Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
RNA ; 30(7): 807-823, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38580456

RESUMEN

Ribosomes translate mRNA into proteins and are essential for every living organism. In eukaryotes, both ribosomal subunits are rapidly assembled in a strict hierarchical order, starting in the nucleolus with the transcription of a common precursor ribosomal RNA (pre-rRNA). This pre-rRNA encodes three of the four mature rRNAs, which are formed by several, consecutive endonucleolytic and exonucleolytic processing steps. Historically, northern blots are used to analyze the variety of different pre-rRNA species, only allowing rough length estimations. Although this limitation can be overcome with primer extension, both approaches often use radioactivity and are time-consuming and costly. Here, we present "Riboprobing," a linker ligation-based workflow followed by reverse transcription and PCR for easy and fast detection and characterization of pre-rRNA species and their 5' as well as 3' ends. Using standard molecular biology laboratory equipment, "Riboprobing" allows reliable discrimination of pre-rRNA species not resolved by northern blot (e.g., 27SA2, 27SA3, and 27SB pre-rRNA). The method can successfully be used for the analysis of total cell extracts as well as purified pre-ribosomes for a straightforward evaluation of the impact of mutant gene versions or inhibitors. In the course of method development, we identified and characterized a hitherto undescribed aberrant pre-rRNA arising from LiCl inhibition. This pre-rRNA fragment spans from processing site A1 to E, forming a small RNP that lacks most early joining assembly factors. This finding expands our knowledge of how the cell deals with severe pre-rRNA processing defects and demonstrates the strict requirement for the 5'ETS (external transcribed spacer) for the assembly process.


Asunto(s)
Precursores del ARN , ARN Ribosómico , Precursores del ARN/genética , Precursores del ARN/metabolismo , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Flujo de Trabajo , Procesamiento Postranscripcional del ARN
2.
Nucleic Acids Res ; 46(6): 3140-3151, 2018 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-29294095

RESUMEN

The formation of ribosomal subunits is a highly dynamic process that is initiated in the nucleus and involves more than 200 trans-acting factors, some of which accompany the pre-ribosomes into the cytoplasm and have to be recycled into the nucleus. The inhibitor diazaborine prevents cytoplasmic release and recycling of shuttling pre-60S maturation factors by inhibiting the AAA-ATPase Drg1. The failure to recycle these proteins results in their depletion in the nucleolus and halts the pathway at an early maturation step. Here, we made use of the fast onset of inhibition by diazaborine to chase the maturation path in real-time from 27SA2 pre-rRNA containing pre-ribosomes localized in the nucleolus up to nearly mature 60S subunits shortly after their export into the cytoplasm. This allows for the first time to put protein assembly and disassembly reactions as well as pre-rRNA processing into a chronological context unraveling temporal and functional linkages during ribosome maturation.


Asunto(s)
Nucléolo Celular/metabolismo , Citoplasma/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/antagonistas & inhibidores , Adenosina Trifosfatasas/metabolismo , Transporte Biológico/efectos de los fármacos , Compuestos de Boro/farmacología , Fluorescencia , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Confocal , Precursores del ARN/genética , Precursores del ARN/metabolismo , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/química , Subunidades Ribosómicas Grandes de Eucariotas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/metabolismo , Imagen de Lapso de Tiempo/métodos
3.
BMC Biol ; 17(1): 46, 2019 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-31182083

RESUMEN

BACKGROUND: Ribosome biogenesis is a central process in every growing cell. In eukaryotes, it requires more than 250 non-ribosomal assembly factors, most of which are essential. Despite this large repertoire of potential targets, only very few chemical inhibitors of ribosome biogenesis are known so far. Such inhibitors are valuable tools to study this highly dynamic process and elucidate mechanistic details of individual maturation steps. Moreover, ribosome biogenesis is of particular importance for fast proliferating cells, suggesting its inhibition could be a valid strategy for treatment of tumors or infections. RESULTS: We systematically screened ~ 1000 substances for inhibitory effects on ribosome biogenesis using a microscopy-based screen scoring ribosomal subunit export defects. We identified 128 compounds inhibiting maturation of either the small or the large ribosomal subunit or both. Northern blot analysis demonstrates that these inhibitors cause a broad spectrum of different rRNA processing defects. CONCLUSIONS: Our findings show that the individual inhibitors affect a wide range of different maturation steps within the ribosome biogenesis pathway. Our results provide for the first time a comprehensive set of inhibitors to study ribosome biogenesis by chemical inhibition of individual maturation steps and establish the process as promising druggable pathway for chemical intervention.


Asunto(s)
Ribosomas/efectos de los fármacos , Saccharomyces cerevisiae/efectos de los fármacos , Ribosomas/fisiología , Saccharomyces cerevisiae/fisiología
4.
Int J Mol Sci ; 21(8)2020 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-32340379

RESUMEN

The synthesis of ribosomes is one of the central and most resource demanding processes in each living cell. As ribosome biogenesis is tightly linked with the regulation of the cell cycle, perturbation of ribosome formation can trigger severe diseases, including cancer. Eukaryotic ribosome biogenesis starts in the nucleolus with pre-rRNA transcription and the initial assembly steps, continues in the nucleoplasm and is finished in the cytoplasm. From start to end, this process is highly dynamic and finished within few minutes. Despite the tremendous progress made during the last decade, the coordination of the individual maturation steps is hard to unravel by a conventional methodology. In recent years small molecular compounds were identified that specifically block either rDNA transcription or distinct steps within the maturation pathway. As these inhibitors diffuse into the cell rapidly and block their target proteins within seconds, they represent excellent tools to investigate ribosome biogenesis. Here we review how the inhibitors affect ribosome biogenesis and discuss how these effects can be interpreted by taking the complex self-regulatory mechanisms of the pathway into account. With this we want to highlight the potential of low molecular weight inhibitors to approach the dynamic nature of the ribosome biogenesis pathway.


Asunto(s)
Regulación de la Expresión Génica , Proteínas Ribosómicas/biosíntesis , Ribosomas/metabolismo , Animales , Descubrimiento de Drogas , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Sondas Moleculares , Unión Proteica , Biosíntesis de Proteínas , ARN Ribosómico/genética , Ribosomas/química
5.
EMBO Rep ; 17(12): 1829-1843, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27799288

RESUMEN

Changes in histone modifications are an attractive model through which environmental signals, such as diet, could be integrated in the cell for regulating its lifespan. However, evidence linking dietary interventions with specific alterations in histone modifications that subsequently affect lifespan remains elusive. We show here that deletion of histone N-alpha-terminal acetyltransferase Nat4 and loss of its associated H4 N-terminal acetylation (N-acH4) extend yeast replicative lifespan. Notably, nat4Δ-induced longevity is epistatic to the effects of calorie restriction (CR). Consistent with this, (i) Nat4 expression is downregulated and the levels of N-acH4 within chromatin are reduced upon CR, (ii) constitutive expression of Nat4 and maintenance of N-acH4 levels reduces the extension of lifespan mediated by CR, and (iii) transcriptome analysis indicates that nat4Δ largely mimics the effects of CR, especially in the induction of stress-response genes. We further show that nicotinamidase Pnc1, which is typically upregulated under CR, is required for nat4Δ-mediated longevity. Collectively, these findings establish histone N-acH4 as a regulator of cellular lifespan that links CR to increased stress resistance and longevity.


Asunto(s)
Restricción Calórica , Regulación Fúngica de la Expresión Génica , Histonas/metabolismo , Acetiltransferasa D N-Terminal/deficiencia , Acetiltransferasa D N-Terminal/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/fisiología , Acetilación , Cromatina/metabolismo , Regulación hacia Abajo , Perfilación de la Expresión Génica , Histona Acetiltransferasas/metabolismo , Longevidad , Acetiltransferasa D N-Terminal/genética , Nicotinamidasa/genética , Nicotinamidasa/metabolismo , Procesamiento Proteico-Postraduccional , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Tiempo , Activación Transcripcional
6.
J Biol Chem ; 289(7): 3913-22, 2014 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-24371142

RESUMEN

The drug diazaborine is the only known inhibitor of ribosome biogenesis and specifically blocks large subunit formation in eukaryotic cells. However, the target of this drug and the mechanism of inhibition were unknown. Here we identify the AAA-ATPase Drg1 as a target of diazaborine. Inhibitor binding into the second AAA domain of Drg1 requires ATP loading and results in inhibition of ATP hydrolysis in this site. As a consequence the physiological activity of Drg1, i.e. the release of Rlp24 from pre-60S particles, is blocked, and further progression of cytoplasmic preribosome maturation is prevented. Our results identify the first target of an inhibitor of ribosome biogenesis and provide the mechanism of inhibition of a key step in large ribosomal subunit formation.


Asunto(s)
Adenosina Trifosfatasas/antagonistas & inhibidores , Compuestos de Boro/farmacología , Inhibidores Enzimáticos/farmacología , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Saccharomyces cerevisiae/enzimología , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Sitios de Unión , Compuestos de Boro/química , Citoplasma/enzimología , Citoplasma/genética , Inhibidores Enzimáticos/química , Proteínas Ribosómicas/biosíntesis , Proteínas Ribosómicas/genética , Subunidades Ribosómicas Grandes de Eucariotas/genética , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
J Biol Chem ; 287(26): 21806-15, 2012 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-22570489

RESUMEN

2000 ribosomes have to be synthesized in yeast every minute. Therefore the fast production of ribosomal proteins, their efficient delivery to the nucleus and correct incorporation into ribosomal subunits are prerequisites for optimal growth rates. Here, we report that the ankyrin repeat protein Yar1 directly interacts with the small ribosomal subunit protein Rps3 and accompanies newly synthesized Rps3 from the cytoplasm into the nucleus where Rps3 is assembled into pre-ribosomal subunits. A yar1 deletion strain displays a similar phenotype as an rps3 mutant strain, showing an accumulation of 20S pre-rRNA and a 40S export defect. The combination of an rps3 mutation with a yar1 deletion leads to an enhancement of these phenotypes, while increased expression of RPS3 suppresses the defects of a yar1 deletion strain. We further show that Yar1 protects Rps3 from aggregation in vitro and increases its solubility in vivo. Our data suggest that Yar1 is a specific chaperone for Rps3, which serves to keep Rps3 soluble until its incorporation into the pre-ribosome.


Asunto(s)
Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Transporte Activo de Núcleo Celular , Núcleo Celular/metabolismo , Chaperoninas/metabolismo , Citoplasma/metabolismo , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Mutación , Proteínas Recombinantes/metabolismo , Schizosaccharomyces/metabolismo , Sacarosa/química
8.
Biochim Biophys Acta ; 1823(1): 92-100, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21763358

RESUMEN

The biogenesis of ribosomes is a fundamental cellular process, which provides the molecular machines that synthesize all cellular proteins. The assembly of eukaryotic ribosomes is a highly complex multi-step process that requires more than 200 ribosome biogenesis factors, which mediate a broad spectrum of maturation reactions. The participation of many energy-consuming enzymes (e.g. AAA-type ATPases, RNA helicases, and GTPases) in this process indicates that the expenditure of energy is required to drive ribosome assembly. While the precise function of many of these enzymes remains elusive, recent progress has revealed that the three AAA-type ATPases involved in 60S subunit biogenesis are specifically dedicated to the release and recycling of distinct biogenesis factors. In this review, we will highlight how the molecular power of yeast Drg1, Rix7, and Rea1 is harnessed to promote the release of their substrate proteins from evolving pre-60S particles and, where appropriate, discuss possible catalytic mechanisms.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Adenosina Trifosfatasas/química , Animales , Dominio Catalítico , Humanos , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Precursores del ARN/metabolismo , Proteínas Ribosómicas/metabolismo
9.
Elife ; 112022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35670565

RESUMEN

We report the real-time response of Escherichia coli to lactoferricin-derived antimicrobial peptides (AMPs) on length scales bridging microscopic cell sizes to nanoscopic lipid packing using millisecond time-resolved synchrotron small-angle X-ray scattering. Coupling a multiscale scattering data analysis to biophysical assays for peptide partitioning revealed that the AMPs rapidly permeabilize the cytosolic membrane within less than 3 s-much faster than previously considered. Final intracellular AMP concentrations of ∼80-100 mM suggest an efficient obstruction of physiologically important processes as the primary cause of bacterial killing. On the other hand, damage of the cell envelope and leakage occurred also at sublethal peptide concentrations, thus emerging as a collateral effect of AMP activity that does not kill the bacteria. This implies that the impairment of the membrane barrier is a necessary but not sufficient condition for microbial killing by lactoferricins. The most efficient AMP studied exceeds others in both speed of permeabilizing membranes and lowest intracellular peptide concentration needed to inhibit bacterial growth.


Asunto(s)
Antibacterianos , Péptidos Catiónicos Antimicrobianos , Membrana Celular , Escherichia coli , Lactoferrina , Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/metabolismo , Péptidos Catiónicos Antimicrobianos/farmacología , Bacterias/efectos de los fármacos , Bacterias/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Espacio Intracelular/química , Espacio Intracelular/microbiología , Lactoferrina/metabolismo , Lactoferrina/farmacología , Factores de Tiempo
10.
Nat Struct Mol Biol ; 29(9): 942-953, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36097293

RESUMEN

The AAA-ATPase Drg1 is a key factor in eukaryotic ribosome biogenesis that initiates cytoplasmic maturation of the large ribosomal subunit. Drg1 releases the shuttling maturation factor Rlp24 from pre-60S particles shortly after nuclear export, a strict requirement for downstream maturation. The molecular mechanism of release remained elusive. Here, we report a series of cryo-EM structures that captured the extraction of Rlp24 from pre-60S particles by Saccharomyces cerevisiae Drg1. These structures reveal that Arx1 and the eukaryote-specific rRNA expansion segment ES27 form a joint docking platform that positions Drg1 for efficient extraction of Rlp24 from the pre-ribosome. The tips of the Drg1 N domains thereby guide the Rlp24 C terminus into the central pore of the Drg1 hexamer, enabling extraction by a hand-over-hand translocation mechanism. Our results uncover substrate recognition and processing by Drg1 step by step and provide a comprehensive mechanistic picture of the conserved modus operandi of AAA-ATPases.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo
11.
J Appl Crystallogr ; 54(Pt 2): 473-485, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33953653

RESUMEN

A previously reported multi-scale model for (ultra-)small-angle X-ray (USAXS/SAXS) and (very) small-angle neutron scattering (VSANS/SANS) of live Escherichia coli was revised on the basis of compositional/metabolomic and ultrastructural constraints. The cellular body is modeled, as previously described, by an ellipsoid with multiple shells. However, scattering originating from flagella was replaced by a term accounting for the oligosaccharide cores of the lipopolysaccharide leaflet of the outer membrane including its cross-term with the cellular body. This was mainly motivated by (U)SAXS experiments showing indistinguishable scattering for bacteria in the presence and absence of flagella or fimbrae. The revised model succeeded in fitting USAXS/SAXS and differently contrasted VSANS/SANS data of E. coli ATCC 25922 over four orders of magnitude in length scale. Specifically, this approach provides detailed insight into structural features of the cellular envelope, including the distance of the inner and outer membranes, as well as the scattering length densities of all bacterial compartments. The model was also successfully applied to E. coli K12, used for the authors' original modeling, as well as for two other E. coli strains. Significant differences were detected between the different strains in terms of bacterial size, intermembrane distance and its positional fluctuations. These findings corroborate the general applicability of the approach outlined here to quantitatively study the effect of bactericidal compounds on ultrastructural features of Gram-negative bacteria without the need to resort to any invasive staining or labeling agents.

12.
Nat Commun ; 12(1): 3483, 2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-34108481

RESUMEN

The hexameric AAA-ATPase Drg1 is a key factor in eukaryotic ribosome biogenesis and initiates cytoplasmic maturation of the large ribosomal subunit by releasing the shuttling maturation factor Rlp24. Drg1 monomers contain two AAA-domains (D1 and D2) that act in a concerted manner. Rlp24 release is inhibited by the drug diazaborine which blocks ATP hydrolysis in D2. The mode of inhibition was unknown. Here we show the first cryo-EM structure of Drg1 revealing the inhibitory mechanism. Diazaborine forms a covalent bond to the 2'-OH of the nucleotide in D2, explaining its specificity for this site. As a consequence, the D2 domain is locked in a rigid, inactive state, stalling the whole Drg1 hexamer. Resistance mechanisms identified include abolished drug binding and altered positioning of the nucleotide. Our results suggest nucleotide-modifying compounds as potential novel inhibitors for AAA-ATPases.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/química , Adenosina Trifosfatasas/química , Compuestos de Boro/química , Proteínas de Saccharomyces cerevisiae/química , Dominio AAA , ATPasas Asociadas con Actividades Celulares Diversas/antagonistas & inhibidores , ATPasas Asociadas con Actividades Celulares Diversas/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Adenosina Trifosfatasas/antagonistas & inhibidores , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Sitios de Unión , Compuestos de Boro/farmacología , Resistencia a Medicamentos/genética , Activación Enzimática/efectos de los fármacos , Activación Enzimática/genética , Mutación , Nucleótidos/química , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Mol Cell Biol ; 27(19): 6581-92, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17646390

RESUMEN

Allelic forms of DRG1/AFG2 confer resistance to the drug diazaborine, an inhibitor of ribosome biogenesis in Saccharomyces cerevisiae. Our results show that the AAA-ATPase Drg1 is essential for 60S maturation and associates with 60S precursor particles in the cytoplasm. Functional inactivation of Drg1 leads to an increased cytoplasmic localization of shuttling pre-60S maturation factors like Rlp24, Arx1, and Tif6. Surprisingly, Nog1, a nuclear pre-60S factor, was also relocalized to the cytoplasm under these conditions, suggesting that it is a previously unsuspected shuttling preribosomal factor that is exported with the precursor particles and very rapidly reimported. Proteins that became cytoplasmic under drg1 mutant conditions were blocked on pre-60S particles at a step that precedes the association of Rei1, a later-acting preribosomal factor. A similar cytoplasmic accumulation of Nog1 and Rlp24 in pre-60S-bound form could be seen after overexpression of a dominant-negative Drg1 variant mutated in the D2 ATPase domain. We conclude that the ATPase activity of Drg1 is required for the release of shuttling proteins from the pre-60S particles shortly after their nuclear export. This early cytoplasmic release reaction defines a novel step in eukaryotic ribosome maturation.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Citoplasma/metabolismo , Precursores de Proteínas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Adenosina Trifosfatasas/genética , Transporte Biológico/fisiología , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Proteínas de Filamentos Intermediarios/genética , Proteínas de Filamentos Intermediarios/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Factores de Iniciación de Péptidos/genética , Factores de Iniciación de Péptidos/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Precursores de Proteínas/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Ribosómicas , Subunidades Ribosómicas Grandes de Eucariotas/genética , Ribosomas/química , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
14.
Microb Cell ; 6(10): 491-493, 2019 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-31646150

RESUMEN

The formation of new ribosomes is a fundamental cellular process for each living cell and is tightly interwoven with cell cycle control and proliferation. Minimal disturbances of this pathway can result in ribosomopathies including an increased risk for certain cancer types. Thus, targeting ribosome biogenesis is an emerging strategy in cancer therapy. However, due to its complex nature, we are only at the beginning to understand the dynamics of the ribosome biogenesis pathway. One arising approach that will help us to embrace the tight timely cascade of events that is needed to form a new ribosome is the use of targeted chemical inhibition. However, only very few specific chemical inhibitors of the ribosome biogenesis pathway have been identified so far. Here we review our recently published screen to identify novel inhibitors of the ribosome biogenesis pathway in yeast (Awad et al., 2019, BMC Biology). These inhibitors can provide novel tools for basic research and can serve as starting-points to develop new chemotherapeutics.

15.
Biomolecules ; 9(11)2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31703473

RESUMEN

AAA-ATPases are molecular engines evolutionarily optimized for the remodeling of proteins and macromolecular assemblies. Three AAA-ATPases are currently known to be involved in the remodeling of the eukaryotic ribosome, a megadalton range ribonucleoprotein complex responsible for the translation of mRNAs into proteins. The correct assembly of the ribosome is performed by a plethora of additional and transiently acting pre-ribosome maturation factors that act in a timely and spatially orchestrated manner. Minimal disorder of the assembly cascade prohibits the formation of functional ribosomes and results in defects in proliferation and growth. Rix7, Rea1, and Drg1, which are well conserved across eukaryotes, are involved in different maturation steps of pre-60S ribosomal particles. These AAA-ATPases provide energy for the efficient removal of specific assembly factors from pre-60S particles after they have fulfilled their function in the maturation cascade. Recent structural and functional insights have provided the first glimpse into the molecular mechanism of target recognition and remodeling by Rix7, Rea1, and Drg1. Here we summarize current knowledge on the AAA-ATPases involved in eukaryotic ribosome biogenesis. We highlight the latest insights into their mechanism of mechano-chemical complex remodeling driven by advanced cryo-EM structures and the use of highly specific AAA inhibitors.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/genética , Adenosina Trifosfatasas/genética , Proteínas Ribosómicas/genética , Ribosomas/genética , Adenosina Trifosfatasas/biosíntesis , Metabolismo Energético/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Ribosómicas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
16.
Elife ; 82019 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-31115337

RESUMEN

During their final maturation in the cytoplasm, pre-60S ribosomal particles are converted to translation-competent large ribosomal subunits. Here, we present the mechanism of peptidyltransferase centre (PTC) completion that explains how integration of the last ribosomal proteins is coupled to release of the nuclear export adaptor Nmd3. Single-particle cryo-EM reveals that eL40 recruitment stabilises helix 89 to form the uL16 binding site. The loading of uL16 unhooks helix 38 from Nmd3 to adopt its mature conformation. In turn, partial retraction of the L1 stalk is coupled to a conformational switch in Nmd3 that allows the uL16 P-site loop to fully accommodate into the PTC where it competes with Nmd3 for an overlapping binding site (base A2971). Our data reveal how the central functional site of the ribosome is sculpted and suggest how the formation of translation-competent 60S subunits is disrupted in leukaemia-associated ribosomopathies.


Asunto(s)
Peptidil Transferasas/metabolismo , ARN Ribosómico/metabolismo , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Saccharomyces cerevisiae/metabolismo , Microscopía por Crioelectrón , Peptidil Transferasas/ultraestructura , Subunidades Ribosómicas Grandes de Eucariotas/ultraestructura , Saccharomyces cerevisiae/ultraestructura
18.
Eur J Cancer ; 101: 165-180, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30077122

RESUMEN

Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related death worldwide. Dysregulation of protein synthesis plays a major role in carcinogenesis, a process regulated at multiple levels, including translation of mRNA into proteins. Ribosome assembly requires correct association of ribosome subunits, which is ensured by eukaryotic translation initiation factors (eIFs). eIFs have become targets in cancer therapy studies, and promising data on eIF6 in various cancer entities have been reported. Therefore, we hypothesised that eIF6 represents a crossroad for pulmonary carcinogenesis. High levels of eIF6 are associated with shorter patient overall survival in adenocarcinoma (ADC), but not in squamous cell carcinoma (SQC) of the lung. We demonstrate significantly higher protein expression of eIF6 in ADC and SQC than in healthy lung tissue based on immunohistochemical data from tissue microarrays (TMAs) and on fresh frozen lung tissue. Depletion of eIF6 in ADC and SQC lung cancer cell lines inhibited cell proliferation and induced apoptosis. Knockdown of eIF6 led to pre-rRNA processing and ribosomal 60S maturation defects. Our data indicate that eIF6 is upregulated in NSCLC, suggesting an important contribution of eIF6 to the development and progression of NSCLC and a potential for new treatment strategies against NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Factores Eucarióticos de Iniciación/biosíntesis , Neoplasias Pulmonares/metabolismo , Células A549 , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Anciano , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Supervivencia Celular/genética , Progresión de la Enfermedad , Factores Eucarióticos de Iniciación/genética , Femenino , Humanos , Inmunohistoquímica , Estimación de Kaplan-Meier , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Masculino , Interferencia de ARN
19.
Mol Cell Biol ; 24(14): 6476-87, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15226447

RESUMEN

Diazaborine treatment of yeast cells was shown previously to cause accumulation of aberrant, 3'-elongated mRNAs. Here we demonstrate that the drug inhibits maturation of rRNAs for the large ribosomal subunit. Pulse-chase analyses showed that the processing of the 27S pre-rRNA to consecutive species was blocked in the drug-treated wild-type strain. The steady-state level of the 7S pre-rRNA was clearly reduced after short-term treatment with the inhibitor. At the same time an increase of the 35S pre-rRNA was observed. Longer incubation with the inhibitor resulted in a decrease of the 27S precursor. Primer extension assays showed that an early step in 27S pre-rRNA processing is inhibited, which results in an accumulation of the 27SA2 pre-rRNA and a strong decrease of the 27SA3, 27SB1L, and 27SB1S precursors. The rRNA processing pattern observed after diazaborine treatment resembles that reported after depletion of the RNA binding protein Nop4p/Nop77p. This protein is essential for correct pre-27S rRNA processing. Using a green fluorescent protein-Nop4 fusion, we found that diazaborine treatment causes, within minutes, a rapid redistribution of the protein from the nucleolus to the periphery of the nucleus, which provides a possible explanation for the effect of diazaborine on rRNA processing.


Asunto(s)
Compuestos de Boro/farmacología , Subunidades de Proteína/metabolismo , Precursores del ARN/metabolismo , ARN Ribosómico/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Núcleo Celular/metabolismo , Procesamiento Proteico-Postraduccional , Subunidades de Proteína/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Ribonucleoproteínas Nucleolares Pequeñas/genética , Ribonucleoproteínas Nucleolares Pequeñas/metabolismo , Ribosomas/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
20.
Sci Rep ; 7: 44751, 2017 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-28303975

RESUMEN

AAA-ATPases fulfil essential roles in different cellular pathways and often act in form of hexameric complexes. Interaction with pathway-specific substrate and adaptor proteins recruits them to their targets and modulates their catalytic activity. This substrate dependent regulation of ATP hydrolysis in the AAA-domains is mediated by a non-catalytic N-terminal domain. The exact mechanisms that transmit the signal from the N-domain and coordinate the individual AAA-domains in the hexameric complex are still the topic of intensive research. Here, we present the characterization of a novel mutant variant of the eukaryotic AAA-ATPase Drg1 that shows dysregulation of ATPase activity and altered interaction with Rlp24, its substrate in ribosome biogenesis. This defective regulation is the consequence of amino acid exchanges at the interface between the regulatory N-domain and the adjacent D1 AAA-domain. The effects caused by these mutations strongly resemble those of pathological mutations of the AAA-ATPase p97 which cause the hereditary proteinopathy IBMPFD (inclusion body myopathy associated with Paget's disease of the bone and frontotemporal dementia). Our results therefore suggest well conserved mechanisms of regulation between structurally, but not functionally related members of the AAA-family.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/química , Alelos , Secuencia Conservada , Modelos Moleculares , Mutación/genética , Fenotipo , Dominios Proteicos , Relación Estructura-Actividad , Especificidad por Sustrato , Supresión Genética , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA