RESUMEN
PURPOSE: Triglycerides (TG) and their major transport lipoprotein in the circulation (VLDL) appear to be related to inflammation. Patients with common variable immunodeficiency (CVID) have inflammatory complications associated with gut microbial dysbiosis. We hypothesized that CVID patients have disturbed TG/VLDL profiles associated with these clinical characteristics. METHODS: We measured plasma concentrations of TGs, inflammatory markers, and lipopolysaccharide (LPS) in 95 CVID patients and 28 healthy controls. Additionally, in 40 CVID patients, we explored plasma lipoprotein profiling, fatty acid, gut microbial dysbiosis, and diet. RESULTS: TG levels were increased in CVID patients as compared to healthy controls (1.36 ± 0.53 mmol/l versus 1.08 ± 0.56 [mean, SD], respectively, P = 0.008), particularly in the clinical subgroup "Complications," characterized by autoimmunity and organ-specific inflammation, compared to "Infection only" (1.41 mmol/l, 0.71[median, IQR] versus [1.02 mmol/l, 0.50], P = 0.021). Lipoprotein profile analyses showed increased levels of all sizes of VLDL particles in CVID patients compared to controls. TG levels correlated positively with CRP (rho = 0.256, P = 0.015), IL-6 (rho = 0.237, P = 0.021), IL-12 (rho = 0.265, P = 0.009), LPS (r = 0.654, P = 6.59 × 10-13), CVID-specific gut dysbiosis index (r = 0.315, P = 0.048), and inversely with a favorable fatty acid profile (docosahexaenoic acid [rho = - 0.369, P = 0.021] and linoleic acid [rho = - 0.375, P = 0.019]). TGs and VLDL lipids did not appear to be associated with diet and there were no differences in body mass index (BMI) between CVID patients and controls. CONCLUSION: We found increased plasma levels of TGs and all sizes of VLDL particles, which were associated with systemic inflammation, LPS, and gut dysbiosis in CVID, but not diet or BMI.
Asunto(s)
Inmunodeficiencia Variable Común , Lipopolisacáridos , Humanos , Disbiosis , Lipoproteínas , Triglicéridos , Inflamación , Ácidos GrasosRESUMEN
BACKGROUND: Elevated plasma methylmalonic acid (MMA) is reported in patients with established coronary heart disease (CHD) and is considered a marker of vitamin B12 deficiency. Moreover, MMA-dependent reactions have been linked to alterations in mitochondrial energy metabolism and oxidative stress, key features in the pathophysiology of cardiovascular diseases (CVDs). OBJECTIVES: We examined whether plasma MMA prospectively predicted the long-term risk of acute myocardial infarction (AMI) and mortality. METHODS AND RESULTS: Using Cox modeling, we estimated hazard ratios (HRs) for endpoints according to per 1-SD increment of log-transformed plasma MMA in two independent populations: the Western Norway Coronary Angiography Cohort (WECAC) (patients evaluated for CHD; n = 4137) and the Norwegian Vitamin Trial (NORVIT) (patients hospitalized with AMI; n = 3525). In WECAC and NORVIT, 12.8% and 18.0% experienced an AMI, whereas 21.8% and 19.9% died, of whom 45.5% and 60.3% from CVD-related causes during follow-up (range 3-11 years), respectively. In WECAC, age- and gender-adjusted HRs (95% confidence interval) were 1.18 (1.09-1.28), 1.25 (1.18-1.33), and 1.28 (1.17-1.40) for future AMI, total mortality, and CVD mortality, respectively. Corresponding risk estimates were 1.19 (1.10-1.28), 1.22 (1.14-1.31), and 1.30 (1.19-1.42) in NORVIT. These estimates were only slightly attenuated after multivariable adjustments. Across both cohorts, the MMA-risk association was stronger in older adults, women, and non-smokers. CONCLUSIONS: Elevated MMA was associated with an increased risk of AMI and mortality in patients with suspected or verified CHD.
Asunto(s)
Enfermedad Coronaria , Infarto del Miocardio , Humanos , Femenino , Anciano , Ácido Metilmalónico , Estudios de Cohortes , Estudios Prospectivos , Biomarcadores , Factores de RiesgoRESUMEN
Altered hepatic mitochondrial fatty acid ß-oxidation and associated tricarboxylic acid (TCA) cycle activity contributes to lifestyle-related diseases, and circulating biomarkers reflecting these changes could have disease prognostic value. This study aimed to determine hepatic and systemic changes in TCA-cycle-related metabolites upon the selective pharmacologic enhancement of mitochondrial fatty acid ß-oxidation in the liver, and to elucidate the mechanisms and potential markers of hepatic mitochondrial activity. Male Wistar rats were treated with 3-thia fatty acids (e.g., tetradecylthioacetic acid (TTA)), which target mitochondrial biogenesis, mitochondrial fatty acid ß-oxidation, and ketogenesis predominantly in the liver. Hepatic and plasma concentrations of TCA cycle intermediates and anaplerotic substrates (LC-MS/MS), plasma ketones (colorimetric assay), and acylcarnitines (HPLC-MS/MS), along with associated TCA-cycle-related gene expression (qPCR) and enzyme activities, were determined. TTA-induced hepatic fatty acid ß-oxidation resulted in an increased ratio of plasma ketone bodies/nonesterified fatty acid (NEFA), lower plasma malonyl-CoA levels, and a higher ratio of plasma acetylcarnitine/palmitoylcarnitine (C2/C16). These changes were associated with decreased hepatic and increased plasma pyruvate concentrations, and increased plasma concentrations of succinate, malate, and 2-hydroxyglutarate. Expression of several genes encoding TCA cycle enzymes and the malate-oxoglutarate carrier (Slc25a11), glutamate dehydrogenase (Gdh), and malic enzyme (Mdh1 and Mdh2) were significantly increased. In conclusion, the induction of hepatic mitochondrial fatty acid ß-oxidation by 3-thia fatty acids lowered hepatic pyruvate while increasing plasma pyruvate, as well as succinate, malate, and 2-hydroxyglutarate.
Asunto(s)
Malatos , Ácido Pirúvico , Ratas , Animales , Masculino , Ratas Wistar , Malatos/metabolismo , Ácido Pirúvico/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem , Hígado/metabolismo , Ácidos Grasos/metabolismo , Oxidación-Reducción , Cuerpos Cetónicos/metabolismo , Succinatos/metabolismoRESUMEN
PURPOSE: Fatty acid (FA) abnormalities are found in various inflammatory disorders and have been related to disturbed gut microbiota. Patients with common variable immunodeficiency (CVID) have inflammatory complications associated with altered gut microbial composition. We hypothesized that there is an altered FA profile in CVID patients, related to gut microbial dysbiosis. METHODS: Plasma FAs were measured in 39 CVID patients and 30 healthy controls. Gut microbial profile, a food frequency questionnaire, and the effect of the oral antibiotic rifaximin were investigated in CVID patients. RESULTS: The n-3 polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA) (1.4 [1.0-1.8] vs. 1.9 [1.2-2.5], median (IQR), P < 0.05), and docosahexaenoic acid (DHA) (3.2 [2.4-3.9] vs. 3.5 [2.9-4.3], P < 0.05), all values expressed as weight percent of total plasma FAs, were reduced in CVID compared to controls. Also, n-6 PUFAs (34.3 ± 3.4 vs. 37.1 ± 2.8, mean ± SD, P < 0.001) and linoleic acid (LA) (24.5 ± 3.3 vs. 28.1 ± 2.7, P < 0.0001) and the FA anti-inflammatory index (98.9 [82.1-119.4] vs. 117.0 [88.7-153.1], median (IQR), P < 0.05) were reduced in CVID. The microbial alpha diversity was positively associated with plasma n-6 PUFAs (r = 0.41, P < 0.001) and LA (r = 0.51, P < 0.001), but not n-3 PUFAs (P = 0.78). Moreover, a 2-week course of rifaximin significantly reduced the proportion of n-6 PUFAs (P = 0.04, UNIANOVA). Serum immunoglobulin G (IgG) levels correlated with plasma n-3 PUFAs (rho = 0.36, P = 0.03) and DHA (rho = 0.41, P = 0.009). CONCLUSION: We found a potentially unfavorable FA profile in CVID, related to low IgG levels. High plasma n-6 PUFAs were related to increased gut microbial diversity and altered by rifaximin therapy.
Asunto(s)
Inmunodeficiencia Variable Común , Ácidos Grasos Omega-3 , Microbioma Gastrointestinal , Inmunodeficiencia Variable Común/tratamiento farmacológico , Ácidos Grasos/farmacología , Ácidos Grasos Omega-3/farmacología , Ácidos Grasos Omega-6/farmacología , HumanosRESUMEN
This study investigated the effect of 50% diet restriction and its coadministration with krill oil (KO) or fish oil (FO) on glucose tolerance and insulin sensitivity in a rabbit model of obesity. Castrated male rabbits were 50% restricted fed and supplemented with KO or FO (600 mg omega-3 polyunsaturated fatty acids/daily) for 2 months. Simultaneously, two control groups were used: castrated, full-diet-fed and castrated, 50% restricted fed rabbits without additives restricted group (RG). The energy-restricted diet decreased final body weight in castrated male rabbits and improved most insulin sensitivity and ß-cell function indexes. Combining the same diet and KO or FO, further reduced fasting blood glucose levels. However, this feed regime significantly accelerated insulin secretion and reduced gene expression of insulin receptor substrate-1, pyruvate kinase and 3-hydroxy-3-methylglutaryl-CoA synthase 2. This was manifested by reduced dynamic insulin sensitivity, assessment homoeostasis-ß-cell function indices and increased glucose elimination rate to levels comparable to or above the obese animals. Aspartate and alanine aminotransferases enzyme activities were raised more than those in the obese group. Surprisingly, KO and FO administration downregulated acetyl-coenzyme A oxidase and carnitine palmitoyltransferase 2 messenger RNA gene expression compared to the RG. In conclusion, we can assume that a better effect on insulin sensitivity and glucose tolerance was observed in the diet restriction alone than in the coadministration of KO or FO when animals are exposed to highly obesity predisposing factors. These effects could be at least in part ascribed to the modified gene expression levels of some critical enzymes and factors involved in liver glucose metabolism and ß-oxidation.
Asunto(s)
Euphausiacea , Resistencia a la Insulina , Conejos , Masculino , Animales , Aceites de Pescado/farmacología , Obesidad/metabolismo , Obesidad/veterinaria , Insulina , Hígado/metabolismo , Castración/veterinaria , Dieta , Glucosa/metabolismoRESUMEN
BACKGROUND: Low-carbohydrate diets are suggested to exert metabolic benefits by reducing circulating triacylglycerol (TG) concentrations, possibly by enhancing mitochondrial activity. OBJECTIVE: We aimed to elucidate mechanisms by which dietary carbohydrate and fat differentially affect hepatic and circulating TG, and how these mechanisms relate to fatty acid composition. METHODS: Six-week-old, â¼300 g male Wistar rats were fed a high-carbohydrate, low-fat [HC; 61.3% of energy (E%) carbohydrate] or a low-carbohydrate, high-fat (HF; 63.5 E% fat) diet for 4 wk. Parameters of lipid metabolism and mitochondrial function were measured in plasma and liver, with fatty acid composition (GC), high-energy phosphates (HPLC), carnitine metabolites (HPLC-MS/MS), and hepatic gene expression (qPCR) as main outcomes. RESULTS: In HC-fed rats, plasma TG was double and hepatic TG 27% of that in HF-fed rats. The proportion of oleic acid (18:1n-9) was 60% higher after HF vs. HC feeding while the proportion of palmitoleic acid (16:1n-7) and vaccenic acid (18:1n-7), and estimated activities of stearoyl-CoA desaturase, SCD-16 (16:1n-7/16:0), and de novo lipogenesis (16:0/18:2n-6) were 1.5-7.5-fold in HC vs. HF-fed rats. Accordingly, hepatic expression of fatty acid synthase (Fasn) and acetyl-CoA carboxylase (Acaca/Acc) was strongly upregulated after HC feeding, accompanied with 8-fold higher FAS activity and doubled ACC activity. There were no differences in expression of liver-specific biomarkers of mitochondrial biogenesis and activity (Cytc, Tfam, Cpt1, Cpt2, Ucp2, Hmgcs2); concentrations of ATP, AMP, and energy charge; plasma carnitine/acylcarnitine metabolites; or peroxisomal fatty acid oxidation. CONCLUSIONS: In male Wistar rats, dietary carbohydrate was converted into specific fatty acids via hepatic lipogenesis, contributing to higher plasma TG and total fatty acids compared with high-fat feeding. In contrast, the high-fat, low-carbohydrate feeding increased hepatic fatty acid content, without affecting hepatic mitochondrial fatty acid oxidation.
Asunto(s)
Dieta Alta en Grasa , Lipidómica , Animales , Carbohidratos de la Dieta/metabolismo , Metabolismo Energético , Ácidos Grasos/metabolismo , Lipogénesis , Hígado/metabolismo , Masculino , Ratas , Ratas Wistar , Espectrometría de Masas en Tándem , Triglicéridos/metabolismoRESUMEN
The effect of omega-3 polyunsaturated fatty acid supplements in patients with psoriasis vulgaris has previously been investigated, but interventions varied in source, composition, dose, administration route and duration of treatment. The observed beneficial effects in patients with psoriasis vulgaris using herring roe oil as a dietary supplement prompted this investigation. This randomised, double-blind and placebo-controlled study was designed and performed to explore the efficacy and safety of herring roe oil supplementation in 64 patients with plaque psoriasis (ClinicalTrials.gov: NCT03359577). The primary end-point was comparing the change in mean Psoriasis Area Severity Index (PASI) scores in the herring roe oil treatment group and the placebo group from baseline to week 26. In the intention-to-treat population, a statistically significant improvement in the mean PASI score was observed with herring roe oil compared to placebo at 26 weeks. In the recruited patient group, the measured improvement was greatest in patients with a PASI score from 5.5-9.9 at baseline.
Asunto(s)
Suplementos Dietéticos , Aceites de Pescado/administración & dosificación , Psoriasis/tratamiento farmacológico , Piel/efectos de los fármacos , Administración Oral , Adulto , Anciano , Cápsulas , Suplementos Dietéticos/efectos adversos , Método Doble Ciego , Femenino , Aceites de Pescado/efectos adversos , Humanos , Masculino , Persona de Mediana Edad , Noruega , Psoriasis/diagnóstico , Índice de Severidad de la Enfermedad , Piel/patología , Factores de Tiempo , Resultado del TratamientoRESUMEN
BACKGROUND: Non-alcoholic fatty liver disease is often associated with obesity, insulin resistance, dyslipidemia, and the metabolic syndrome in addition to mitochondrial dysfunction and nicotinamide adenine dinucleotide (NAD+) deficiency. The aim of this study was to investigate how inhibition of mitochondrial fatty acid oxidation using the compound tetradecylthiopropionic acid (TTP) would affect hepatic triacylglycerol level and plasma levels of kynurenine (Kyn) metabolites and nicotinamide. METHODS: 12 C57BL/6 mice were fed a control diet, or an intervention diet supplemented with 0.9% (w/w) tetradecylthiopropionic acid for 14 days. Blood and liver samples were collected, enzyme activities and gene expression were analyzed in liver, in addition to fatty acid composition. Metabolites in the tryptophan/kynurenine pathway and total antioxidant status were measured in plasma. RESULTS: Dietary treatment with tetradecylthiopropionic acid for 2 weeks induced fatty liver accompanied by decreased mitochondrial fatty acid oxidation. The liver content of the oxidized form of NAD+ was increased, as well as the ratio of NAD+/NADH, and these changes were associated by increased hepatic mRNA levels of NAD synthetase and nicotinamide mononucleotide adenyltransferase-3. The downstream metabolites of kynurenine were reduced in plasma whereas the plasma nicotinamide content was increased. Some effects on inflammation and oxidative stress was observed in the liver, while the plasma antioxidant capacity was increased. This was accompanied by a reduced plasma ratio of kynurenine/tryptophan. In addition, a significant decrease in the inflammation-related arachidonic fatty acid in liver was observed. CONCLUSION: Fatty liver induced by short-time treatment with tetradecylthiopropionic acid decreased the levels of kynurenine metabolites but increased the plasma levels of NAD+ and nicotinamide. These changes are most likely not associated with increased inflammation and oxidative stress. Most probably the increase of NAD+ and nicotinamide are generated through the Preiss Handler pathway and/or salvage pathway and not through the de novo pathway. The take home message is that non-alcoholic fatty liver disease is associated with the metabolic syndrome in addition to mitochondrial dysfunction and nicotinamide adenine dinucleotide (NAD+) deficiency. Inducing fatty liver in mice by inhibition of fatty acid oxidation resulted in a concomitant change in kynurenine metabolites increasing the plasma levels of nicotinamides and the hepatic NAD+/NADH ratio, probably without affecting the de novo pathway of kynurenines.
Asunto(s)
Quinurenina/metabolismo , Hígado/metabolismo , NAD/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Triglicéridos/análisis , Animales , Ácido Araquidónico/análisis , Modelos Animales de Enfermedad , Inflamación , Quinurenina/sangre , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/sangre , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Estrés Oxidativo , Propionatos/toxicidad , Sulfuros/toxicidad , Triptófano/sangre , Triptófano/metabolismoRESUMEN
OBJECTIVES: Polycystic ovary syndrome (PCOS) is associated with an increased cardiometabolic risk that might not necessarily translate into adverse cardiovascular outcome later in life. Recently, alterations in gut microbial composition have been reported in the syndrome. Microbiota-dependent metabolite trimethylamine N-oxide (TMAO) and its precursors are closely linked with development of atherosclerotic cardiovascular disease, independently of traditional risk factors. We aimed to assess whether TMAO and its precursors are altered in PCOS and to determine potential impact of treatment on these metabolites. DESIGN: Prospective study. PATIENTS: Twenty-seven overweight/obese patients with PCOS and 25 age- and BMI-matched healthy control women. MEASUREMENTS: At baseline, fasting serum TMAO and its precursors were measured after a 3-day standardized diet. Patients received 3-month OC therapy along with general dietary advice after which all measurements were repeated. RESULTS: Patients had higher total testosterone (T) and free androgen index (FAI) whereas whole-body fat mass, fasting plasma glucose, insulin and lipids were similar between the groups. PCOS group showed significantly higher serum levels of TMAO and its precursors; choline, betaine and carnitine. TMAO and choline showed correlations with T. After 3 months of OC use, TMAO and its precursors significantly decreased along with reductions in BMI, T and FAI. CONCLUSIONS: This study reports for the first time that TMAO and its precursors are elevated in PCOS which might contribute to increased cardiometabolic risk of the syndrome and that short-term OC use along with lifestyle intervention is associated with reduction of these microbiome-dependent metabolites.
Asunto(s)
Enfermedades Cardiovasculares/sangre , Microbioma Gastrointestinal/fisiología , Metilaminas/sangre , Síndrome del Ovario Poliquístico/sangre , Adolescente , Adulto , Betaína/análogos & derivados , Betaína/sangre , Glucemia/metabolismo , Carnitina/sangre , Colina/sangre , Femenino , Humanos , Obesidad/sangre , Estudios Prospectivos , Factores de Riesgo , Testosterona/sangre , Adulto JovenRESUMEN
BACKGROUND: Antipsychotic drugs can negatively affect the metabolic status of patients, with olanzapine as one of the most potent drugs. While patients are often medicated for long time periods, experiments in rats typically run for 1 to 12 weeks, showing olanzapine-related weight gain and increased plasma lipid levels, with transcriptional upregulation of lipogenic genes in liver and adipose tissue. It remains unknown whether metabolic status will deteriorate with time. METHODS: To examine long-term metabolic effects, we administered intramuscular long-acting injections of olanzapine (100 mg/kg BW) or control substance to female rats for up to 13 months. RESULTS: Exposure to olanzapine long-acting injections led to rapid weight gain, which was sustained throughout the experiment. At 1, 6, and 13 months, plasma lipid levels were measured in separate cohorts of rats, displaying no increase. Hepatic transcription of lipid-related genes was transiently upregulated at 1 month. Glucose and insulin tolerance tests indicated insulin resistance in olanzapine-treated rats after 12 months. CONCLUSION: Our data show that the continuous increase in body weight in response to long-term olanzapine exposure was accompanied by surprisingly few concomitant changes in plasma lipids and lipogenic gene expression, suggesting that adaptive mechanisms are involved to reduce long-term metabolic adverse effects of this antipsychotic agent in rats.
Asunto(s)
Antipsicóticos/efectos adversos , Lípidos/sangre , Olanzapina/efectos adversos , Aumento de Peso/efectos de los fármacos , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Animales no Consanguíneos , Antipsicóticos/sangre , Antipsicóticos/farmacología , Glucemia/efectos de los fármacos , Femenino , Prueba de Tolerancia a la Glucosa , Inyecciones Intramusculares , Insulina/metabolismo , Resistencia a la Insulina , Hígado/efectos de los fármacos , Hígado/metabolismo , Olanzapina/sangre , Olanzapina/farmacología , Distribución Aleatoria , Ratas Sprague-Dawley , Factores de TiempoRESUMEN
Plasma concentrations of metabolites along the choline oxidation and tryptophan degradation pathways have been linked to lifestyle diseases and dietary habits. This study aimed to investigate how krill oil, a source of ω-3 polyunsaturated fatty acids (PUFAs) with a high phosphatidylcholine content, affected these parameters. The pilot study was conducted as a 28 days intervention in 17 healthy volunteers (18-36 years), who received a supplement of 4.5 g krill oil per day, providing 833 mg ω-3 PUFAs, and 1750 mg phosphatidylcholine. Krill oil supplementation increased fasting plasma choline (+28.4%, p < .001), betaine (+26.6%, p < .001), dimethylglycine (+33.7%, p < .001) and sarcosine (+16.8%, p < .001), whereas no statistically significant changes were seen for plasma glycine, serine, methionine, total homocysteine, cysteine, cystathionine, methionine sulfoxide, folate, cobalamin, B2-, B3-, and B6 vitamers, tryptophan, kynurenines, nicotinamide, vitamin A and vitamin E. In summary, krill oil supplementation influenced choline metabolite levels, but not plasma metabolites of the tryptophan-kynurenine-nicotinamide pathways and vitamins. These observations should be confirmed in a placebo-controlled trial, including an ω-3 PUFA supplement without phospholipids to explore the potential additive effects of the different active ingredients.
Asunto(s)
Colina/sangre , Grasas Insaturadas en la Dieta/farmacología , Suplementos Dietéticos , Euphausiacea , Homocisteína/sangre , Mariscos , Adolescente , Adulto , Animales , Femenino , Humanos , Masculino , Proyectos Piloto , Vitaminas/sangreRESUMEN
Hepatic mitochondrial function, APOC-III, and LPL are potential targets for triglyceride (TG)-lowering drugs. After 3 weeks of dietary treatment with the compound 2-(tridec-12-yn-1-ylthio)acetic acid (1-triple TTA), the hepatic mitochondrial FA oxidation increased more than 5-fold in male Wistar rats. Gene expression analysis in liver showed significant downregulation of APOC-III and upregulation of LPL and the VLDL receptor. This led to lower hepatic (53%) and plasma (73%) TG levels. Concomitantly, liver-specific biomarkers related to mitochondrial biogenesis and function (mitochondrial DNA, citrate synthase activity, and cytochrome c and TFAM gene expression) were elevated. Interestingly, 1-triple TTA lowered plasma acetylcarnitine levels, whereas the concentration of ß-hydroxybutyrate was increased. The hepatic energy state was reduced in 1-triple TTA-treated rats, as reflected by increased AMP/ATP and decreased ATP/ADP ratios, whereas the energy state remained unchanged in muscle and heart. The 1-triple TTA administration induced gene expression of uncoupling protein (UCP)2 and UCP3 in liver. In conclusion, the 1-triple TTA-mediated clearance of blood TG may result from lowered APOC-III production, increased hepatic LPL gene expression, mitochondrial FA oxidation, and (re)uptake of VLDL facilitating drainage of FAs to the liver for ß-oxidation and production of ketone bodies as extrahepatic fuel. The possibility that UCP2 and UCP3 mediate a moderate degree of mitochondrial uncoupling should be considered.
Asunto(s)
Apolipoproteína C-III/metabolismo , Ácidos Grasos/metabolismo , Hígado/metabolismo , Mitocondrias Hepáticas/metabolismo , Proteínas Desacopladoras Mitocondriales/metabolismo , Triglicéridos/sangre , Ácido Acético/química , Ácido Acético/farmacología , Acetilcarnitina/metabolismo , Animales , Carnitina/metabolismo , Metabolismo Energético/efectos de los fármacos , Hígado/efectos de los fármacos , Masculino , Mitocondrias Hepáticas/efectos de los fármacos , Oxidación-Reducción , Ratas , Ratas Wistar , Triglicéridos/metabolismoRESUMEN
Background: Olanzapine is an orexigenic antipsychotic drug associated with serious metabolic adverse effects in humans. Development of valid rodent models for antipsychotic-induced metabolic adverse effects is hampered by the fact that such effects occur in females only. Estradiol is a predominant female hormone that regulates energy balance. We hypothesized that the female-specific hyperphagia and weight gain induced by olanzapine in the rat are dependent on the presence of estrogens. Methods: Female sham-operated or ovariectomized rats were treated with a single injection of olanzapine depot formulation. Food intake, body weight, plasma lipids, lipogenic gene expression, energy expenditure, and thermogenic markers including brown adipose tissue uncoupling protein 1 protein levels were measured. Olanzapine was also administered to ovariectomized rats receiving estradiol replacement via the subcutaneous (peripheral) or intracerebroventricular route. Results: Orexigenic effects of olanzapine were lost in ovariectomized female rats. Ovariectomized rats treated with olanzapine had less pronounced weight gain than expected from their food intake. Accordingly, brown adipose tissue temperature and protein levels of uncoupling protein 1 were elevated. Replacement in ovariectomized rats with either peripherally or centrally administered estradiol reduced food intake and body weight. Cotreatment with olanzapine blocked the anorexigenic effect of peripheral, but not central estradiol. Conclusions: Our results indicate that the ovarian hormone estradiol plays an important role in olanzapine-induced hyperphagia in female rats and pinpoint the complex effects of olanzapine on the balance between energy intake and thermogenesis.
Asunto(s)
Antipsicóticos/farmacología , Benzodiazepinas/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Ovario/fisiología , Proteína Desacopladora 1/metabolismo , Animales , Peso Corporal/efectos de los fármacos , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Energía/efectos de los fármacos , Estradiol/metabolismo , Femenino , Inyecciones Intraventriculares , Lípidos/sangre , Olanzapina , Ovariectomía , Ovario/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Proteína Desacopladora 1/genética , Aumento de PesoRESUMEN
BACKGROUND: HIV infection is associated with increased risk of cardiovascular disease beyond that explained by traditional risk factors. Altered gut microbiota, microbial translocation, and immune activation have been proposed as potential triggers. The microbiota-dependent metabolite trimethylamine-N-oxide (TMAO) predicts myocardial infarction (MI) in the general population and has recently been shown to induce platelet hyperreactivity. In the present study, we investigated if TMAO was associated with platelet function, microbial translocation, and immune activation in both untreated and combination anti-retroviral therapy (cART) HIV infection. METHODS: TMAO and the pre-cursors betaine, choline, and carnitine were quantified by mass-spectrometry in plasma samples from a previously established cross-sectional cohort of 50 untreated and 50 cART treated HIV-infected individuals. Whole-blood impedance aggregometry, C-reactive protein, sCD14, and lipopolysaccharide were assessed as measures of platelet function, inflammation, monocyte activation, and microbial translocation, respectively. RESULTS: TMAO was not associated with platelet aggregation response after stimulation with four different agonists, or with overall hypo- or hyperreactivity in untreated or treated HIV-infected individuals. In contrast, sCD14 a marker of both monocyte activation and microbial translocation was independently associated with TMAO in untreated HIV-infection (R = 0.381, P = 0.008). Lower levels of carnitine [32.2 (28.4-36.8) vs. 38.2 (33.6-42.0), P = 0.001] and betaine [33.1 (27.3-43.4) vs.37.4 (31.5-48.7, P = 0.02], but similar TMAO levels [3.8 (2.3-6.1), vs. 2.9 µM (1.9-4.8) P = 0.15] were found in cART treated compared to untreated HIV-infected individuals, resulting in higher ratios of TMAO/carnitine [0.12 (0.07-0.20) vs. 0.08 (0.05-0.11), P = 0.02] and TMAO/betaine [0.11 (0.07-0.17) vs. 0.08 (0.05-0.13), P 0.02]. CONCLUSIONS: In contrast to recent studies in HIV-uninfected populations, the present study found no evidence of TMAO-induced platelet hyperreactivity in HIV infected individuals. Microbial translocation and monocyte activation may affect TMAO levels in untreated individuals. Furthermore, the elevated ratios of TMAO/betaine and TMAO/carnitine in cART-treated individuals could possibly suggest a role of cART in TMAO metabolism.
Asunto(s)
Biomarcadores/sangre , Enfermedades Cardiovasculares/sangre , Infecciones por VIH/complicaciones , Metilaminas/sangre , Microbiota , Adulto , Betaína/sangre , Plaquetas/metabolismo , Plaquetas/virología , Enfermedades Cardiovasculares/etiología , Carnitina/sangre , Colina/sangre , Estudios Transversales , Femenino , Infecciones por VIH/sangre , Infecciones por VIH/tratamiento farmacológico , Humanos , Receptores de Lipopolisacáridos/sangre , Masculino , Persona de Mediana Edad , Monocitos/metabolismo , Infarto del Miocardio/etiología , Agregación Plaquetaria/fisiología , Factores de RiesgoRESUMEN
BACKGROUND: Increased incidence of cardiovascular diseases (CVD) in both HIV infection and type 2 diabetes (T2D) compared to the general population has been described. Little is known about the combined effect of HIV infection and T2D on inflammation and endothelial function, both of which may contribute to elevated risk of CVD. METHODS: Cross-sectional study including 50 HIV-infected persons on combination anti-retroviral therapy (cART), with HIV RNA <200 copies/mL (n = 25 with T2D (HIV + T2D+), n = 25 without T2D (HIV + T2D-)) and 50 uninfected persons (n = 22 with T2D (HIV-T2D+) and n = 28 without T2D (HIV-T2D-)). Groups were matched on age and sex. High sensitive C-reactive protein (hsCRP) was used to determine inflammation (cut-off 3 mg/L). The marker of endothelial dysfunction asymmetric dimethylarginine (ADMA) was measured using high performance liquid chromatography. Trimethylamine-N-oxide (TMAO), a microbiota-dependent, pro-atherogenic marker was measured using stable isotope dilution LC/MS/MS. RESULTS: The percentage of HIV + T2D+, HIV + T2D-, HIV-T2D+, and HIV-T2D- with hsCRP above cut-off was 50%, 19%, 47%, and 11%, respectively. HIV + T2D+ had elevated ADMA (0.67 µM (0.63-0.72) compared to HIV + T2D- (0.60 µM (0.57-0.64) p = 0.017), HIV-T2D+ (0.57 µM (0.51-63) p = 0.008), and HIV-T2D- (0.55 µM (0.52-0.58) p < 0.001). No differences in TMAO between groups were found. However, a positive correlation between ADMA and TMAO was found in the total population (rs = 0.32, p = 0.001), which was mainly driven by a close correlation in HIV + T2D+ (rs = 0.63, p = 0.001). CONCLUSION: Elevated inflammation and evidence of endothelial dysfunction was found in HIV-infected persons with T2D. The effect on inflammation was mainly driven by T2D, while both HIV infection and T2D may contribute to endothelial dysfunction. Whether gut microbiota is a contributing factor to this remains to be determined.
Asunto(s)
Enfermedades Cardiovasculares/etiología , Diabetes Mellitus Tipo 2/fisiopatología , Endotelio Vascular/fisiopatología , Infecciones por VIH/fisiopatología , Inflamación/etiología , Arginina/análogos & derivados , Arginina/sangre , Biomarcadores/sangre , Enfermedades Cardiovasculares/sangre , Enfermedades Cardiovasculares/diagnóstico , Estudios de Casos y Controles , Cromatografía Líquida de Alta Presión , Estudios Transversales , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/complicaciones , Femenino , Infecciones por VIH/sangre , Infecciones por VIH/complicaciones , Humanos , Inflamación/sangre , Inflamación/diagnóstico , Masculino , Metilaminas/sangre , Persona de Mediana Edad , Factores de Riesgo , Espectrometría de Masas en TándemRESUMEN
BACKGROUND: Obesity is a global pandemic leading to increased mortality and increased risk of cardiovascular disease. Bariatric surgery is an established treatment of obesity leading to weight loss and reduction of mortality. To further elucidate how bariatric surgery improves metabolic control, we explored the fatty acid (FA) profiles in morbidly obese subjects treated with lifestyle intervention and subsequent bariatric surgery. METHODS: The intervention group consisted of 34 morbidly obese patients scheduled for bariatric surgery and the control group of 17 non-obese patients scheduled for elective laparoscopic procedures. The intervention group had to undergo lifestyle changes preoperatively. Fasting blood samples were drawn at admission, after lifestyle intervention and 1 year after bariatric surgery. RESULTS: At admission, the morbidly obese patients had significantly higher levels of monounsaturated FAs (MUFAs) and lower levels of n-6 polyunsaturated FAs (PUFAs) and n-3 PUFAs than healthy controls (all p-values <.05). In the intervention group, there was a significantly lower level of total FAs after lifestyle intervention, and from admission to 1 year after surgical intervention (both, p < .05), primarily reflecting a lower proportion of saturated FAs (SFAs). Following bariatric surgery, but not after lifestyle changes, there was an increase in the proportion of n-3 PUFA (p < .05) reaching levels not significantly different from healthy controls. CONCLUSIONS: Our findings suggest that a reduced proportion of the proposed anti-atherogenic n-3 PUFAs characterizes morbidly obese individuals, and that this FA profile is reversed by bariatric surgery, but not by lifestyle intervention.
Asunto(s)
Ácidos Grasos Omega-3/sangre , Obesidad Mórbida/sangre , Adulto , Cirugía Bariátrica , Estudios de Casos y Controles , Ayuno , Ácidos Grasos/sangre , Femenino , Humanos , Masculino , Persona de Mediana Edad , Obesidad Mórbida/cirugía , Factores de Riesgo , Resultado del Tratamiento , Pérdida de PesoRESUMEN
BACKGROUND: Carnitine plays an essential role in fatty acid metabolism, exerts substantial antioxidant action and regulates immune functions. We hypothesized that a disturbed carnitine metabolism could be involved in progression of HIV infection. MATERIALS AND METHODS: Plasma levels of L-carnitine, its precursors, and short-, medium- and long-chain acylcarnitines were analysed with HPLC/mass spectrometry in HIV-infected patients with various disease severities including patients who acquired Mycobacterium avium complex (MAC) infection. In vitro, we examined the MAC-purified protein derivate (PPD)-induced release of TNF-α and IFN-γ in peripheral blood mononuclear cells (PBMCs) from patients with either high or low plasma levels of acylcarnitines. RESULTS: Plasma levels of the short-chain (e.g. propionyl-carnitine) and medium-chain (e.g. octanoyl-carnitine) acylcarnitines were reduced in patients with advanced HIV infection. These acylcarnitines gradually decreased in rapid progressors, while minimal changes were observed in the nonprogressors. Plasma levels of propionyl-carnitine and octanoyl-carnitine significantly increased during antiretroviral therapy (ART). However, ART did not restore levels to those observed in healthy controls. Depletion of propionyl-carnitine and octanoyl-carnitine was observed prior to MAC infection, and the release of TNF-α and IFN-γ from PBMC was decreased after stimulation with MAC-PPD in samples from HIV-infected patients with low levels of propionyl-carnitine or octanoyl-carnitine. CONCLUSIONS: Our findings suggest an association between disturbed acylcarnitine metabolism, immune dysregulation and disease progression in HIV-infected patients. Low levels of propionyl-carnitine and octanoyl-carnitine were associated with increased susceptibility to MAC infection in HIV patients with advanced disease.
Asunto(s)
Carnitina/análogos & derivados , Carnitina/sangre , Infecciones por VIH/sangre , Infección por Mycobacterium avium-intracellulare/sangre , Adulto , Terapia Antirretroviral Altamente Activa , Estudios de Casos y Controles , Progresión de la Enfermedad , Femenino , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico , Humanos , Interferón gamma , Ensayos de Liberación de Interferón gamma , Estudios Longitudinales , Masculino , Complejo Mycobacterium avium , Infección por Mycobacterium avium-intracellulare/complicaciones , Factor de Necrosis Tumoral alfaRESUMEN
Thio-ether fatty acids (THEFAs), including the parent 2-(tetradecylthio)acetic acid (TTA), are modified fatty acids (FAs) that have profound effects on lipid metabolism given that they are blocked for ß-oxidation, and able to act as peroxisome proliferator-activated receptor (PPAR) agonists. Therefore, TTA in particular has been tested clinically for its therapeutic potential against metabolic syndrome related disorders. Here, we describe the preparation of THEFAs based on the TTA scaffold with either a double or a triple bond. These are tested in cultured human skeletal muscle cells (myotubes), either as free acid or following esterification as phospholipids, lysophospholipids or monoacylglycerols. Metabolic effects are assessed in terms of cellular bioavailabilities in myotubes, by FA substrate uptake and oxidation studies, and gene regulation studies with selected PPAR-regulated genes. We note that the inclusion of a triple bond promotes THEFA-mediated FA oxidation. Furthermore, esterification of THEFAs as lysophospholipids also promotes FA oxidation effects. Given that the apparent clinical benefits of TTA administration were offset by dose limitation and poor bioavailability, we discuss the possibility that a selection of our latest THEFAs and THEFA-containing lipids might be able to fulfill the therapeutic potential of the parent TTA while minimizing required doses for efficacy, side-effects and adverse reactions.
Asunto(s)
Éteres/farmacología , Ácidos Grasos/química , Ácidos Grasos/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Receptores Activados del Proliferador del Peroxisoma/agonistas , Compuestos de Sulfhidrilo/farmacología , Relación Dosis-Respuesta a Droga , Éteres/síntesis química , Éteres/química , Ácidos Grasos/síntesis química , Humanos , Estructura Molecular , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Relación Estructura-Actividad , Compuestos de Sulfhidrilo/síntesis química , Compuestos de Sulfhidrilo/químicaRESUMEN
BACKGROUND: Hepatic mitochondrial dysfunction plays an important role in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Methyl donor supplementation has been shown to alleviate NAFLD, connecting the condition to the one-carbon metabolism. Thus, the objective was to investigate regulation of homocysteine (Hcy) and metabolites along the choline oxidation pathway during induction of hepatic steatosis by the fatty acid analogue tetradecylthiopropionic acid (TTP), an inhibitor of mitochondrial fatty acid oxidation. METHODS: Mice were fed a control diet, or diets containing 0.3 %, 0.6 %, or 0.9 % (w/w) TTP for 14 days. Blood and liver samples were collected, enzyme activities and gene expression were analyzed in liver, lipid and fatty acid composition in liver and plasma, one-carbon metabolites, B-vitamin status, carnitine and acylcarnitines were analyzed in plasma. RESULTS: Liver mitochondrial fatty acid oxidation decreased by 40 % and steatosis was induced in a dose dependent manner; total lipids increased 1.6-fold in animals treated with 0.3 % TTP, 2-fold with 0.6 % TTP and 2.1 fold with 0.9 % TTP compared to control. The higher hepatic concentration of fatty acids was associated with shortening of carbon-length. Furthermore, the inhibited fatty acid oxidation led to a 30-fold decrease in plasma carnitine and 9.3-fold decrease in acetylcarnitine at the highest dose of TTP, whereas an accumulation of palmitoylcarnitine resulted. Compared to the control diet, TTP administration was associated with elevated plasma total Hcy (control: 7.2 ± 0.3 umol/L, 0.9 % TTP: 30.5 ± 5.9 umol/L) and 1.4-1.6 fold increase in the one-carbon metabolites betaine, dimethylglycine, sarcosine and glycine, accompanied by changes in gene expression of the different B-vitamin dependent pathways of Hcy and choline metabolism. A positive correlation between total Hcy and hepatic triacylglycerol resulted. CONCLUSIONS: The TTP-induced inhibition of mitochondrial fatty acid oxidation was not associated with increased hepatic oxidative stress or inflammation. Our data suggest a link between mitochondrial dysfunction and the methylation processes within the one-carbon metabolism in mice.
Asunto(s)
Hígado Graso/inducido químicamente , Homocisteína/sangre , Hígado/efectos de los fármacos , Hígado/metabolismo , Propionatos/farmacología , Sulfuros/farmacología , Animales , Hígado Graso/metabolismo , Masculino , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Enfermedad del Hígado Graso no Alcohólico/metabolismoRESUMEN
BACKGROUND: Trans fatty acids (TFAs) have been found to impair flow mediated vasodilation and nitric oxide (NO) production. We sought to examine if serum TFA levels are associated with plasma levels of the NO inhibitor asymmetric dimethylarginine (ADMA) and if possible relationships between serum TFA and cardiovascular morbidity or mortality are mediated or modified by plasma ADMA levels. METHODS: The cohort included patients who underwent coronary angiography for suspected coronary heart disease in 2000-2001. Serum trans 16:1n7 and trans 18:1 isomers were determined by gas liquid chromatography and the summation of these two TFAs is reported as TFA (percentage by weight (wt%) or concentration). Associations between TFAs and ADMA were estimated by calculating the Spearman's rank correlation coefficient (ρ), and risk associations with AMI, cardiovascular death and all-cause mortality across quartiles of TFAs (wt% or concentration) were explored by Cox modeling. RESULTS: A total of 1364 patients (75 % men) with median (25(th),75(th) percentile) age 61 (54, 69) years, serum TFA 0.46 (0.36, 0.56) wt% and plasma ADMA 0.59 (0.50, 0.70) µmol/L were studied. Serum TFA levels (ρ = 0.21, p < 0.001), trans 16:1n7 (ρ = 0.22, p < 0.001) and trans 18:1 (ρ = 0.20, p < 0.001) levels were significantly correlated with plasma ADMA levels. During the median (25(th),75(th) percentile) follow-up time of 5.8 (4.5, 6.4) years, 129 (9.5 %) patients experienced an AMI, 124 (9.1 %) died, whereof 66 (53 %) due to cardiovascular causes. After multivariate adjustments no significant associations between serum TFA levels (wt% or concentration) and incident AMI, CV death and all-cause mortality were observed. Similar results were obtained when repeating the analyses with trans 16:1n7 and trans 18:1 individually. Plasma ADMA levels did not significantly modify the associations between TFA levels and outcomes. CONCLUSIONS: Serum TFA levels were positively correlated with plasma ADMA levels. After multivariate adjustments, TFAs were not associated with incident AMI or mortality, and associations were not influenced by ADMA. TRIAL REGISTRATION: Clinicaltrials.gov Identifier: NCT00354081.