Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 296: 100299, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33460651

RESUMEN

The human Gb3/CD77 synthase, encoded by the A4GALT gene, is an unusually promiscuous glycosyltransferase. It synthesizes the Galα1→4Gal linkage on two different glycosphingolipids (GSLs), producing globotriaosylceramide (Gb3, CD77, Pk) and the P1 antigen. Gb3 is the major receptor for Shiga toxins (Stxs) produced by enterohemorrhagic Escherichia coli. A single amino acid substitution (p.Q211E) ramps up the enzyme's promiscuity, rendering it able to attach Gal both to another Gal residue and to GalNAc, giving rise to NOR1 and NOR2 GSLs. Human Gb3/CD77 synthase was long believed to transfer Gal only to GSL acceptors, therefore its GSL products were, by default, considered the only human Stx receptors. Here, using soluble, recombinant human Gb3/CD77 synthase and p.Q211E mutein, we demonstrate that both enzymes can synthesize the P1 glycotope (terminal Galα1→4Galß1→4GlcNAc-R) on a complex type N-glycan and a synthetic N-glycoprotein (saposin D). Moreover, by transfection of CHO-Lec2 cells with vectors encoding human Gb3/CD77 synthase and its p.Q211E mutein, we demonstrate that both enzymes produce P1 glycotopes on N-glycoproteins, with the mutein exhibiting elevated activity. These P1-terminated N-glycoproteins are recognized by Stx1 but not Stx2 B subunits. Finally, cytotoxicity assays show that Stx1 can use P1 N-glycoproteins produced in CHO-Lec2 cells as functional receptors. We conclude that Stx1 can recognize and use P1 N-glycoproteins in addition to its canonical GSL receptors to enter and kill the cells, while Stx2 can use GSLs only. Collectively, these results may have important implications for our understanding of the Shiga toxin pathology.


Asunto(s)
Galactosiltransferasas/química , Globósidos/química , Toxina Shiga I/química , Trihexosilceramidas/química , Acetilgalactosamina/química , Acetilgalactosamina/metabolismo , Acetilglucosamina/química , Acetilglucosamina/metabolismo , Animales , Sitios de Unión , Células CHO , Secuencia de Carbohidratos , Cricetulus , Escherichia coli Enterohemorrágica/química , Escherichia coli Enterohemorrágica/patogenicidad , Galactosa/química , Galactosa/metabolismo , Galactosiltransferasas/genética , Galactosiltransferasas/metabolismo , Expresión Génica , Globósidos/biosíntesis , Globósidos/metabolismo , Glucosa/química , Glucosa/metabolismo , Humanos , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Toxina Shiga I/metabolismo , Toxina Shiga II/química , Toxina Shiga II/metabolismo , Trihexosilceramidas/biosíntesis
2.
Glycobiology ; 31(9): 1145-1162, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-33978735

RESUMEN

N-glycosylation is a ubiquitous posttranslational modification that may influence folding, subcellular localization, secretion, solubility and oligomerization of proteins. In this study, we examined the effects of N-glycans on the activity of human Gb3/CD77 synthase, which catalyzes the synthesis of glycosphingolipids with terminal Galα1→4Gal (Gb3 and the P1 antigen) and Galα1→4GalNAc disaccharides (the NOR antigen). The human Gb3/CD77 synthase contains two occupied N-glycosylation sites at positions N121 and N203. Intriguingly, we found that while the N-glycan at N203 is essential for activity and correct subcellular localization, the N-glycan at N121 is dispensable and its absence did not reduce, but, surprisingly, even increased the activity of the enzyme. The fully N-glycosylated human Gb3/CD77 synthase and its glycoform missing the N121 glycan correctly localized in the Golgi, whereas a glycoform without the N203 site partially mislocalized in the endoplasmic reticulum. A double mutein missing both N-glycans was inactive and accumulated in the endoplasmic reticulum. Our results suggest that the decreased specific activity of human Gb3/CD77 synthase glycovariants resulted from their improper subcellular localization and, to a smaller degree, a decrease in enzyme solubility. Taken together, our findings show that the two N-glycans of human Gb3/CD77 synthase have opposing effects on its properties, revealing a dual nature of N-glycosylation and potentially a novel regulatory mechanism controlling the biological activity of proteins.


Asunto(s)
Galactosiltransferasas , Glicoesfingolípidos , Galactosiltransferasas/metabolismo , Glicosilación , Humanos , Polisacáridos , Trihexosilceramidas
3.
Int J Mol Sci ; 22(18)2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34575935

RESUMEN

Most glycosyltransferases show remarkable gross and fine substrate specificity, which is reflected in the old one enzyme-one linkage paradigm. While human Gb3/CD77 synthase is a glycosyltransferase that synthesizes the Galα1→4Gal moiety mainly on glycosphingolipids, its pigeon homolog prefers glycoproteins as acceptors. In this study, we characterized two Gb3/CD77 synthase paralogs found in pigeons (Columba livia). We evaluated their specificities in transfected human teratocarcinoma 2102Ep cells by flow cytofluorometry, Western blotting, high-performance thin-layer chromatography, mass spectrometry and metabolic labelling with 14C-galactose. We found that the previously described pigeon Gb3/CD77 synthase (called P) can use predominately glycoproteins as acceptors, while its paralog (called M), which we serendipitously discovered while conducting this study, efficiently synthesizes Galα1→4Gal caps on both glycoproteins and glycosphingolipids. These two paralogs may underlie the difference in expression profiles of Galα1→4Gal-terminated glycoconjugates between neoavians and mammals.


Asunto(s)
Aves/metabolismo , Galactosiltransferasas/metabolismo , Glicoproteínas/metabolismo , Glicoesfingolípidos/metabolismo , Animales , Galactosiltransferasas/genética , Expresión Génica , Glicoproteínas/genética , Glicosilación , Humanos , Especificidad por Sustrato
4.
Front Microbiol ; 13: 958653, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36060781

RESUMEN

Glycosphingolipids (GSLs) are ubiquitous components of the cell membranes, found across several kingdoms of life, from bacteria to mammals, including humans. GSLs are a subclass of major glycolipids occurring in animal lipid membranes in clusters named "lipid rafts." The most crucial functions of GSLs include signal transduction and regulation as well as participation in cell proliferation. Despite the mainstream view that pathogens rely on protein-protein interactions to survive and thrive in their hosts, many also target the host lipids. In particular, multiple pathogens produce adhesion molecules or toxins that bind GSLs. Attachment of pathogens to cell surface receptors is the initial step in infections. Many mammalian pathogens have evolved to recognize GSL-derived receptors. Animal glycosphingolipidomes consist of multiple types of GSLs differing in terminal glycan and ceramide structures in a cell or tissue-specific manner. Interspecies differences in GSLs dictate host specificity as well as cell and tissue tropisms. Evolutionary pressure exerted by pathogens on their hosts drives changes in cell surface glycoconjugates, including GSLs, and has produced a vast number of molecules and interaction mechanisms. Despite that abundance, the role of GSLs as pathogen receptors has been largely overlooked or only cursorily discussed. In this review, we take a closer look at GSLs and their role in the recognition, cellular entry, and toxicity of multiple bacterial, viral and fungal pathogens.

5.
Int J Biol Macromol ; 183: 852-860, 2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-33932416

RESUMEN

Growing antibiotic resistance of bacteria is a burning problem of human and veterinary medicine. Expansion and introduction of novel microbicidal therapeutics is highly desirable. However, antibiotic treatment disturbs the balance of physiological microbiota by changing its qualitative and/or quantitative composition, resulting in a number of adverse effects that include secondary infections. Although such dysbiosis may be reversed by the treatment with probiotics, a more attractive alternative is the use of antibiotics that target only pathogens, while sparing the commensals. Here, we describe lysostaphin LSp222, an enzyme produced naturally by Staphylococcus pseudintermedius 222. LSp222 is highly effective against S. aureus, including its multi-drug resistant strains. Importantly, the inhibitory concentration for S. epidermidis, the predominant commensal in healthy human skin, is at least two orders of magnitude higher compared to S. aureus. Such significant therapeutic window makes LSp222 a microbiota-friendly antibacterial agent with a potential application in the treatment of S. aureus-driven skin infections.


Asunto(s)
Lisostafina/farmacología , Microbiota/efectos de los fármacos , Piel/microbiología , Staphylococcus/enzimología , Farmacorresistencia Bacteriana/efectos de los fármacos , Humanos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Piel/efectos de los fármacos , Staphylococcus epidermidis/efectos de los fármacos
6.
PLoS One ; 13(4): e0196627, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29709005

RESUMEN

Contrary to the mainstream blood group systems, P1PK continues to puzzle and generate controversies over its molecular background. The P1PK system comprises three glycosphingolipid antigens: Pk, P1 and NOR, all synthesised by a glycosyltransferase called Gb3/CD77 synthase. The Pk antigen is present in most individuals, whereas P1 frequency is lesser and varies regionally, thus underlying two common phenotypes: P1, if the P1 antigen is present, and P2, when P1 is absent. Null and NOR phenotypes are extremely rare. To date, several single nucleotide polymorphisms (SNPs) have been proposed to predict the P1/P2 status, but it has not been clear how important they are in general and in relation to each other, nor has it been clear how synthesis of NOR affects the P1 phenotype. Here, we quantitatively analysed the phenotypes and A4GALT transcription in relation to the previously proposed SNPs in a sample of 109 individuals, and addressed potential P1 antigen level confounders, most notably the red cell membrane cholesterol content. While all the SNPs were associated with the P1/P2 blood type and rs5751348 was the most reliable, we found large differences in P1 level within groups defined by their genotype and substantial intercohort overlaps, which shows that the P1PK blood group system still eludes full understanding.


Asunto(s)
Antígenos de Grupos Sanguíneos/genética , Galactosiltransferasas/genética , Globósidos/genética , Polimorfismo de Nucleótido Simple , Anticuerpos/química , Colesterol/química , Citometría de Flujo , Genotipo , Glicoesfingolípidos/química , Homocigoto , Humanos , Lípidos/química , Fenotipo , Reacción en Cadena en Tiempo Real de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA