistencia a la Enfermedad/genética , Genoma , Genómica/métodos , Genotipo , Modelos Genéticos , Fenotipo , Polimorfismo de Nucleótido Simple , Triticum/genética
2.
Theor Appl Genet ; 135(2): 537-552, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34724078

RESUMEN

KEY MESSAGE: Using phenotype data of three spring wheat populations evaluated at 6-15 environments under two management systems, we found moderate to very high prediction accuracies across seven traits. The phenotype data collected under an organic management system effectively predicted the performance of lines in the conventional management and vice versa. There is growing interest in developing wheat cultivars specifically for organic agriculture, but we are not aware of the effect of organic management on the predictive ability of genomic selection (GS). Here, we evaluated within populations prediction accuracies of four GS models, four combinations of training and testing sets, three reaction norm models, and three random cross-validations (CV) schemes in three populations phenotyped under organic and conventional management systems. Our study was based on a total of 578 recombinant inbred lines and varieties from three spring wheat populations, which were evaluated for seven traits at 3-9 conventionally and 3-6 organically managed field environments and genotyped either with the wheat 90 K SNP array or DArTseq. We predicted the management systems (CV0M) or environments (CV0), a subset of lines that have been evaluated in either management (CV2M) or some environments (CV2), and the performance of newly developed lines in either management (CV1M) or environments (CV1). The average prediction accuracies of the model that incorporated genotype × environment interactions with CV0 and CV2 schemes varied from 0.69 to 0.97. In the CV1 and CV1M schemes, prediction accuracies ranged from - 0.12 to 0.77 depending on the reaction norm models, the traits, and populations. In most cases, grain protein showed the highest prediction accuracies. The phenotype data collected under the organic management effectively predicted the performance of lines under conventional management and vice versa. This is the first comprehensive GS study that investigated the effect of the organic management system in wheat.


Asunto(s)
Genómica , Triticum , Genoma de Planta , Genotipo , Fenotipo , Triticum/genética
3.
Theor Appl Genet ; 134(11): 3699-3719, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34333664

RESUMEN

KEY MESSAGE: Using phenotypic data of four biparental spring wheat populations evaluated at multiple environments under two management systems, we discovered 152 QTL and 22 QTL hotspots, of which two QTL accounted for up to 37% and 58% of the phenotypic variance, consistently detected in all environments, and fell within genomic regions harboring known genes. Identification of the physical positions of quantitative trait loci (QTL) would be highly useful for developing functional markers and comparing QTL results across multiple independent studies. The objectives of the present study were to map and characterize QTL associated with nine agronomic and end-use quality traits (tillering ability, plant height, lodging, grain yield, grain protein content, thousand kernel weight, test weight, sedimentation volume, and falling number) in hard red spring wheat recombinant inbred lines (RILs) using the International Wheat Genome Sequencing Consortium (IWGSC) RefSeq v2.0 physical map. We evaluated a total of 698 RILs from four populations derived from crosses involving seven parents at 3-8 conventionally (high N) and organically (low N) managed field environments. Using the phenotypic data combined across all environments per management, and the physical map between 1058 and 6526 markers per population, we identified 152 QTL associated with the nine traits, of which 29 had moderate and 2 with major effects. Forty-nine of the 152 QTL mapped across 22 QTL hotspot regions with each region coincident to 2-6 traits. Some of the QTL hotspots were physically located close to known genes. QSv.dms-1A and QPht.dms-4B.1 individually explained up to 37% and 58% of the variation in sedimentation volume and plant height, respectively, and had very large LOD scores that varied from 19.0 to 35.7 and from 16.7 to 55.9, respectively. We consistently detected both QTL in the combined and all individual environments, laying solid ground for further characterization and possibly for cloning.


Asunto(s)
Mapeo Cromosómico , Sitios de Carácter Cuantitativo , Triticum/genética , Cruzamientos Genéticos , Variación Genética , Genotipo , Fenotipo
4.
Plants (Basel) ; 11(14)2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35890521

RESUMEN

Both the Linear Phenotypic Selection Index (LPSI) and the Restrictive Linear Phenotypic Selection Index (RLPSI) have been widely used to select parents and progenies, but the effect of economic weights on the selection parameters (the expected genetic gain, response to selection, and the correlation between the indices and genetic merits) have not been investigated in detail. Here, we (i) assessed combinations of 2304 economic weights using four traits (maturity, plant height, grain yield and grain protein content) recorded under four organically (low nitrogen) and five conventionally (high nitrogen) managed environments, (ii) compared single-trait and multi-trait selection indices (LPSI vs. RLPSI by imposing restrictions to the expected genetic gain of either yield or grain protein content), and (iii) selected a subset of about 10% spring wheat cultivars that performed very well under organic and/or conventional management systems. The multi-trait selection indices, with and without imposing restrictions, were superior to single trait selection. However, the selection parameters differed quite a lot depending on the economic weights, which suggests the need for optimizing the weights. Twenty-two of the 196 cultivars that showed superior performance under organic and/or conventional management systems were consistently selected using all five of the selected economic weights, and at least two of the selection scenarios. The selected cultivars belonged to the Canada Western Red Spring (16 cultivars), the Canada Northern Hard Red (3), and the Canada Prairie Spring Red (3), and required 83-93 days to maturity, were 72-100 cm tall, and produced from 4.0 to 6.2 t ha-1 grain yield with 14.6-17.7% GPC. The selected cultivars would be highly useful, not only as potential trait donors for breeding under an organic management system, but also for other studies, including nitrogen use efficiency.

5.
J Insect Sci ; 11: 129, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22235942

RESUMEN

The wheat stem sawfly, Cephus cinctus Norton (Hymenoptera: Cephidae), is a key pest of wheat in the northern Great Plains of North America. Host plant resistance in the form of solid-stemmed wheat cultivars is the main control strategy for C. cinctus. This study investigated the effect of novel and traditional solid wheat hosts on the overwintering mortality and cold-hardiness of C. cinctus. Field conditions from 2003-2005 showed that overwintering mortality in various wheat cultivars averaged 8% and was not related to the type of wheat cultivar. Similarly, supercooling points (-22° C) were not influenced by wheat host type. C. cintus are cold-hardy; up to 80% survive 10 days at -20° C and 10% survive 40 days. Its overwintering microhabitat near the crown area of the plant is well insulated for temperatures above -10° C and remains ~ 20° C above ambient minima. These data suggest that winter mortality is a minor factor in the population dynamics of wheat stem sawfly, and despite clear detrimental effects on larval weight and adult fitness, solid-stemmed cultivars do not reduce the ability of larvae to survive winters.


Asunto(s)
Aclimatación , Frío , Interacciones Huésped-Parásitos , Himenópteros/fisiología , Triticum/parasitología , Animales , Femenino , Larva/fisiología , Estaciones del Año
6.
Front Plant Sci ; 11: 89, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32153607

RESUMEN

Early seeding has been suggested as a method of increasing the grain yield and grain yield stability of wheat (Triticum aestivum L.) in the Northern Great Plains. The point at which early seeding results in a decrease in grain yield has not been clearly identified. Changes in climatic conditions have increased frost-free periods and increased temperatures during grain filling, which can either be taken advantage of or avoided by seeding earlier. Field trials were conducted in western Canada from 2015 to 2018 to evaluate an ultra-early wheat planting system based on soil temperature triggers as opposed to calendar dates. Planting began when soil temperatures at 5 cm depth reached 0°C and continued at 2°C intervals until 10°C, regardless of calendar date. Conventional commercial spring wheat genetics and newly identified cold tolerant spring wheat lines were evaluated to determine if ultra-early wheat seeding systems required further development of specialized varieties to maintain system stability. Ultra-early seeding resulted in no detrimental effect on grain yield. Grain yield increased at sites south of 51° latitude N, and was unaffected by ultra-early seeding at sites north of 51° latitude N. Grain protein content, kernel weight, and bulk density were not affected by ultra-early seeding. Optimal seeding time was identified between 2 and 6°C soil temperatures. A greater reduction in grain yield was observed from delaying planting until soils reached 10°C than from seeding into 0°C soils; this was despite extreme environmental conditions after initial seeding, including air temperatures as low as -10.2°C, and as many as 37 nights with air temperatures below 0°C. Wheat emergence ranged from 55 to 70%, and heads m-2 decreased with delayed seeding while heads plant-1 did not change. Cold tolerant wheat lines did not increase stability of the ultra-early wheat seeding system relative to the conventional spring wheat check, and are therefore not required for growers to adopt ultra-early seeding. The results of this study indicate that growers in western Canada can successfully begin seeding wheat earlier, with few changes to their current management practices, and endure less risk than delaying seeding until soil temperatures reach 10°C or greater.

7.
Front Plant Sci ; 11: 568657, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193496

RESUMEN

According to the UN-FAO, agricultural production must increase by 50% by 2050 to meet global demand for food. This goal can be accomplished, in part, by the development of improved cultivars coupled with modern best management practices. Overall, wheat production on farms will have to increase significantly to meet future demand, and in the face of a changing climate that poses risk to even current rates of production. Durum wheat [Triticum turgidum L. ssp. durum (Desf.)] is used largely for pasta, couscous and bulgur production. Durum producers face a range of factors spanning abiotic (frost damage, drought, and sprouting) and biotic (weed, disease, and insect pests) stresses that impact yields and quality specifications desired by export market end-users. Serious biotic threats include Fusarium head blight (FHB) and weed pest pressures, which have increased as a result of herbicide resistance. While genetic progress for yield and quality is on pace with common wheat (Triticum aestivum L.), development of resistant durum cultivars to FHB is still lagging. Thus, successful biotic and abiotic threat mitigation are ideal case studies in Genotype (G) × Environment (E) × Management (M) interactions where superior cultivars (G) are grown in at-risk regions (E) and require unique approaches to management (M) for sustainable durum production. Transformational approaches to research are needed in order for agronomists, breeders and durum producers to overcome production constraints. Designing robust agronomic systems for durum demands scientific creativity and foresight based on a deep understanding of constitutive components and their innumerable interactions with each other and the environment. This encompasses development of durum production systems that suit specific agro-ecozones and close the yield gap between genetic potential and on-farm achieved yield. Advances in individual technologies (e.g., genetic improvements, new pesticides, seeding technologies) are of little benefit until they are melded into resilient G × E × M systems that will flourish in the field under unpredictable conditions of prairie farmlands. We explore how recent genetic progress and selected management innovations can lead to a resilient and transformative durum production system.

8.
Front Plant Sci ; 11: 828, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32612624

RESUMEN

The Wheat Initiative (WI) and the WI Expert Working Group (EWG) for Agronomy (www.wheatinitiative.org) were formed with a collective goal to "coordinate global wheat research efforts to increase wheat production, quality, and sustainability to advance food security and safety under changing climate conditions." The Agronomy EWG is responsive to the WI's research need, "A knowledge exchange strategy to ensure uptake of innovations on farm and to update scientists on changing field realities." The Agronomy EWG aims to consolidate global expertise for agronomy with a focus on wheat production systems. The overarching approach is to develop and adopt a systems-agronomy framework relevant to any wheat production system. It first establishes the scale of current yield gaps, identifies defensible benchmarks, and takes a holistic approach to understand and overcome exploitable yield gaps to complement genetic increases in potential yield. New opportunities to increase productivity will be sought by exploiting future Genotype × Environment × Management synergies in different wheat systems. To identify research gaps and opportunities for collaboration among different wheat producing regions, the EWG compiled a comprehensive database of currently funded wheat agronomy research (n = 782) in countries representing a large proportion of the wheat grown in the world. The yield gap analysis and research database positions the EWG to influence priorities for wheat agronomy research in member countries that would facilitate collaborations, minimize duplication, and maximize the global impact on wheat production systems. This paper outlines a vision for a global WI agronomic research strategy and discusses activities to date. The focus of the WI-EWG is to transform the agronomic research approach in wheat cropping systems, which will be applicable to other crop species.

9.
Front Plant Sci ; 10: 1603, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31867035

RESUMEN

Wheat production is required to supply food for the world's population, and increases in production will be necessary to feed the expanding population. Estimates show that production must increase by 1 billion metric tons to meet this demand. One method to meet future demand is to increase wheat yields by reducing the gap between actual and potential yields. Potential yields represent an optimum set of conditions, and a more realistic metric would be to compare actual yields with attainable yields, where these yields represent years in the record where there is no obvious limitation. This study was conducted to evaluate the yield trends, attainable yields, and yield gaps for the 10 largest wheat producing countries in the world and more localized yield statistics at the state or county level. These data were assembled from available government sources. Attainable yield was determined using an upper quantile analysis to define the upper frontier of yields over the period of record and yield gaps calculated as the difference between attainable yield and actual yield for each year and expressed as a percentage of the attainable yield. In all countries, attainable yield increase over time was larger than the yield trend indicating the technological advances in genetics and agronomic practices were increasing attainable yield. Yield gaps have not shown a decrease over time and reflect that weather during the growing season remains the primary limitation to production. Yield gap closure will require that local producers adopt practices that increase their climate resilience in wheat production systems.

10.
PLoS One ; 12(4): e0175285, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28399136

RESUMEN

Breeding for solid-stemmed durum (Triticum turgidum L. var durum) and common wheat (Triticum aestivum L.) cultivars is one strategy to minimize yield losses caused by the wheat stem sawfly (Cephus cinctus Norton). Major stem-solidness QTL have been localized to the long arm of chromosome 3B in both wheat species, but it is unclear if these QTL span a common genetic interval. In this study, we have improved the resolution of the QTL on chromosome 3B in a durum (Kofa/W9262-260D3) and common wheat (Lillian/Vesper) mapping population. Coincident QTL (LOD = 94-127, R2 = 78-92%) were localized near the telomere of chromosome 3BL in both mapping populations, which we designate SSt1. We further examined the SSt1 interval by using available consensus maps for durum and common wheat and compared genetic to physical intervals by anchoring markers to the current version of the wild emmer wheat (WEW) reference sequence. These results suggest that the SSt1 interval spans a physical distance of 1.6 Mb in WEW (positions 833.4-835.0 Mb). In addition, minor QTL were identified on chromosomes 2A, 2D, 4A, and 5A that were found to synergistically enhance expression of SSt1 to increase stem-solidness. These results suggest that developing new wheat cultivars with improved stem-solidness is possible by combining SSt1 with favorable alleles at minor loci within both wheat species.


Asunto(s)
Genes de Plantas , Haplotipos , Triticum/genética , Sitios de Carácter Cuantitativo , Especificidad de la Especie , Triticum/clasificación
12.
Oecologia ; 156(3): 505-13, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18327615

RESUMEN

Fluctuating asymmetry (FA) may be a sensitive indicator of the stress experienced by organisms during their development. Its use in this manner is an intuitively appealing, frequently proposed, and potentially powerful tool but remains controversial partially because its underlying premise rarely has been critically tested. Such tests should include direct comparisons among individuals for which levels of FA, stress and fitness have been unambiguously quantified. We assessed the use of FA as a bioindicator of the stress experienced during egg-to-adult development by the stem-mining sawfly, Cephus cinctus Norton. Sawflies were reared in a common garden from seven different wheat cultivars, which were selected to represent a gradient of stem solidness, a key factor imposing stress on sawflies during development. In this model system, stress was quantified by the weight of emergent adults. Fitness was quantified by counting the number of eggs in dissected females, which emerge with their full lifetime complement. FA was measured for wing length, three wing cells, and three wing veins using image analyses. The greatest amount of stress was induced by solid-stemmed cultivars from which the adults were significantly smaller than those developing in hollow-stemmed hosts. In turn, adult weight was positively correlated with fitness. The net effect was a 25-fold variation in sawfly fitness, which gave a reasonable expectation that FA levels would differ across cultivars. However, FA levels of all the traits were similar among cultivars and there was no negative relationship between FA and fitness. These results: (1) document the failure of FA as an indicator of stress in this model system, (2) identify adult weight as a satisfactory indicator of plant-induced stress and sawfly fitness, and (3) add to the growing body of literature questioning the value of FA as a biomonitor tool of developmental stress.


Asunto(s)
Himenópteros/fisiología , Modelos Biológicos , Triticum/fisiología , Análisis de Varianza , Animales , Peso Corporal , Femenino , Fertilidad , Himenópteros/crecimiento & desarrollo , Tallos de la Planta/parasitología , Triticum/parasitología , Alas de Animales/anatomía & histología , Alas de Animales/crecimiento & desarrollo
13.
Environ Biosafety Res ; 6(4): 249-57, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-18289500

RESUMEN

Development of transgenic triticale as a platform for novel bio-industrial products is predicated on an environmental biosafety assessment that quantifies the potential risks associated with its release. Pollen-mediated gene flow to related species and conventional triticale varieties is one pathway for transgene movement. A tier 1 quantification of triticale hybridization was conducted by emasculating and hand pollinating flowers under greenhouse conditions. Approximately 2000 manual pollinations were conducted for each cross and its reciprocal between two triticale genotypes: a modern triticale cultivar (AC Alta) and primary triticale (89TT108), and common wheat, durum wheat and rye. The frequency of outcrossing, hybrid seed appearance and weight, and F(1) emergence and fertility were recorded. Outcrossing, F(1) emergence and fertility rates were high from crosses between triticale genotypes. Outcrossing in inter-specific crosses was influenced by the species, and the genotype and gender of the triticale parent. In crosses to common and durum wheat where triticale was the male parent, outcrossing was > or =73.0% and > or =69.5%, respectively, but < or =23.9% and < or =3.0% when triticale was the female parent. Overall, outcrossing with rye was lower than with common and durum wheat. F(1) hybrid emergence was greater when triticale was the female parent. With the exception of a single seed, all wheat-triticale F(1) hybrid seeds were non-viable when triticale was the male parent in the cross. Only seven durum wheat-triticale F(1) hybrids emerged from 163 seeds sown, and all were produced with triticale 89TT108 as female parent. With rye, 8 F(1) hybrids emerged from 38 seeds sown, and all were produced from crosses to AC Alta; five with AC Alta as the female parent and three as the male. Interspecific F(1) hybrids were self-sterile, with the exception of those produced in crosses between common wheat and triticale where triticale was the female parent. Tier 2 hybridization quantification will be conducted under field conditions.


Asunto(s)
Cruzamientos Genéticos , Grano Comestible/genética , Hibridación Genética , Productos Agrícolas/genética , Flujo Génico , Infertilidad Vegetal , Secale/genética , Semillas/genética , Semillas/crecimiento & desarrollo , Triticum/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA