Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Peptides ; 49: 145-58, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24055806

RESUMEN

Cone snail venoms provide a largely untapped source of novel peptide drug leads. To enhance the discovery phase, a detailed comparative proteomic analysis was undertaken on milked venom from the mollusk-hunting cone snail, Conus textile, from three different geographic locations (Hawai'i, American Samoa and Australia's Great Barrier Reef). A novel milked venom conopeptide rich in post-translational modifications was discovered, characterized and named α-conotoxin TxIC. We assign this conopeptide to the 4/7 α-conotoxin family based on the peptide's sequence homology and cDNA pre-propeptide alignment. Pharmacologically, α-conotoxin TxIC demonstrates minimal activity on human acetylcholine receptor models (100 µM, <5% inhibition), compared to its high paralytic potency in invertebrates, PD50 = 34.2 nMol kg(-1). The non-post-translationally modified form, [Pro](2,8)[Glu](16)α-conotoxin TxIC, demonstrates differential selectivity for the α3ß2 isoform of the nicotinic acetylcholine receptor with maximal inhibition of 96% and an observed IC50 of 5.4 ± 0.5 µM. Interestingly its comparative PD50 (3.6 µMol kg(-1)) in invertebrates was ~100 fold more than that of the native peptide. Differentiating α-conotoxin TxIC from other α-conotoxins is the high degree of post-translational modification (44% of residues). This includes the incorporation of γ-carboxyglutamic acid, two moieties of 4-trans hydroxyproline, two disulfide bond linkages, and C-terminal amidation. These findings expand upon the known chemical diversity of α-conotoxins and illustrate a potential driver of toxin phyla-selectivity within Conus.


Asunto(s)
Caracol Conus/metabolismo , Venenos de Moluscos/metabolismo , Procesamiento Proteico-Postraduccional , Animales , Cromatografía Líquida de Alta Presión , Concentración 50 Inhibidora , Venenos de Moluscos/farmacología , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
2.
Toxins (Basel) ; 4(11): 1082-119, 2012 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23202307

RESUMEN

Scorpion toxins have been central to the investigation and understanding of the physiological role of potassium (K⁺) channels and their expansive function in membrane biophysics. As highly specific probes, toxins have revealed a great deal about channel structure and the correlation between mutations, altered regulation and a number of human pathologies. Radio- and fluorescently-labeled toxin isoforms have contributed to localization studies of channel subtypes in expressing cells, and have been further used in competitive displacement assays for the identification of additional novel ligands for use in research and medicine. Chimeric toxins have been designed from multiple peptide scaffolds to probe channel isoform specificity, while advanced epitope chimerization has aided in the development of novel molecular therapeutics. Peptide backbone cyclization has been utilized to enhance therapeutic efficiency by augmenting serum stability and toxin half-life in vivo as a number of K⁺-channel isoforms have been identified with essential roles in disease states ranging from HIV, T-cell mediated autoimmune disease and hypertension to various cardiac arrhythmias and Malaria. Bioengineered scorpion toxins have been monumental to the evolution of channel science, and are now serving as templates for the development of invaluable experimental molecular therapeutics.


Asunto(s)
Bioingeniería/métodos , Caribdotoxina/química , Bloqueadores de los Canales de Potasio/química , Venenos de Escorpión/química , Escorpiones/fisiología , Animales , Caribdotoxina/genética , Caribdotoxina/farmacología , Simulación por Computador , Escherichia coli/genética , Células HEK293 , Humanos , Ligandos , Modelos Moleculares , Bloqueadores de los Canales de Potasio/farmacología , Bloqueadores de los Canales de Potasio/uso terapéutico , Canales de Potasio/metabolismo , Unión Proteica , Conformación Proteica , Venenos de Escorpión/genética , Venenos de Escorpión/farmacología , Relación Estructura-Actividad , Transfección
3.
Chem Biol Interact ; 183(1): 1-18, 2010 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-19800874

RESUMEN

Peptides from the venom of carnivorous cone shells have provided six decades of intense research, which has led to the discovery and development of novel analgesic peptide therapeutics. Our understanding of this unique natural marine resource is however somewhat limited. Given the past pharmacological record, future investigations into the toxinology of these highly venomous tropical marine snails will undoubtedly yield other highly selective ion channel inhibitors and modulators. With over a thousand conotoxin-derived sequences identified to date, those identified as ion channel inhibitors represent only a small fraction of the total. Here we discuss our present understanding of conotoxins, focusing on the omega-conotoxin peptide family, and illustrate how such a seemingly simple snail has yielded a highly effective clinical drug.


Asunto(s)
Analgésicos/farmacología , omega-Conotoxinas/farmacología , Secuencia de Aminoácidos , Analgésicos/clasificación , Animales , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio/efectos de los fármacos , Caracol Conus/genética , Caracol Conus/metabolismo , Evaluación de Medicamentos/tendencias , Datos de Secuencia Molecular , Péptidos/síntesis química , Péptidos/farmacología , Proteínas Recombinantes/farmacología , omega-Conotoxinas/clasificación , omega-Conotoxinas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA