Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
PLoS Genet ; 13(12): e1007093, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29240767

RESUMEN

Congenital nephron number varies widely in the human population and individuals with low nephron number are at risk of developing hypertension and chronic kidney disease. The development of the kidney occurs via an orchestrated morphogenetic process where metanephric mesenchyme and ureteric bud reciprocally interact to induce nephron formation. The genetic networks that modulate the extent of this process and set the final nephron number are mostly unknown. Here, we identified a specific isoform of MITF (MITF-A), a bHLH-Zip transcription factor, as a novel regulator of the final nephron number. We showed that overexpression of MITF-A leads to a substantial increase of nephron number and bigger kidneys, whereas Mitfa deficiency results in reduced nephron number. Furthermore, we demonstrated that MITF-A triggers ureteric bud branching, a phenotype that is associated with increased ureteric bud cell proliferation. Molecular studies associated with an in silico analyses revealed that amongst the putative MITF-A targets, Ret was significantly modulated by MITF-A. Consistent with the key role of this network in kidney morphogenesis, Ret heterozygosis prevented the increase of nephron number in mice overexpressing MITF-A. Collectively, these results uncover a novel transcriptional network that controls branching morphogenesis during kidney development and identifies one of the first modifier genes of nephron endowment.


Asunto(s)
Riñón/fisiología , Factor de Transcripción Asociado a Microftalmía/metabolismo , Nefronas/fisiología , Animales , Femenino , Humanos , Riñón/embriología , Riñón/metabolismo , Masculino , Ratones , Ratones Transgénicos , Factor de Transcripción Asociado a Microftalmía/genética , Morfogénesis , Nefronas/anatomía & histología , Nefronas/crecimiento & desarrollo , Nefronas/metabolismo , Organogénesis , Isoformas de Proteínas , Proteínas Proto-Oncogénicas c-ret/genética , Proteínas Proto-Oncogénicas c-ret/metabolismo , Uréter/metabolismo , Uréter/fisiología
2.
Eur Heart J ; 40(11): 928-937, 2019 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-30541066

RESUMEN

AIMS: Inflammatory mediators, including blood cells and their products, contribute critically to atherogenesis, but the igniting triggers of inflammation remain elusive. Atherosclerosis develops at sites of flow perturbation, where the enhanced haemodynamic stress could initiate the atherogenic inflammatory process due to the occurrence of mechanic injury. We investigated the role of haemodynamic stress-induced breaches, allowing the entry of blood cells in the arterial intima, in triggering inflammation-driven atherogenesis. METHODS AND RESULTS: Human coronary samples isolated from explanted hearts, (n = 47) displayed signs of blood entry (detected by the presence of iron, ferritin, and glycophorin A) in the subintimal space (54%) as assessed by histology, immunofluorescence, high resolution episcopic microscopy, and scanning electron microscopy. Computational flow dynamic analysis showed that intimal haemorrhagic events occurred at sites of flow disturbance. Experimental carotid arteries from Apoe deficient mice showed discrete endothelial breaches and intimal haemorrhagic events specifically occurring at the site of flow perturbation, within 3 days after the exacerbation of the local haemodynamic stress. Endothelial tearing was associated with increased VCAM-1 expression and, within 7 days, substantial Ly6G+ leucocytes accumulated at the sites of erythrocyte-derived iron and lipids droplets accumulation, pathological intimal thickening and positive oil red O staining. The formation of fatty streaks at the sites of intimal breaches was prevented by the depletion of Ly6G+ leucocytes, suggesting that the local injury driven by haemodynamic stress-induced breaches triggers atherogenic inflammation. CONCLUSION: Haemodynamic-driven breaches of the arterial intima drive atherogenic inflammation by triggering the recruitment of leucocyte at sites of disturbed arterial flow.


Asunto(s)
Aterosclerosis/metabolismo , Hemodinámica/fisiología , Inflamación/patología , Túnica Íntima/patología , Animales , Antígenos Ly/metabolismo , Apolipoproteínas E/deficiencia , Velocidad del Flujo Sanguíneo , Arterias Carótidas/metabolismo , Arterias Carótidas/patología , Vasos Coronarios/metabolismo , Vasos Coronarios/patología , Vasos Coronarios/ultraestructura , Células Endoteliales/metabolismo , Células Endoteliales/patología , Humanos , Leucocitos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Estrés Mecánico , Túnica Íntima/lesiones , Molécula 1 de Adhesión Celular Vascular/metabolismo
3.
J Clin Invest ; 118(11): 3629-38, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18846252

RESUMEN

Factors that promote pancreatic beta cell growth and function are potential therapeutic targets for diabetes mellitus. In mice, genetic experiments suggest that signaling cascades initiated by insulin and IGFs positively regulate beta cell mass and insulin secretion. Akt and S6 kinase (S6K) family members are activated as part of these signaling cascades, but how the interplay between these proteins controls beta cell growth and function has not been determined. Here, we found that although transgenic mice overexpressing the constitutively active form of Akt1 under the rat insulin promoter (RIP-MyrAkt1 mice) had enlarged beta cells and high plasma insulin levels, leading to improved glucose tolerance, a substantial proportion of the mice developed insulinomas later in life, which caused decreased viability. This oncogenic transformation tightly correlated with nuclear exclusion of the tumor suppressor PTEN. To address the role of the mammalian target of rapamycin (mTOR) substrate S6K1 in the MyrAkt1-mediated phenotype, we crossed RIP-MyrAkt1 and S6K1-deficient mice. The resulting mice displayed reduced insulinemia and glycemia compared with RIP-MyrAkt1 mice due to a combined effect of improved insulin secretion and insulin sensitivity. Importantly, although the increase in beta cell size in RIP-MyrAkt1 mice was not affected by S6K1 deficiency, the hyperplastic transformation required S6K1. Our results therefore identify S6K1 as a critical element for MyrAkt1-induced tumor formation and suggest that it may represent a useful target for anticancer therapy downstream of mTOR.


Asunto(s)
Insulinoma/metabolismo , Páncreas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Quinasas S6 Ribosómicas/metabolismo , Animales , Tamaño de la Célula , Cruzamientos Genéticos , Modelos Animales de Enfermedad , Insulina/sangre , Insulina/genética , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Insulinoma/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-akt/genética , Ratas , Proteínas Quinasas S6 Ribosómicas/genética
4.
Nephron ; 129(1): 42-51, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25531116

RESUMEN

Cystic kidney disease is characterized by the progressive development of multiple fluid-filled cysts. Cysts can be acquired, or they may appear during development or in postnatal life due to specific gene defects and lead to renal failure. The most frequent form of this disease is the inherited polycystic kidney disease (PKD). Experimental models of PKD showed that an increase of cellular proliferation and apoptosis as well as defects in apico-basal and planar cell polarity or cilia play a critical role in cyst development. However, little is known about the mechanisms and the mediators involved in acquired cystic kidney diseases (ACKD). In this study, we used the nephron reduction as a model to study the mechanisms underlying cyst development in ACKD. We found that tubular dilations after nephron reduction recapitulated most of the morphological features of ACKD. The development of tubular dilations was associated with a dramatic increase of cell proliferation. In contrast, the apico-basal polarity and cilia did not seem to be affected. Interestingly, polycystin 1 and fibrocystin were markedly increased and polycystin 2 was decreased in cells lining the dilated tubules, whereas the expression of several other cystic genes did not change. More importantly, Pkd1 haploinsufficiency accelerated the development of tubular dilations after nephron reduction, a phenotype that was associated to a further increase of cell proliferation. These data were relevant to humans ACKD, as cystic genes expression and the rate of cell proliferation were also increased. In conclusion, our study suggests that the nephron reduction can be considered a suitable model to study ACKD and that dosage of genes involved in PKD is also important in ACKD.


Asunto(s)
Dosificación de Gen , Nefronas/patología , Enfermedades Renales Poliquísticas/genética , Enfermedades Renales Poliquísticas/patología , Canales Catiónicos TRPP/genética , Adulto , Anciano , Animales , Polaridad Celular , Proliferación Celular , Modelos Animales de Enfermedad , Femenino , Haploinsuficiencia , Humanos , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Nefrectomía , Enfermedades Renales Poliquísticas/etiología , Riñón Poliquístico Autosómico Recesivo/genética , Riñón Poliquístico Autosómico Recesivo/patología , Receptores de Superficie Celular/genética , Canales Catiónicos TRPP/deficiencia
5.
Nat Med ; 19(10): 1288-96, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24056770

RESUMEN

In chronic kidney disease (CKD), loss of functional nephrons results in metabolic and mechanical stress in the remaining ones, resulting in further nephron loss. Here we show that Akt2 activation has an essential role in podocyte protection after nephron reduction. Glomerulosclerosis and albuminuria were substantially worsened in Akt2(-/-) but not in Akt1(-/-) mice as compared to wild-type mice. Specific deletion of Akt2 or its regulator Rictor in podocytes revealed that Akt2 has an intrinsic function in podocytes. Mechanistically, Akt2 triggers a compensatory program that involves mouse double minute 2 homolog (Mdm2), glycogen synthase kinase 3 (Gsk3) and Rac1. The defective activation of this pathway after nephron reduction leads to apoptosis and foot process effacement of the podocytes. We further show that AKT2 activation by mammalian target of rapamycin complex 2 (mTORC2) is also required for podocyte survival in human CKD. More notably, we elucidate the events underlying the adverse renal effect of sirolimus and provide a criterion for the rational use of this drug. Thus, our results disclose a new function of Akt2 and identify a potential therapeutic target for preserving glomerular function in CKD.


Asunto(s)
Fallo Renal Crónico/metabolismo , Podocitos/citología , Proteínas Proto-Oncogénicas c-akt/fisiología , Animales , Progresión de la Enfermedad , Humanos , Fallo Renal Crónico/patología , Diana Mecanicista del Complejo 2 de la Rapamicina , Ratones , Ratones Noqueados , Complejos Multiproteicos/fisiología , Nefronas/metabolismo , Nefronas/fisiopatología , Proteínas Proto-Oncogénicas c-akt/genética , Serina-Treonina Quinasas TOR/fisiología
6.
PLoS One ; 6(12): e25096, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22162746

RESUMEN

Current treatments for HBV chronic carriers using interferon alpha or nucleoside analogues are not effective in all patients and may induce the emergence of HBV resistant strains. Bay 41-4109, a member of the heteroaryldihydropyrimidine family, inhibits HBV replication by destabilizing capsid assembly. The aim of this study was to determine the antiviral effect of Bay 41-4109 in a mouse model with humanized liver and the spread of active HBV. Antiviral assays of Bay 41-4109 on HepG2.2.15 cells constitutively expressing HBV, displayed an IC(50) of about 202 nM with no cell toxicity. Alb-uPA/SCID mice were transplanted with human hepatocytes and infected with HBV. Ten days post-infection, the mice were treated with Bay 41-4109 for five days. During the 30 days of follow-up, the HBV load was evaluated by quantitative PCR. At the end of treatment, decreased HBV viremia of about 1 log(10) copies/ml was observed. By contrast, increased HBV viremia of about 0.5 log(10) copies/ml was measured in the control group. Five days after the end of treatment, a rebound of HBV viremia occurred in the treated group. Furthermore, 15 days after treatment discontinuation, a similar expression of the viral capsid was evidenced in liver biopsies. Our findings demonstrate that Bay 41-4109 displayed antiviral properties against HBV in humanized Alb-uPA/SCID mice and confirm the usefulness of Alb-uPA/SCID mice for the evaluation of pharmaceutical compounds. The administration of Bay 41-4109 may constitute a new strategy for the treatment of patients in escape from standard antiviral therapy.


Asunto(s)
Albúminas/metabolismo , Antivirales/farmacología , Virus de la Hepatitis B/metabolismo , Hepatitis B/tratamiento farmacológico , Piridinas/farmacología , Pirimidinas/farmacología , Animales , Biopsia/métodos , ADN Viral/metabolismo , Hepatocitos/citología , Humanos , Inmunohistoquímica/métodos , Cinética , Hígado/metabolismo , Hígado/virología , Ratones , Ratones SCID , Carga Viral
7.
J Biol Chem ; 281(39): 29181-9, 2006 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-16870608

RESUMEN

Renal cyst formation is the hallmark of autosomal dominant polycystic kidney disease (ADPKD). ADPKD cyst-lining cells have an increased proliferation rate and are surrounded by an abnormal extracellular matrix (ECM). We have previously shown that Laminin 5 (Ln-5, a alpha(3)beta(3)gamma(2) trimer) is aberrantly expressed in the pericystic ECM of ADPKD kidneys. We report that ADPKD cells in primary cultures produce and secrete Ln-5 that is incorporated to the pericystic ECM in an in vitro model of cystogenesis. In monolayers, purified Ln-5 induces ERK activation and proliferation of ADPKD cells, whereas upon epidermal growth factor stimulation blocking endogenously produced Ln-5 with anti-gamma(2) chain antibody reduces the sustained ERK activation and inhibits proliferation. In three-dimensional gel culture, addition of purified Ln-5 stimulates cell proliferation and cyst formation, whereas blocking endogenous Ln-5 strongly inhibits cyst formation. Ligation of alpha(6)beta(4) integrin, a major Ln-5 receptor aberrantly expressed by ADPKD cells, induces beta(4) integrin phosphorylation, ERK activation, cell proliferation, and cyst formation. These findings indicate that Ln-5 is an important regulator of ADPKD cell proliferation and cystogenesis and suggest that Ln-5 gamma(2) chain and Ln-5-alpha(6)beta(4) integrin interaction both contribute to these phenotypic changes.


Asunto(s)
Regulación de la Expresión Génica , Enfermedades Renales Quísticas/metabolismo , Laminina/fisiología , Enfermedades Renales Poliquísticas/metabolismo , Línea Celular , Proliferación Celular , Dimerización , Factor de Crecimiento Epidérmico/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Integrina alfa6beta4/metabolismo , Laminina/química , Microscopía de Contraste de Fase , Fosforilación , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA