Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(18): 12836-12849, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38683943

RESUMEN

The biological properties of two water-soluble organic cations based on polypyridyl structures commonly used as ligands for photoactive transition metal complexes designed to interact with biomolecules are investigated. A cytotoxicity screen employing a small panel of cell lines reveals that both cations show cytotoxicity toward cancer cells but show reduced cytotoxicity to noncancerous HEK293 cells with the more extended system being notably more active. Although it is not a singlet oxygen sensitizer, the more active cation also displayed enhanced potency on irradiation with visible light, making it active at nanomolar concentrations. Using the intrinsic luminescence of the cations, their cellular uptake was investigated in more detail, revealing that the active compound is more readily internalized than its less lipophilic analogue. Colocalization studies with established cell probes reveal that the active cation predominantly localizes within lysosomes and that irradiation leads to the disruption of mitochondrial structure and function. Stimulated emission depletion (STED) nanoscopy and transmission electron microscopy (TEM) imaging reveal that treatment results in distinct lysosomal swelling and extensive cellular vacuolization. Further imaging-based studies confirm that treatment with the active cation induces lysosomal membrane permeabilization, which triggers lysosome-dependent cell-death due to both necrosis and caspase-dependent apoptosis. A preliminary toxicity screen in the Galleria melonella animal model was carried out on both cations and revealed no detectable toxicity up to concentrations of 80 mg/kg. Taken together, these studies indicate that this class of synthetically easy-to-access photoactive compounds offers potential as novel therapeutic leads.


Asunto(s)
Antineoplásicos , Cationes , Fenazinas , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Cationes/química , Cationes/farmacología , Fenazinas/química , Fenazinas/farmacología , Lisosomas/metabolismo , Lisosomas/efectos de los fármacos , Células HEK293 , Apoptosis/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Línea Celular Tumoral , Animales , Nanomedicina Teranóstica , Estructura Molecular
2.
Environ Sci Technol ; 58(3): 1495-1508, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38186267

RESUMEN

Over the past decade, there has been a significant rise in the use of vaping devices, particularly among adolescents, raising concerns for effects on respiratory health. Pressingly, many recent vaping-related lung injuries are unexplained by current knowledge, and the overall implications of vaping for respiratory health are poorly understood. This study investigates the effect of hydrophobic vaping liquid chemicals on the pulmonary surfactant biophysical function. We focus on the commonly used flavoring benzaldehyde and its vaping byproduct, benzaldehyde propylene glycol acetal. The study involves rigorous testing of the surfactant biophysical function in Langmuir trough and constrained sessile drop surfactometer experiments with both protein-free synthetic surfactant and hydrophobic protein-containing clinical surfactant models. The study reveals that exposure to these vaping chemicals significantly interferes with the synthetic and clinical surfactant biophysical function. Further atomistic simulations reveal preferential interactions with SP-B and SP-C surfactant proteins. Additionally, data show surfactant lipid-vaping chemical interactions and suggest significant transfer of vaping chemicals to the experimental subphase, indicating a toxicological mechanism for the alveolar epithelium. Our study, therefore, reveals novel mechanisms for the inhalational toxicity of vaping. This highlights the need to reassess the safety of vaping liquids for respiratory health, particularly the use of aldehyde chemicals as vaping flavorings.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Surfactantes Pulmonares , Vapeo , Adolescente , Humanos , Aldehídos , Benzaldehídos , Tensoactivos , Aromatizantes
3.
Langmuir ; 39(12): 4338-4350, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36917773

RESUMEN

The lining of the alveoli is covered by pulmonary surfactant, a complex mixture of surface-active lipids and proteins that enables efficient gas exchange between inhaled air and the circulation. Despite decades of advancements in the study of the pulmonary surfactant, the molecular scale behavior of the surfactant and the inherent role of the number of different lipids and proteins in surfactant behavior are not fully understood. The most important proteins in this complex system are the surfactant proteins SP-B and SP-C. Given this, in this work we performed nonequilibrium all-atom molecular dynamics simulations to study the interplay of SP-B and SP-C with multicomponent lipid monolayers mimicking the pulmonary surfactant in composition. The simulations were complemented by z-scan fluorescence correlation spectroscopy and atomic force microscopy measurements. Our state-of-the-art simulation model reproduces experimental pressure-area isotherms and lateral diffusion coefficients. In agreement with previous research, the inclusion of either SP-B and SP-C increases surface pressure, and our simulations provide a molecular scale explanation for this effect: The proteins display preferential lipid interactions with phosphatidylglycerol, they reside predominantly in the lipid acyl chain region, and they partition into the liquid expanded phase or even induce it in an otherwise packed monolayer. The latter effect is also visible in our atomic force microscopy images. The research done contributes to a better understanding of the roles of specific lipids and proteins in surfactant function, thus helping to develop better synthetic products for surfactant replacement therapy used in the treatment of many fatal lung-related injuries and diseases.


Asunto(s)
Surfactantes Pulmonares , Fenómenos Biofísicos , Fosfolípidos/química , Proteínas , Proteína B Asociada a Surfactante Pulmonar/química , Surfactantes Pulmonares/química , Propiedades de Superficie , Tensoactivos , Proteína C Asociada a Surfactante Pulmonar/química
4.
Methods ; 193: 136-147, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34126167

RESUMEN

The primary cilium is a specialized plasma membrane protrusion with important receptors for signalling pathways. In polarized epithelial cells, the primary cilium assembles after the midbody remnant (MBR) encounters the centrosome at the apical surface. The membrane surrounding the MBR, namely remnant-associated membrane patch (RAMP), once situated next to the centrosome, releases some of its lipid components to form a centrosome-associated membrane patch (CAMP) from which the ciliary membrane stems. The RAMP undergoes a spatiotemporal membrane refinement during the formation of the CAMP, which becomes highly enriched in condensed membranes with low lateral mobility. To better understand this process, we have developed a correlative imaging approach that yields quantitative information about the lipid lateral packing, its mobility and collective assembly at the plasma membrane at different spatial scales over time. Our work paves the way towards a quantitative understanding of the spatiotemporal lipid collective assembly at the plasma membrane as a functional determinant in cell biology and its direct correlation with the membrane physicochemical state. These findings allowed us to gain a deeper insight into the mechanisms behind the biogenesis of the ciliary membrane of polarized epithelial cells.


Asunto(s)
Membrana Celular , Células Epiteliales , Lípidos
5.
J Am Chem Soc ; 143(48): 20442-20453, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34808044

RESUMEN

With the aim of developing photostable near-infrared cell imaging probes, a convenient route to the synthesis of heteroleptic OsII complexes containing the Os(TAP)2 fragment is reported. This method was used to synthesize the dinuclear OsII complex, [{Os(TAP)2}2tpphz]4+ (where tpphz = tetrapyrido[3,2-a:2',3'-c:3″,2''-h:2‴,3'''-j]phenazine and TAP = 1,4,5,8- tetraazaphenanthrene). Using a combination of resonance Raman and time-resolved absorption spectroscopy, as well as computational studies, the excited state dynamics of the new complex were dissected. These studies revealed that, although the complex has several close lying excited states, its near-infrared, NIR, emission (λmax = 780 nm) is due to a low-lying Os → TAP based 3MCLT state. Cell-based studies revealed that unlike its RuII analogue, the new complex is neither cytotoxic nor photocytotoxic. However, as it is highly photostable as well as live-cell permeant and displays NIR luminescence within the biological optical window, its properties make it an ideal probe for optical microscopy, demonstrated by its use as a super-resolution NIR STED probe for nuclear DNA.


Asunto(s)
Complejos de Coordinación/química , ADN/análisis , Sustancias Luminiscentes/química , Animales , Bovinos , Línea Celular Tumoral , Complejos de Coordinación/síntesis química , Complejos de Coordinación/toxicidad , Humanos , Sustancias Luminiscentes/síntesis química , Sustancias Luminiscentes/toxicidad , Microscopía Confocal , Osmio/química , Osmio/toxicidad
6.
J Am Chem Soc ; 142(2): 1101-1111, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31846306

RESUMEN

The synthesis of new dinuclear complexes containing linked RuII(dppz) and ReI(dppz) moieties is reported. The photophysical and biological properties of the new complex, which incorporates a N,N'-bis(4-pyridylmethyl)-1,6-hexanediamine tether ligand, are compared to a previously reported RuII/ReI complex linked by a simple dipyridyl alkane ligand. Although both complexes bind to DNA with similar affinities, steady-state and time-resolved photophysical studies reveal that the nature of the linker affects the excited state dynamics of the complexes and their DNA photocleavage properties. Quantum-based DFT calculations on these systems offer insights into these effects. While both complexes are live cells permeant, their intracellular localizations are significantly affected by the nature of the linker. Notably, one of the complexes displayed concentration-dependent localization and possesses photophysical properties that are compatible with SIM and STED nanoscopy. This allowed the dynamics of its intracellular localization to be tracked at super resolutions.


Asunto(s)
Complejos de Coordinación/química , Medicina de Precisión , Renio/química , Compuestos de Rutenio/química , Línea Celular , Humanos , Ligandos , Estructura Molecular , Espectrofotometría Ultravioleta
7.
Langmuir ; 35(31): 10014-10024, 2019 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-30485112

RESUMEN

Phospholipid coated microbubbles are currently in widespread clinical use as ultrasound contrast agents and under investigation for therapeutic applications. Previous studies have demonstrated the importance of the coating nanostructure in determining microbubble stability and its dependence upon both composition and processing method. While the influence of different phospholipids has been widely investigated, the role of other constituents such as emulsifiers has received comparatively little attention. Herein, we present an examination of the impact of polyethylene glycol (PEG) derivatives upon microbubble structure and properties. We present data using both pegylated phospholipids and a fluorescent PEG-40-stearate analogue synthesized in-house to directly observe its distribution in the microbubble coating. We examined microbubbles of clinically relevant sizes, investigating both their surface properties and population size distribution and stability. Domain formation was observed only on the surface of larger microbubbles, which were found to contain a higher concentration of PEG-40-stearate. Lipid analogue dyes were also found to influence domain formation compared with PEG-40-stearate alone. "Squeezing out" of PEG-40-stearate was not observed from any of the microbubble sizes investigated. At ambient temperature, microbubbles formulated with DSPE-PEG(2000) were found to be more stable than those containing PEG-40-stearate. At 37 °C, however, the stability in serum was found to be the same for both formulations, and no difference in acoustic backscatter was detected. This could potentially reduce the cost of PEGylated microbubbles and facilitate simpler attachment of targeting or therapeutic species. However, whether PEG-40-stearate sufficiently shields microbubbles to inhibit physiological clearance mechanisms still requires investigation.

8.
Methods ; 140-141: 85-96, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29605734

RESUMEN

Quantitative fluorescence fluctuation spectroscopy from optical microscopy datasets is a very powerful tool to resolve multiple spatiotemporal cellular and subcellular processes at the molecular level. In particular, raster image correlation spectroscopy (RICS) and number and brightness analyses (N&B) yield molecular mobility and clustering dynamic information extracted from real-time cellular processes. This quantitative information can be inferred in a highly flexible and detailed manner, i.e. 1) at the localisation level: from full-frame datasets and multiple regions of interest within; and 2) at the temporal level: not only from full-frame and multiple regions, but also intermediate temporal events. Here we build on previous research in deciphering the molecular dynamics of paxillin, a main component of focal adhesions. Cells use focal adhesions to attach to the extracellular matrix and interact with their local environment. Through focal adhesions and other adhesion structures, cells sense their local environment and respond accordingly; due to this continuous communication, these structures can be highly dynamic depending on the extracellular characteristics. By using a previously well-characterised model like paxillin, we examine the powerful sensitivity and some limitations of RICS and N&B analyses. We show that cells upon contact to different surfaces show differential self-assembly dynamics in terms of molecular diffusion and oligomerisation. In addition, single-cell studies show that these dynamics change gradually following an antero-posterior gradient.


Asunto(s)
Adhesiones Focales/metabolismo , Análisis de la Célula Individual/métodos , Espectrometría de Fluorescencia/métodos , Imagen de Lapso de Tiempo/métodos , Línea Celular Tumoral , Movimiento Celular , Difusión , Proteínas Fluorescentes Verdes/química , Humanos , Microscopía Fluorescente/instrumentación , Microscopía Fluorescente/métodos , Simulación de Dinámica Molecular , Paxillin/química , Paxillin/metabolismo , Análisis de la Célula Individual/instrumentación , Espectrometría de Fluorescencia/instrumentación , Imagen de Lapso de Tiempo/instrumentación
9.
Nano Lett ; 18(7): 4233-4240, 2018 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-29893574

RESUMEN

The diffusion dynamics in the cellular plasma membrane provide crucial insights into molecular interactions, organization, and bioactivity. Beam-scanning fluorescence correlation spectroscopy combined with super-resolution stimulated emission depletion nanoscopy (scanning STED-FCS) measures such dynamics with high spatial and temporal resolution. It reveals nanoscale diffusion characteristics by measuring the molecular diffusion in conventional confocal mode and super-resolved STED mode sequentially for each pixel along the scanned line. However, to directly link the spatial and the temporal information, a method that simultaneously measures the diffusion in confocal and STED modes is needed. Here, to overcome this problem, we establish an advanced STED-FCS measurement method, line interleaved excitation scanning STED-FCS (LIESS-FCS), that discloses the molecular diffusion modes at different spatial positions with a single measurement. It relies on fast beam-scanning along a line with alternating laser illumination that yields, for each pixel, the apparent diffusion coefficients for two different observation spot sizes (conventional confocal and super-resolved STED). We demonstrate the potential of the LIESS-FCS approach with simulations and experiments on lipid diffusion in model and live cell plasma membranes. We also apply LIESS-FCS to investigate the spatiotemporal organization of glycosylphosphatidylinositol-anchored proteins in the plasma membrane of live cells, which, interestingly, show multiple diffusion modes at different spatial positions.


Asunto(s)
Membrana Celular/ultraestructura , Diagnóstico por Imagen/métodos , Microscopía Confocal/métodos , Microscopía Fluorescente/métodos , Difusión , Humanos , Membrana Dobles de Lípidos/química , Nanomedicina , Nanopartículas/química , Espectrometría de Fluorescencia
10.
BMC Bioinformatics ; 18(1): 254, 2017 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-28494801

RESUMEN

BACKGROUND: Spectral imaging with polarity-sensitive fluorescent probes enables the quantification of cell and model membrane physical properties, including local hydration, fluidity, and lateral lipid packing, usually characterized by the generalized polarization (GP) parameter. With the development of commercial microscopes equipped with spectral detectors, spectral imaging has become a convenient and powerful technique for measuring GP and other membrane properties. The existing tools for spectral image processing, however, are insufficient for processing the large data sets afforded by this technological advancement, and are unsuitable for processing images acquired with rapidly internalized fluorescent probes. RESULTS: Here we present a MATLAB spectral imaging toolbox with the aim of overcoming these limitations. In addition to common operations, such as the calculation of distributions of GP values, generation of pseudo-colored GP maps, and spectral analysis, a key highlight of this tool is reliable membrane segmentation for probes that are rapidly internalized. Furthermore, handling for hyperstacks, 3D reconstruction and batch processing facilitates analysis of data sets generated by time series, z-stack, and area scan microscope operations. Finally, the object size distribution is determined, which can provide insight into the mechanisms underlying changes in membrane properties and is desirable for e.g. studies involving model membranes and surfactant coated particles. Analysis is demonstrated for cell membranes, cell-derived vesicles, model membranes, and microbubbles with environmentally-sensitive probes Laurdan, carboxyl-modified Laurdan (C-Laurdan), Di-4-ANEPPDHQ, and Di-4-AN(F)EPPTEA (FE), for quantification of the local lateral density of lipids or lipid packing. CONCLUSIONS: The Spectral Imaging Toolbox is a powerful tool for the segmentation and processing of large spectral imaging datasets with a reliable method for membrane segmentation and no ability in programming required. The Spectral Imaging Toolbox can be downloaded from https://uk.mathworks.com/matlabcentral/fileexchange/62617-spectral-imaging-toolbox .


Asunto(s)
Membrana Celular/química , Procesamiento de Imagen Asistido por Computador/métodos , Lípidos de la Membrana/química , Espectrometría de Fluorescencia/métodos , 2-Naftilamina/análogos & derivados , 2-Naftilamina/química , Células A549 , Colorantes Fluorescentes/química , Humanos , Lauratos/química , Microburbujas , Microscopía Confocal , Compuestos de Piridinio/química
11.
J Am Chem Soc ; 139(44): 15907-15913, 2017 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-28976195

RESUMEN

Detailed studies on the live cell uptake properties of a dinuclear membrane-permeable RuII cell probe show that, at low concentrations, the complex localizes and images mitochondria. At concentrations above ∼20 µM, the complex images nuclear DNA. Because the complex is extremely photostable, has a large Stokes shift, and displays intrinsic subcellular targeting, its compatibility with super-resolution techniques was investigated. It was found to be very well suited to image mitochondria and nuclear chromatin in two color, 2C-SIM, and STED and 3D-STED, both in fixed and live cells. In particular, due to its vastly improved photostability compared to that of conventional SR probes, it can provide images of nuclear DNA at unprecedented resolution.


Asunto(s)
Cromatina , Metales/análisis , Microscopía Electrónica de Transmisión , Microscopía Fluorescente/métodos , Mitocondrias , Imagen Multimodal/métodos , Supervivencia Celular , Cromatina/ultraestructura , Color , ADN , Fijadores , Humanos , Células MCF-7 , Metales/química , Mitocondrias/ultraestructura
12.
Chemistry ; 23(41): 9772-9789, 2017 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-28444700

RESUMEN

Functional porphyrins have attracted intense attention due to their remarkably high extinction coefficients in the visible region and potential for optical and energy-related applications. Two new routes to functionalised SWNTs have been established using a bulky ZnII -porphyrin featuring thiolate groups at the periphery. We probed the optical properties of this zinc(II)-substituted, bulky aryl porphyrin and those of the corresponding new nano-composites with single walled carbon nanotube (SWNTs) and coronene, as a model for graphene. We report hereby on: i) the supramolecular interactions between the pristine SWNTs and ZnII -porphyrin by virtue of π-π stacking, and ii) a novel covalent binding strategy based on the Bingel reaction. The functional porphyrins used acted as dispersing agent for the SWNTs and the resulting nanohybrids showed improved dispersibility in common organic solvents. The synthesized hybrid materials were probed by various characterisation techniques, leading to the prediction that supramolecular polymerisation and host-guest functionalities control the fluorescence emission intensity and fluorescence lifetime properties. For the first time, XPS studies highlighted the differences in covalent versus non-covalent attachments of functional metalloporphyrins to SWNTs. Gas-phase DFT calculations indicated that the ZnII -porphyrin interacts non-covalently with SWNTs to form a donor-acceptor complex. The covalent attachment of the porphyrin chromophore to the surface of SWNTs affects the absorption and emission properties of the hybrid system to a greater extent than in the case of the supramolecular functionalisation of the SWNTs. This represents a synthetic challenge as well as an opportunity in the design of functional nanohybrids for future sensing and optoelectronic applications.

13.
Methods ; 88: 67-75, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26123184

RESUMEN

Recent years have seen the development of multiple technologies to investigate, with great spatial and temporal resolution, the dynamics of lipids in cellular and model membranes. One of these approaches is the combination of far-field super-resolution stimulated-emission-depletion (STED) microscopy with fluorescence correlation spectroscopy (FCS). STED-FCS combines the diffraction-unlimited spatial resolution of STED microscopy with the statistical accuracy of FCS to determine sub-millisecond-fast molecular dynamics with single-molecule sensitivity. A unique advantage of STED-FCS is that the observation spot for the FCS data recordings can be tuned to sub-diffraction scales, i.e. <200 nm in diameter, in a gradual manner to investigate fast diffusion of membrane-incorporated labelled entities. Unfortunately, so far the STED-FCS technology has mostly been applied on a few custom-built setups optimised for far-red fluorescent emitters. Here, we summarise the basics of the STED-FCS technology and highlight how it can give novel details into molecular diffusion modes. Most importantly, we present a straightforward way for performing STED-FCS measurements on an unmodified turnkey commercial system using a time-gated detection scheme. Further, we have evaluated the STED-FCS performance of different commonly used green emitting fluorescent dyes applying freely available, custom-written analysis software.


Asunto(s)
Membrana Dobles de Lípidos/química , Microscopía Fluorescente/métodos , Espectrometría de Fluorescencia/métodos , Difusión
14.
Chemphyschem ; 16(7): 1387-94, 2015 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-25755090

RESUMEN

Physicochemical properties of the plasma membrane have been shown to play an important role in cellular functionality. Among those properties, the molecular order of the lipids, or the lipid packing, is of high importance. Changes in lipid packing are believed to compartmentalize cellular signaling by initiating coalescence and conformational changes of proteins. A common way to infer membrane lipid packing is by using membrane-embedded polarity-sensitive dyes, whose emission spectrum is dependent on the molecular order of the immediate membrane environment. Here, we report on an improved determination of such spectral shifts in the emission spectrum of the polarity-sensitive dyes. This improvement is based on the use of spectral imaging on a scanning confocal fluorescence microscope in combination with an improved analysis, which considers the whole emission spectrum instead of just single wavelength ranges. Using this approach and the polarity-sensitive dyes C-Laurdan or Di-4-ANEPPDHQ, we were able to image-with high accuracy-minute differences in the lipid packing of model and cellular membranes.


Asunto(s)
Lípidos de la Membrana/química , Animales , Línea Celular Tumoral , Colorantes Fluorescentes/química , Microscopía Confocal , Microscopía Fluorescente , Ratas
15.
Biochim Biophys Acta ; 1828(11): 2450-9, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23867774

RESUMEN

This work comprises a structural and dynamical study of monolayers and bilayers composed of native pulmonary surfactant from mice. Spatially resolved information was obtained using fluorescence (confocal, wide field and two photon excitation) and atomic force microscopy methods. Lipid mass spectrometry experiments were also performed in order to obtain relevant information on the lipid composition of this material. Bilayers composed of mice pulmonary surfactant showed coexistence of distinct domains at room temperature, with morphologies and lateral packing resembling the coexistence of liquid ordered (lo)/liquid disordered (ld)-like phases reported previously in porcine lung surfactant. Interestingly, the molar ratio of saturated (mostly DPPC)/non-saturated phospholipid species and cholesterol measured in the innate material corresponds with that of a DOPC/DPPC/cholesterol mixture showing lo/ld phase coexistence at a similar temperature. This suggests that at quasi-equilibrium conditions, key lipid classes in this complex biological material are still able to produce the same scaffold observed in relevant but simpler model lipid mixtures. Also, robust structural and dynamical similarities between mono- and bi-layers composed of mice pulmonary surfactant were observed when the monolayers reach a surface pressure of 30mN/m. This value is in line with theoretically predicted and recently measured surface pressures, where the monolayer-bilayer equivalence occurs in samples composed of single phospholipids. Finally, squeezed out material attached to pulmonary surfactant monolayers was observed at surface pressures near the beginning of the monolayer reversible exclusion plateau (~40mN/m). Under these conditions this material adopts elongated tubular shapes and displays ordered lateral packing as indicated by spatially resolved LAURDAN GP measurements.


Asunto(s)
Membrana Dobles de Lípidos/química , Estructura Molecular , Surfactantes Pulmonares/química , Animales , Líquido del Lavado Bronquioalveolar , Espectrometría de Masas , Ratones , Microscopía de Fuerza Atómica , Microscopía Fluorescente
16.
EBioMedicine ; 99: 104901, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38061242

RESUMEN

Humans are exposed to micro-and-nano plastics (MNPs) through various routes, but the adverse health effects of MNPs on different organ systems are not yet fully understood. This review aims to provide an overview of the potential impacts of MNPs on various organ systems and identify knowledge gaps in current research. The summarized results suggest that exposure to MNPs can lead to health effects through oxidative stress, inflammation, immune dysfunction, altered biochemical and energy metabolism, impaired cell proliferation, disrupted microbial metabolic pathways, abnormal organ development, and carcinogenicity. There is limited human data on the health effects of MNPs, despite evidence from animal and cellular studies. Most of the published research has focused on specific types of MNPs to assess their toxicity, while other types of plastic particles commonly found in the environment remain unstudied. Future studies should investigate MNPs exposure by considering realistic concentrations, dose-dependent effects, individual susceptibility, and confounding factors.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Contaminantes Químicos del Agua , Animales , Humanos , Microplásticos , Proliferación Celular , Metabolismo Energético , Inflamación
17.
J Hazard Mater ; 457: 131828, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37320902

RESUMEN

The use of electronic cigarettes (e-cigs) is rapidly increasing worldwide and is promoted as a smoking cessation tool. The impact of traditional cigs on human health has been well-defined in both animal and human studies. In contrast, little is known about the adverse effects of e-cigs exposure on human health. This review summarizes the impact of e-cigs exposure on different organ systems based on the rapidly expanding recent evidence from experimental and human studies. A number of growing studies have shown the adverse effects of e-cigs exposure on various organ systems. The summarized data in this review indicate that while e-cigs use causes less adverse effects on different organs compared to traditional cigs, its long-term exposure may lead to serious health effects. Data on short-term organ effects are limited and there is no sufficient evidence on long-term organ effects. Moreover, the adverse effects of secondhand and third hand e-cigs vapour exposure have not been thoroughly investigated in previous studies. Although some studies demonstrated e-cigs used as a smoking cessation tool, there is a lack of strong evidence to support it. While some researchers suggested e-cigs as a safer alternative to tobacco smoking, their long-term exposure health effects remain largely unknown. Therefore, more epidemiological and prospective studies including mechanistic studies are needed to address the potential adverse health effects of e-cigs to draw a firm conclusion about their safe use. A wide variation in e-cigs products and the lack of standardized testing methods are the major barriers to evaluating the existing data. Specific regulatory guidelines for both e-cigs components and the manufacturing process may be effective to protect consumer health.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Cese del Hábito de Fumar , Animales , Humanos , Estudios Prospectivos
18.
Endocrinology ; 164(5)2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36774542

RESUMEN

The incretin receptors, glucagon-like peptide-1 receptor (GLP-1R) and glucose-dependent insulinotropic polypeptide receptor (GIPR), are prime therapeutic targets for the treatment of type 2 diabetes (T2D) and obesity. They are expressed in pancreatic beta cells where they potentiate insulin release in response to food intake. Despite GIP being the main incretin in healthy individuals, GLP-1R has been favored as a therapeutic target due to blunted GIPR responses in T2D patients and conflicting effects of GIPR agonists and antagonists in improving glucose tolerance and preventing weight gain. There is, however, a recently renewed interest in GIPR biology, following the realization that GIPR responses can be restored after an initial period of blood glucose normalization and the recent development of dual GLP-1R/GIPR agonists with superior capacity for controlling blood glucose levels and weight. The importance of GLP-1R trafficking and subcellular signaling in the control of receptor outputs is well established, but little is known about the pattern of spatiotemporal signaling from the GIPR in beta cells. Here, we have directly compared surface expression, trafficking, and signaling characteristics of both incretin receptors in pancreatic beta cells to identify potential differences that might underlie distinct pharmacological responses associated with each receptor. Our results indicate increased cell surface levels, internalization, degradation, and endosomal vs plasma membrane activity for the GLP-1R, while the GIPR is instead associated with increased plasma membrane recycling, reduced desensitization, and enhanced downstream signal amplification. These differences might have potential implications for the capacity of each incretin receptor to control beta cell function.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Receptores de la Hormona Gastrointestinal , Humanos , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Polipéptido Inhibidor Gástrico/farmacología , Polipéptido Inhibidor Gástrico/metabolismo , Receptor del Péptido 1 Similar al Glucagón/agonistas , Incretinas/metabolismo , Células Secretoras de Insulina/metabolismo , Receptores de la Hormona Gastrointestinal/genética
19.
Adv Sci (Weinh) ; 9(11): e2105170, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35166455

RESUMEN

The cytokine interferon-gamma (IFN-γ) is a master regulator of innate and adaptive immunity involved in a broad array of human diseases that range from atherosclerosis to cancer. IFN-γ exerts it signaling action by binding to a specific cell surface receptor, the IFN-γ receptor (IFN-γR), whose activation critically depends on its partition into lipid nanodomains. However, little is known about the impact of specific lipids on IFN-γR signal transduction activity. Here, a new conserved cholesterol (chol) binding motif localized within its single transmembrane domain is identified. Through direct binding, chol drives the partition of IFN-γR2 chains into plasma membrane lipid nanodomains, orchestrating IFN-γR oligomerization and transmembrane signaling. Bioinformatics studies show that the signature sequence stands for a conserved chol-binding motif presented in many mammalian membrane proteins. The discovery of chol as the molecular switch governing IFN-γR transmembrane signaling represents a significant advance for understanding the mechanism of lipid selectivity by membrane proteins, but also for figuring out the role of lipids in modulating cell surface receptor function. Finally, this study suggests that inhibition of the chol-IFNγR2 interaction may represent a potential therapeutic strategy for various IFN-γ-dependent diseases.


Asunto(s)
Receptores de Interferón , Transducción de Señal , Animales , Sitios de Unión , Colesterol , Humanos , Interferón gamma/metabolismo , Interferón gamma/farmacología , Lípidos , Mamíferos/metabolismo , Receptores de Interferón/metabolismo , Receptor de Interferón gamma
20.
Front Immunol ; 13: 925559, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35903108

RESUMEN

Sphingolipids, ceramides and cholesterol are integral components of cellular membranes, and they also play important roles in signal transduction by regulating the dynamics of membrane receptors through their effects on membrane fluidity. Here, we combined biochemical and functional assays with single-particle tracking analysis of diffusion in the plasma membrane to demonstrate that the local lipid environment regulates CXCR4 organization and function and modulates chemokine-triggered directed cell migration. Prolonged treatment of T cells with bacterial sphingomyelinase promoted the complete and sustained breakdown of sphingomyelins and the accumulation of the corresponding ceramides, which altered both membrane fluidity and CXCR4 nanoclustering and dynamics. Under these conditions CXCR4 retained some CXCL12-mediated signaling activity but failed to promote efficient directed cell migration. Our data underscore a critical role for the local lipid composition at the cell membrane in regulating the lateral mobility of chemokine receptors, and their ability to dynamically increase receptor density at the leading edge to promote efficient cell migration.


Asunto(s)
Receptores CXCR4 , Esfingomielinas , Movimiento Celular , Ceramidas/metabolismo , Quimiocina CXCL12/antagonistas & inhibidores , Quimiocina CXCL12/metabolismo , Humanos , Receptores CXCR4/antagonistas & inhibidores , Receptores CXCR4/metabolismo , Transducción de Señal , Linfocitos T/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA