Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Neurosci ; 41(49): 10161-10178, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34725189

RESUMEN

Bilateral cochlear implants (BI-CIs) or a CI for single-sided deafness (SSD-CI; one normally functioning acoustic ear) can partially restore spatial-hearing abilities, including sound localization and speech understanding in noise. For these populations, however, interaural place-of-stimulation mismatch can occur and thus diminish binaural sensitivity that relies on interaurally frequency-matched neurons. This study examined whether plasticity-reorganization of central neural pathways over time-can compensate for peripheral interaural place mismatch. We hypothesized differential plasticity across two systems: none for binaural processing but adaptation for pitch perception toward frequencies delivered by the specific electrodes. Interaural place mismatch was evaluated in 19 BI-CI and 23 SSD-CI human subjects (both sexes) using binaural processing (interaural-time-difference discrimination with simultaneous bilateral stimulation), pitch perception (pitch ranking for single electrodes or acoustic tones with sequential bilateral stimulation), and physical electrode-location estimates from computed-tomography (CT) scans. On average, CT scans revealed relatively little BI-CI interaural place mismatch (26° insertion-angle mismatch) but a relatively large SSD-CI mismatch, particularly at low frequencies (166° for an electrode tuned to 300 Hz, decreasing to 14° at 7000 Hz). For BI-CI subjects, the three metrics were in agreement because there was little mismatch. For SSD-CI subjects, binaural and CT measurements were in agreement, suggesting little binaural-system plasticity induced by mismatch. The pitch measurements disagreed with binaural and CT measurements, suggesting place-pitch plasticity or a procedural bias. These results suggest that reducing interaural place mismatch and potentially improving binaural processing by reprogramming the CI frequency allocation would be better done using CT-scan than pitch information.SIGNIFICANCE STATEMENT Electrode-array placement for cochlear implants (bionic prostheses that partially restore hearing) does not explicitly align neural representations of frequency information. The resulting interaural place-of-stimulation mismatch can diminish spatial-hearing abilities. In this study, adults with two cochlear implants showed reasonable interaural alignment, whereas those with one cochlear implant but normal hearing in the other ear often showed mismatch. In cases of mismatch, binaural sensitivity was best when the same cochlear locations were stimulated in both ears, suggesting that binaural brainstem pathways do not experience plasticity to compensate for mismatch. In contrast, interaurally pitch-matched electrodes deviated from cochlear-location estimates and did not optimize binaural sensitivity. Clinical correction of interaural place mismatch using binaural or computed-tomography (but not pitch) information may improve spatial-hearing benefits.


Asunto(s)
Adaptación Fisiológica/fisiología , Implantes Cocleares , Plasticidad Neuronal/fisiología , Percepción de la Altura Tonal/fisiología , Adulto , Anciano , Implantación Coclear , Femenino , Humanos , Masculino , Persona de Mediana Edad , Tomografía Computarizada por Rayos X
2.
Ear Hear ; 43(1): 206-219, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34320529

RESUMEN

OBJECTIVES: For listeners with one deaf ear and the other ear with normal/near-normal hearing (single-sided deafness [SSD]) or moderate hearing loss (asymmetric hearing loss), cochlear implants (CIs) can improve speech understanding in noise and sound-source localization. Previous SSD-CI localization studies have used a single source with artificial sounds such as clicks or random noise. While this approach provides insights regarding the auditory cues that facilitate localization, it does not capture the complex nature of localization behavior in real-world environments. This study examined SSD-CI sound localization in a complex scenario where a target sound was added to or removed from a mixture of other environmental sounds, while tracking head movements to assess behavioral strategy. DESIGN: Eleven CI users with normal hearing or moderate hearing loss in the contralateral ear completed a sound-localization task in monaural (CI-OFF) and bilateral (CI-ON) configurations. Ten of the listeners were also tested before CI activation to examine longitudinal effects. Two-second environmental sound samples, looped to create 4- or 10-sec trials, were presented in a spherical array of 26 loudspeakers encompassing ±144° azimuth and ±30° elevation at a 1-m radius. The target sound was presented alone (localize task) or concurrently with one or three additional sources presented to different loudspeakers, with the target cued by being added to (Add) or removed from (Rem) the mixture after 6 sec. A head-mounted tracker recorded movements in six dimensions (three for location, three for orientation). Mixed-model regression was used to examine target sound-identification accuracy, localization accuracy, and head movement. Angular and translational head movements were analyzed both before and after the target was switched on or off. RESULTS: Listeners showed improved localization accuracy in the CI-ON configuration, but there was no interaction with test condition and no effect of the CI on sound-identification performance. Although high-frequency hearing loss in the unimplanted ear reduced localization accuracy and sound-identification performance, the magnitude of the CI localization benefit was independent of hearing loss. The CI reduced the magnitude of gross head movements used during the task in the azimuthal rotation and translational dimensions, both while the target sound was present (in all conditions) and during the anticipatory period before the target was switched on (in the Add condition). There was no change in pre- versus post-activation CI-OFF performance. CONCLUSIONS: These results extend previous findings, demonstrating a CI localization benefit in a complex listening scenario that includes environmental and behavioral elements encountered in everyday listening conditions. The CI also reduced the magnitude of gross head movements used to perform the task. This was the case even before the target sound was added to the mixture. This suggests that a CI can reduce the need for physical movement both in anticipation of an upcoming sound event and while actively localizing the target sound. Overall, these results show that for SSD listeners, a CI can improve localization in a complex sound environment and reduce the amount of physical movement used.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Sordera , Pérdida Auditiva , Localización de Sonidos , Percepción del Habla , Sordera/rehabilitación , Pérdida Auditiva/rehabilitación , Humanos
3.
J Acoust Soc Am ; 152(2): 1230, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-36050186

RESUMEN

Bilateral cochlear-implant (BICI) listeners obtain less spatial release from masking (SRM; speech-recognition improvement for spatially separated vs co-located conditions) than normal-hearing (NH) listeners, especially for symmetrically placed maskers that produce similar long-term target-to-masker ratios at the two ears. Two experiments examined possible causes of this deficit, including limited better-ear glimpsing (using speech information from the more advantageous ear in each time-frequency unit), limited binaural unmasking (using interaural differences to improve signal-in-noise detection), or limited spectral resolution. Listeners had NH (presented with unprocessed or vocoded stimuli) or BICIs. Experiment 1 compared natural symmetric maskers, idealized monaural better-ear masker (IMBM) stimuli that automatically performed better-ear glimpsing, and hybrid stimuli that added worse-ear information, potentially restoring binaural cues. BICI and NH-vocoded SRM was comparable to NH-unprocessed SRM for idealized stimuli but was 14%-22% lower for symmetric stimuli, suggesting limited better-ear glimpsing ability. Hybrid stimuli improved SRM for NH-unprocessed listeners but degraded SRM for BICI and NH-vocoded listeners, suggesting they experienced across-ear interference instead of binaural unmasking. In experiment 2, increasing the number of vocoder channels did not change NH-vocoded SRM. BICI SRM deficits likely reflect a combination of across-ear interference, limited better-ear glimpsing, and poorer binaural unmasking that stems from cochlear-implant-processing limitations other than reduced spectral resolution.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Percepción del Habla , Oído , Ruido/efectos adversos , Enmascaramiento Perceptual
4.
J Acoust Soc Am ; 151(6): 3866, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35778214

RESUMEN

Although the behavioral pure-tone threshold audiogram is considered the gold standard for quantifying hearing loss, assessment of speech understanding, especially in noise, is more relevant to quality of life but is only partly related to the audiogram. Metrics of speech understanding in noise are therefore an attractive target for assessing hearing over time. However, speech-in-noise assessments have more potential sources of variability than pure-tone threshold measures, making it a challenge to obtain results reliable enough to detect small changes in performance. This review examines the benefits and limitations of speech-understanding metrics and their application to longitudinal hearing assessment, and identifies potential sources of variability, including learning effects, differences in item difficulty, and between- and within-individual variations in effort and motivation. We conclude by recommending the integration of non-speech auditory tests, which provide information about aspects of auditory health that have reduced variability and fewer central influences than speech tests, in parallel with the traditional audiogram and speech-based assessments.


Asunto(s)
Pruebas Auditivas , Calidad de Vida , Umbral Auditivo , Audición , Ruido/efectos adversos
5.
Ear Hear ; 41(4): 747-761, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31584504

RESUMEN

OBJECTIVES: Cochlear implants (CIs) restore some spatial advantages for speech understanding in noise to individuals with single-sided deafness (SSD). In addition to a head-shadow advantage when the CI ear has a better signal-to-noise ratio, a CI can also provide a binaural advantage in certain situations, facilitating the perceptual separation of spatially separated concurrent voices. While some bilateral-CI listeners show a similar binaural advantage, bilateral-CI listeners with relatively large asymmetries in monaural speech understanding can instead experience contralateral speech interference. Based on the interference previously observed for asymmetric bilateral-CI listeners, this study tested the hypothesis that in a multiple-talker situation, the acoustic ear would interfere with rather than improve CI speech understanding for SSD-CI listeners. DESIGN: Experiment 1 measured CI-ear speech understanding in the presence of competing speech or noise for 13 SSD-CI listeners. Target speech from the closed-set coordinate response-measure corpus was presented to the CI ear along with one same-gender competing talker or stationary noise at target-to-masker ratios between -8 and 20 dB. The acoustic ear was presented with silence (monaural condition) or with a copy of the competing speech or noise (bilateral condition). Experiment 2 tested a subset of 6 listeners in the reverse configuration for which SSD-CI listeners have previously shown a binaural benefit (target and competing speech presented to the acoustic ear; silence or competing speech presented to the CI ear). Experiment 3 examined the possible influence of a methodological difference between experiments 1 and 2: whether the competing talker spoke keywords that were inside or outside the response set. For each experiment, the data were analyzed using repeated-measures logistic regression. For experiment 1, a correlation analysis compared the difference between bilateral and monaural speech-understanding scores to several listener-specific factors: speech understanding in the CI ear, preimplantation duration of deafness, duration of CI experience, ear of deafness (left/right), acoustic-ear audiometric thresholds, and listener age. RESULTS: In experiment 1, presenting a copy of the competing speech to the acoustic ear reduced CI speech-understanding scores for target-to-masker ratios ≥4 dB. This interference effect was limited to competing-speech conditions and was not observed for a noise masker. There was dramatic intersubject variability in the magnitude of the interference (range: 1 to 43 rationalized arcsine units), which was found to be significantly correlated with listener age. The interference effect contrasted sharply with the reverse configuration (experiment 2), whereby presenting a copy of the competing speech to the contralateral CI ear significantly improved performance relative to monaural acoustic-ear performance. Keyword condition (experiment 3) did not influence the observed pattern of interference. CONCLUSIONS: Most SSD-CI listeners experienced interference when they attended to the CI ear and competing speech was added to the acoustic ear, although there was a large amount of intersubject variability in the magnitude of the effect, with older listeners particularly susceptible to interference. While further research is needed to investigate these effects under free-field listening conditions, these results suggest that for certain spatial configurations in a multiple-talker situation, contralateral speech interference could reduce the benefit that an SSD-CI otherwise provides.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Sordera , Percepción del Habla , Acústica , Audición , Humanos
6.
Ear Hear ; 41(3): 576-590, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31436754

RESUMEN

OBJECTIVES: Single-sided deafness cochlear-implant (SSD-CI) listeners and bilateral cochlear-implant (BI-CI) listeners gain near-normal levels of head-shadow benefit but limited binaural benefits. One possible reason for these limited binaural benefits is that cochlear places of stimulation tend to be mismatched between the ears. SSD-CI and BI-CI patients might benefit from a binaural fitting that reallocates frequencies to reduce interaural place mismatch. However, this approach could reduce monaural speech recognition and head-shadow benefit by excluding low- or high-frequency information from one ear. This study examined how much frequency information can be excluded from a CI signal in the poorer-hearing ear without reducing head-shadow benefits and how these outcomes are influenced by interaural asymmetry in monaural speech recognition. DESIGN: Speech-recognition thresholds for sentences in speech-shaped noise were measured for 6 adult SSD-CI listeners, 12 BI-CI listeners, and 9 normal-hearing listeners presented with vocoder simulations. Stimuli were presented using nonindividualized in-the-ear or behind-the-ear head-related impulse-response simulations with speech presented from a 70° azimuth (poorer-hearing side) and noise from 70° (better-hearing side), thereby yielding a better signal-to-noise ratio (SNR) at the poorer-hearing ear. Head-shadow benefit was computed as the improvement in bilateral speech-recognition thresholds gained from enabling the CI in the poorer-hearing, better-SNR ear. High- or low-pass filtering was systematically applied to the head-related impulse-response-filtered stimuli presented to the poorer-hearing ear. For the SSD-CI listeners and SSD-vocoder simulations, only high-pass filtering was applied, because the CI frequency allocation would never need to be adjusted downward to frequency-match the ears. For the BI-CI listeners and BI-vocoder simulations, both low and high pass filtering were applied. The normal-hearing listeners were tested with two levels of performance to examine the effect of interaural asymmetry in monaural speech recognition (vocoder synthesis-filter slopes: 5 or 20 dB/octave). RESULTS: Mean head-shadow benefit was smaller for the SSD-CI listeners (~7 dB) than for the BI-CI listeners (~14 dB). For SSD-CI listeners, frequencies <1236 Hz could be excluded; for BI-CI listeners, frequencies <886 or >3814 Hz could be excluded from the poorer-hearing ear without reducing head-shadow benefit. Bilateral performance showed greater immunity to filtering than monaural performance, with gradual changes in performance as a function of filter cutoff. Real and vocoder-simulated CI users with larger interaural asymmetry in monaural performance had less head-shadow benefit. CONCLUSIONS: The "exclusion frequency" ranges that could be removed without diminishing head-shadow benefit are interpreted in terms of low importance in the speech intelligibility index and a small head-shadow magnitude at low frequencies. Although groups and individuals with greater performance asymmetry gained less head-shadow benefit, the magnitudes of these factors did not predict the exclusion frequency range. Overall, these data suggest that for many SSD-CI and BI-CI listeners, the frequency allocation for the poorer-ear CI can be shifted substantially without sacrificing head-shadow benefit, at least for energetic maskers. Considering the two ears together as a single system may allow greater flexibility in discarding redundant frequency content from a CI in one ear when considering bilateral programming solutions aimed at reducing interaural frequency mismatch.


Asunto(s)
Implantación Coclear , Implantes Cocleares , Percepción del Habla , Adulto , Audición , Humanos , Ruido
7.
J Acoust Soc Am ; 147(1): 446, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-32006956

RESUMEN

For single-sided deafness cochlear-implant (SSD-CI) listeners, different peripheral representations for electric versus acoustic stimulation, combined with interaural frequency mismatch, might limit the ability to perceive bilaterally presented speech as a single voice. The assessment of binaural fusion often relies on subjective report, which requires listeners to have some understanding of the perceptual phenomenon of object formation. Two experiments explored whether binaural fusion could instead be assessed using judgments of the number of voices in a mixture. In an SSD-CI simulation, normal-hearing listeners were presented with one or two "diotic" voices (i.e., unprocessed in one ear and noise-vocoded in the other) in a mixture with additional monaural voices. In experiment 1, listeners reported how many voices they heard. Listeners generally counted the diotic speech as two separate voices, regardless of interaural frequency mismatch. In experiment 2, listeners identified which of two mixtures contained diotic speech. Listeners performed significantly better with interaurally frequency-matched than with frequency-mismatched stimuli. These contrasting results suggest that listeners experienced partial fusion: not enough to count the diotic speech as one voice, but enough to detect its presence. The diotic-speech detection task (experiment 2) might provide a tool to evaluate fusion and optimize frequency mapping for SSD-CI patients.


Asunto(s)
Discriminación en Psicología , Percepción del Habla , Estimulación Acústica , Adolescente , Adulto , Implantes Cocleares , Humanos , Psicoacústica , Procesamiento de Señales Asistido por Computador , Pruebas de Discriminación del Habla , Adulto Joven
8.
J Acoust Soc Am ; 147(5): 3712, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32486805

RESUMEN

The relative importance of individual frequency regions for speech intelligibility has been firmly established for broadband auditory-only (AO) conditions. Yet, speech communication often takes place face-to-face. This study tested the hypothesis that under auditory-visual (AV) conditions, where visual information is redundant with high-frequency auditory cues, lower frequency regions will increase in relative importance compared to AO conditions. Frequency band-importance functions for consonants were measured for eight hearing-impaired and four normal-hearing listeners. Speech was filtered into four 1/3-octave bands each separated by an octave to minimize energetic masking. On each trial, the signal-to-noise ratio (SNR) in each band was selected randomly from a 10-dB range. AO and AV band-importance functions were estimated using three logistic-regression analyses: a primary model relating performance to the four independent SNRs; a control model that also included band-interaction terms; and a different set of four control models, each examining one band at a time. For both listener groups, the relative importance of the low-frequency bands increased under AV conditions, consistent with earlier studies using isolated speech bands. All three analyses showed similar results, indicating the absence of cross-band interactions. These results suggest that accurate prediction of AV speech intelligibility may require different frequency-importance functions than for AO conditions.


Asunto(s)
Inteligibilidad del Habla , Percepción del Habla , Umbral Auditivo , Señales (Psicología) , Audición , Reconocimiento en Psicología
10.
J Acoust Soc Am ; 145(4): 2113, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-31046298

RESUMEN

Normal-hearing (NH) listeners can extract and integrate speech fragments from momentary dips in the level of a fluctuating masker, yielding a fluctuating-masker benefit (FMB) for speech understanding relative to a stationary-noise masker. Hearing-impaired (HI) listeners generally show less FMB, suggesting a dip-listening deficit attributable to suprathreshold spectral or temporal distortion. However, reduced FMB might instead result from different test signal-to-noise ratios (SNRs), reduced absolute audibility of otherwise unmasked speech segments, or age differences. This study examined the FMB for nine age-matched NH-HI listener pairs, while simultaneously equalizing audibility, SNR, and percentage-correct performance in stationary noise. Nonsense syllables were masked by stationary noise, 4- or 32-Hz sinusoidally amplitude-modulated noise (SAMN), or an opposite-gender interfering talker. Stationary-noise performance was equalized by adjusting the response-set size. Audibility was equalized by removing stimulus components falling below the HI absolute threshold. HI listeners showed a clear 4.5-dB reduction in FMB for 32-Hz SAMN, a similar FMB to NH listeners for 4-Hz SAMN, and a non-significant trend toward a 2-dB reduction in FMB for an interfering talker. These results suggest that HI listeners do not exhibit a general dip-listening deficit for all fluctuating maskers, but rather a specific temporal-resolution deficit affecting performance for high-rate modulated maskers.


Asunto(s)
Pérdida Auditiva/fisiopatología , Enmascaramiento Perceptual , Adulto , Umbral Auditivo , Femenino , Audición , Humanos , Masculino , Persona de Mediana Edad , Relación Señal-Ruido , Percepción del Habla
11.
J Acoust Soc Am ; 145(2): 1129, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30823825

RESUMEN

This study developed and tested a real-time processing algorithm designed to degrade sound localization (LocDeg algorithm) without affecting binaural benefits for speech reception in noise. Input signals were divided into eight frequency channels. The odd-numbered channels were mixed between the ears to confuse the direction of interaural cues while preserving interaural cues in the even-numbered channels. The LocDeg algorithm was evaluated for normal-hearing listeners performing sound localization and speech-reception tasks. Results showed that the LocDeg algorithm successfully degraded sound-localization performance without affecting speech-reception performance or spatial release from masking for speech in noise. The LocDeg algorithm did, however, degrade speech-reception performance in a task involving spatially separated talkers in a multi-talker environment, which is thought to depend on differences in perceived spatial location of concurrent talkers. This LocDeg algorithm could be a valuable tool for isolating the importance of sound-localization ability from other binaural benefits in real-world environments.


Asunto(s)
Umbral Auditivo/fisiología , Procesamiento de Señales Asistido por Computador , Localización de Sonidos/fisiología , Adulto , Algoritmos , Femenino , Humanos , Masculino , Ruido , Prueba del Umbral de Recepción del Habla , Adulto Joven
12.
Ear Hear ; 39(1): 110-123, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28787316

RESUMEN

OBJECTIVES: Bilateral cochlear implants (BI-CIs) are intended to improve sound localization and speech understanding in the presence of interfering sounds. For normal-hearing listeners, improved speech understanding in the presence of interfering sounds can be achieved with monaural head shadow and binaural unmasking. While some BI-CI listeners experience binaural unmasking under certain testing conditions, others appear to not. This study tested a group of BI-CI users with hearing histories that have been linked to poor binaural processing-early onset of deafness or long duration of deafness in just one ear. We predicted that these listeners would experience the opposite of binaural unmasking (i.e., contralateral interference) when trying to understand speech in the presence of a competing talker. DESIGN: Nine adult BI-CI users who were deafened early in life or had an asymmetric hearing history (e.g., a much longer duration of deafness in one ear) participated in this study. The coordinate response measure corpus was used to assess speech understanding for a male target talker in quiet or in the presence of one male competing talker. Experiment 1 measured binaural unmasking in a paradigm that provided no head-shadow component. The target was always presented monaurally, while the interferer was presented either monaurally or diotically. Experiment 2 measured spatial release from masking in a paradigm that included both a head-shadow component and possible binaural-unmasking component. Nonindividualized head-related transfer functions were used to simulate talker locations in the front or 90° to the left or right. RESULTS: In experiment 1, all nine listeners experienced contralateral interference (9 dB on average). Four listeners demonstrated roughly symmetric contralateral interference; five listeners experienced asymmetrical contralateral interference. In experiment 2, the listeners experienced only 1 dB of spatial release from masking on average; this small amount was possibly a result of the contralateral interference observed in experiment 1. The results were best explained by individual differences in speech understanding in quiet, which significantly correlated with the duration of deafness in the ipsilateral ear. Specifically, instances of asymmetrical contralateral interference could correspond to asymmetrical hearing histories. CONCLUSIONS: Bilateral cochlear implantation should provide a hearing benefit to the recipient. For the BI-CI listeners specifically recruited for this study, there seems to be a conflict with processing the auditory information across the two ears, which produced the opposite of the desired hearing benefit. This suggests that there may be a subset of potential BI-CI users for whom contralateral interference offsets much of the potential head-shadow benefit. If so, earlier implantation in the second implanted ear might have produced larger binaural benefits, which is important information for clinicians advising patients considering bilateral implantation.


Asunto(s)
Implantes Cocleares , Sordera/fisiopatología , Localización de Sonidos , Percepción del Habla , Adulto , Sordera/rehabilitación , Humanos , Modelos Logísticos , Masculino
13.
Ear Hear ; 38(5): 554-567, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28301390

RESUMEN

OBJECTIVES: Cochlear implants (CIs) are increasingly recommended to individuals with residual bilateral acoustic hearing. Although new hearing-preserving electrode designs and surgical approaches show great promise, CI recipients are still at risk to lose acoustic hearing in the implanted ear, which could prevent the ability to take advantage of binaural unmasking to aid speech recognition in noise. This study examined the tradeoff between the benefits of a CI for speech understanding in noise and the potential loss of binaural unmasking for CI recipients with some bilateral preoperative acoustic hearing. DESIGN: Binaural unmasking is difficult to evaluate in CI candidates because speech perception in noise is generally too poor to measure reliably in the range of signal to noise ratios (SNRs) where binaural intelligibility level differences (BILDs) are typically observed (<5 dB). Thus, a test of audiovisual speech perception in noise was employed to increase performance to measureable levels. BILDs were measured preoperatively for 11 CI candidates and at least 5 months post-activation for 10 of these individuals (1 individual elected not to receive a CI). Audiovisual sentences were presented in speech-shaped masking noise between -10 and +15 dB SNR. The noise was always correlated between the ears, while the speech signal was either correlated (N0S0) or inversely correlated (N0Sπ). Stimuli were delivered via headphones to the unaided ear(s) and, where applicable, via auxiliary input to the CI speech processor. A z test evaluated performance differences between the N0S0 and N0Sπ conditions for each listener pre- and postoperatively. For listeners showing a significant difference, the magnitude of the BILD was characterized as the difference in SNRs required to achieve 50% correct performance. One listener who underwent hearing-preservation surgery received additional postoperative tests, which presented sound directly to both ears and to the CI speech processor. RESULTS: Five of 11 listeners showed a significant preoperative BILD (range: 2.0 to 7.3 dB). Only 2 of these 5 showed a significant postoperative BILD, but the mean BILD was smaller (1.3 dB) than that observed preoperatively (3.1 dB). Despite the fact that some listeners lost the preoperative binaural benefit, 9 out of 10 listeners tested postoperatively had performance equal to or better than their best pre-CI performance. The listener who retained functional acoustic hearing in the implanted ear also demonstrated a preserved acoustic BILD postoperatively. CONCLUSIONS: Approximately half of the CI candidates in this study demonstrated preoperative binaural hearing benefits for audiovisual speech perception in noise. Most of these listeners lost their acoustic hearing in the implanted ear after surgery (using nonhearing-preservation techniques), and therefore lost access to this binaural benefit. In all but one case, any loss of binaural benefit was compensated for or exceeded by an improvement in speech perception with the CI. Evidence of a preoperative BILD suggests that certain CI candidates might further benefit from hearing-preservation surgery to retain acoustic binaural unmasking, as demonstrated for the listener who underwent hearing-preservation surgery. This test of binaural audiovisual speech perception in noise could serve as a diagnostic tool to identify CI candidates who are most likely to receive functional benefits from their bilateral acoustic hearing.


Asunto(s)
Estimulación Acústica , Implantes Cocleares , Pruebas Auditivas , Percepción del Habla , Adulto , Anciano , Implantación Coclear , Femenino , Humanos , Masculino , Persona de Mediana Edad , Ruido , Localización de Sonidos
14.
Ear Hear ; 38(3): 374-386, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28002083

RESUMEN

OBJECTIVES: Cochlear-implant (CI) users with single-sided deafness (SSD)-that is, one normal-hearing (NH) ear and one CI ear-can obtain some unmasking benefits when a mixture of target and masking voices is presented to the NH ear and a copy of just the masking voices is presented to the CI ear. NH listeners show similar benefits in a simulation of SSD-CI listening, whereby a mixture of target and masking voices is presented to one ear and a vocoded copy of the masking voices is presented to the opposite ear. However, the magnitude of the benefit for SSD-CI listeners is highly variable across individuals and is on average less than for NH listeners presented with vocoded stimuli. One possible explanation for the limited benefit observed for some SSD-CI users is that temporal and spectral discrepancies between the acoustic and electric ears might interfere with contralateral unmasking. The present study presented vocoder simulations to NH participants to examine the effects of interaural temporal and spectral mismatches on contralateral unmasking. DESIGN: Speech-reception performance was measured in a competing-talker paradigm for NH listeners presented with vocoder simulations of SSD-CI listening. In the monaural condition, listeners identified target speech masked by two same-gender interferers, presented to the left ear. In the bilateral condition, the same stimuli were presented to the left ear, but the right ear was presented with a noise-vocoded copy of the interfering voices. This paradigm tested whether listeners could integrate the interfering voices across the ears to better hear the monaural target. Three common distortions inherent in CI processing were introduced to the vocoder processing: spectral shifts, temporal delays, and reduced frequency selectivity. RESULTS: In experiment 1, contralateral unmasking (i.e., the benefit from adding the vocoded maskers to the second ear) was impaired by spectral mismatches of four equivalent rectangular bandwidths or greater. This is equivalent to roughly a 3.6-mm mismatch between the cochlear places stimulated in the electric and acoustic ears, which is on the low end of the average expected mismatch for SSD-CI listeners. In experiment 2, performance was negatively affected by a temporal mismatch of 24 ms or greater, but not for mismatches in the 0 to 12 ms range expected for SSD-CI listeners. Experiment 3 showed an interaction between spectral shift and spectral resolution, with less effect of interaural spectral mismatches when the number of vocoder channels was reduced. Experiment 4 applied interaural spectral and temporal mismatches in combination. Performance was best when both frequency and timing were aligned, but in cases where a mismatch was present in one dimension (either frequency or latency), the addition of mismatch in the second dimension did not further disrupt performance. CONCLUSIONS: These results emphasize the need for interaural alignment-in timing and especially in frequency-to maximize contralateral unmasking for NH listeners presented with vocoder simulations of SSD-CI listening. Improved processing strategies that reduce mismatch between the electric and acoustic ears of SSD-CI listeners might improve their ability to obtain binaural benefits in multitalker environments.


Asunto(s)
Implantes Cocleares , Pérdida Auditiva/rehabilitación , Percepción del Habla , Adulto , Cóclea/fisiología , Equipos de Comunicación para Personas con Discapacidad , Humanos , Proyectos Piloto , Sonido , Adulto Joven
15.
Ear Hear ; 37(3): 289-302, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26886027

RESUMEN

OBJECTIVES: Listening to speech with multiple competing talkers requires the perceptual separation of the target voice from the interfering background. Normal-hearing listeners are able to take advantage of perceived differences in the spatial locations of competing sound sources to facilitate this process. Previous research suggests that bilateral (BI) cochlear-implant (CI) listeners cannot do so, and it is unknown whether single-sided deaf (SSD) CI users (one acoustic and one CI ear) have this ability. This study investigated whether providing a second ear via cochlear implantation can facilitate the perceptual separation of targets and interferers in a listening situation involving multiple competing talkers. DESIGN: BI-CI and SSD-CI listeners were required to identify speech from a target talker mixed with one or two interfering talkers. In the baseline monaural condition, the target speech and the interferers were presented to one of the CIs (for the BI-CI listeners) or to the acoustic ear (for the SSD-CI listeners). In the bilateral condition, the target was still presented to the first ear but the interferers were presented to both the target ear and the listener's second ear (always a CI), thereby testing whether CI listeners could use information about the interferer obtained from a second ear to facilitate perceptual separation of the target and interferer. RESULTS: Presenting a copy of the interfering signals to the second ear improved performance, up to 4 to 5 dB (12 to 18 percentage points), but the amount of improvement depended on the type of interferer. For BI-CI listeners, the improvement occurred mainly in conditions involving one interfering talker, regardless of gender. For SSD-CI listeners, the improvement occurred in conditions involving one or two interfering talkers of the same gender as the target. This interaction is consistent with the idea that the SSD-CI listeners had access to pitch cues in their normal-hearing ear to separate the opposite-gender target and interferers, while the BI-CI listeners did not. CONCLUSIONS: These results suggest that a second auditory input via a CI can facilitate the perceptual separation of competing talkers in situations where monaural cues are insufficient to do so, thus partially restoring a key advantage of having two ears that was previously thought to be inaccessible to CI users.


Asunto(s)
Implantación Coclear , Sordera/rehabilitación , Pérdida Auditiva Unilateral/rehabilitación , Percepción del Habla , Adulto , Anciano , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Persona de Mediana Edad , Localización de Sonidos
16.
Ear Hear ; 36(3): e99-112, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25514796

RESUMEN

OBJECTIVES: As cochlear implant (CI) acceptance increases and candidacy criteria are expanded, these devices are increasingly recommended for individuals with less than profound hearing loss. As a result, many individuals who receive a CI also retain acoustic hearing, often in the low frequencies, in the nonimplanted ear (i.e., bimodal hearing) and in some cases in the implanted ear (i.e., hybrid hearing) which can enhance the performance achieved by the CI alone. However, guidelines for clinical decisions pertaining to cochlear implantation are largely based on expectations for postsurgical speech-reception performance with the CI alone in auditory-only conditions. A more comprehensive prediction of postimplant performance would include the expected effects of residual acoustic hearing and visual cues on speech understanding. An evaluation of auditory-visual performance might be particularly important because of the complementary interaction between the speech information relayed by visual cues and that contained in the low-frequency auditory signal. The goal of this study was to characterize the benefit provided by residual acoustic hearing to consonant identification under auditory-alone and auditory-visual conditions for CI users. Additional information regarding the expected role of residual hearing in overall communication performance by a CI listener could potentially lead to more informed decisions regarding cochlear implantation, particularly with respect to recommendations for or against bilateral implantation for an individual who is functioning bimodally. DESIGN: Eleven adults 23 to 75 years old with a unilateral CI and air-conduction thresholds in the nonimplanted ear equal to or better than 80 dB HL for at least one octave frequency between 250 and 1000 Hz participated in this study. Consonant identification was measured for conditions involving combinations of electric hearing (via the CI), acoustic hearing (via the nonimplanted ear), and speechreading (visual cues). RESULTS: The results suggest that the benefit to CI consonant-identification performance provided by the residual acoustic hearing is even greater when visual cues are also present. An analysis of consonant confusions suggests that this is because the voicing cues provided by the residual acoustic hearing are highly complementary with the mainly place-of-articulation cues provided by the visual stimulus. CONCLUSIONS: These findings highlight the need for a comprehensive prediction of trimodal (acoustic, electric, and visual) postimplant speech-reception performance to inform implantation decisions. The increased influence of residual acoustic hearing under auditory-visual conditions should be taken into account when considering surgical procedures or devices that are intended to preserve acoustic hearing in the implanted ear. This is particularly relevant when evaluating the candidacy of a current bimodal CI user for a second CI (i.e., bilateral implantation). Although recent developments in CI technology and surgical techniques have increased the likelihood of preserving residual acoustic hearing, preservation cannot be guaranteed in each individual case. Therefore, the potential gain to be derived from bilateral implantation needs to be weighed against the possible loss of the benefit provided by residual acoustic hearing.


Asunto(s)
Implantación Coclear , Señales (Psicología) , Pérdida Auditiva Sensorineural/rehabilitación , Percepción del Habla/fisiología , Percepción Visual/fisiología , Adulto , Anciano , Implantes Cocleares , Femenino , Pérdida Auditiva Sensorineural/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Índice de Severidad de la Enfermedad , Adulto Joven
17.
J Acoust Soc Am ; 137(2): 702-13, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25698005

RESUMEN

Single-sided deafness prevents access to the binaural cues that help normal-hearing listeners extract target speech from competing voices. Little is known about how listeners with one normal-hearing ear might benefit from access to severely degraded audio signals that preserve only envelope information in the second ear. This study investigated whether vocoded masker-envelope information presented to one ear could improve performance for normal-hearing listeners in a multi-talker speech-identification task presented to the other ear. Target speech and speech or non-speech maskers were presented unprocessed to the left ear. The right ear received no signal, or either an unprocessed or eight-channel noise-vocoded copy of the maskers. Presenting the vocoded maskers contralaterally yielded significant masking release from same-gender speech maskers, albeit less than in the unprocessed case, but not from opposite-gender speech, stationary-noise, or modulated-noise maskers. Unmasking also occurred with as few as two vocoder channels and when an attenuated copy of the target signal was added to the maskers before vocoding. These data show that delivering masker-envelope information contralaterally generates masking release in situations where target-masker similarity impedes monaural speech-identification performance. By delivering speech-envelope information to a deaf ear, cochlear implants for single-sided deafness have the potential to produce a similar effect.


Asunto(s)
Estimulación Acústica/métodos , Audiometría del Habla/métodos , Señales (Psicología) , Ruido/efectos adversos , Enmascaramiento Perceptual , Percepción del Habla , Femenino , Lateralidad Funcional , Humanos , Masculino , Inteligibilidad del Habla
18.
J Acoust Soc Am ; 136(1): 301-16, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24993215

RESUMEN

Poor speech understanding in noise by hearing-impaired (HI) listeners is only partly explained by elevated audiometric thresholds. Suprathreshold-processing impairments such as reduced temporal or spectral resolution or temporal fine-structure (TFS) processing ability might also contribute. Although speech contains dynamic combinations of temporal and spectral modulation and TFS content, these capabilities are often treated separately. Modulation-depth detection thresholds for spectrotemporal modulation (STM) applied to octave-band noise were measured for normal-hearing and HI listeners as a function of temporal modulation rate (4-32 Hz), spectral ripple density [0.5-4 cycles/octave (c/o)] and carrier center frequency (500-4000 Hz). STM sensitivity was worse than normal for HI listeners only for a low-frequency carrier (1000 Hz) at low temporal modulation rates (4-12 Hz) and a spectral ripple density of 2 c/o, and for a high-frequency carrier (4000 Hz) at a high spectral ripple density (4 c/o). STM sensitivity for the 4-Hz, 4-c/o condition for a 4000-Hz carrier and for the 4-Hz, 2-c/o condition for a 1000-Hz carrier were correlated with speech-recognition performance in noise after partialling out the audiogram-based speech-intelligibility index. Poor speech-reception and STM-detection performance for HI listeners may be related to a combination of reduced frequency selectivity and a TFS-processing deficit limiting the ability to track spectral-peak movements.


Asunto(s)
Ruido/efectos adversos , Enmascaramiento Perceptual , Personas con Deficiencia Auditiva/psicología , Inteligibilidad del Habla , Percepción del Habla , Estimulación Acústica , Adulto , Audiometría , Umbral Auditivo , Comprensión , Señales (Psicología) , Femenino , Humanos , Masculino , Persona de Mediana Edad , Psicoacústica , Espectrografía del Sonido , Factores de Tiempo , Adulto Joven
19.
JASA Express Lett ; 4(9)2024 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-39315944

RESUMEN

Psychoacoustic stimulus presentation to the cochlear implant via direct audio input (DAI) is no longer possible for many newer sound processors (SPs). This study assessed the feasibility of placing circumaural headphones over the SP. Calibration spectra for loudspeaker, DAI, and headphone modalities were estimated by measuring cochlear-implant electrical output levels for tones presented to SPs on an acoustic manikin. Differences in calibration spectra between modalities arose mainly from microphone-response characteristics (high-frequency differences between DAI and the other modalities) or a proximity effect (low-frequency differences between headphones and loudspeaker). Calibration tables are provided to adjust for differences between the three modalities.


Asunto(s)
Implantes Cocleares , Humanos , Estimulación Acústica , Calibración , Psicoacústica
20.
J Am Acad Audiol ; 24(4): 307-28, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23636211

RESUMEN

BACKGROUND: Hearing-impaired (HI) individuals with similar ages and audiograms often demonstrate substantial differences in speech-reception performance in noise. Traditional models of speech intelligibility focus primarily on average performance for a given audiogram, failing to account for differences between listeners with similar audiograms. Improved prediction accuracy might be achieved by simulating differences in the distortion that speech may undergo when processed through an impaired ear. Although some attempts to model particular suprathreshold distortions can explain general speech-reception deficits not accounted for by audibility limitations, little has been done to model suprathreshold distortion and predict speech-reception performance for individual HI listeners. Auditory-processing models incorporating individualized measures of auditory distortion, along with audiometric thresholds, could provide a more complete understanding of speech-reception deficits by HI individuals. A computational model capable of predicting individual differences in speech-recognition performance would be a valuable tool in the development and evaluation of hearing-aid signal-processing algorithms for enhancing speech intelligibility. PURPOSE: This study investigated whether biologically inspired models simulating peripheral auditory processing for individual HI listeners produce more accurate predictions of speech-recognition performance than audiogram-based models. RESEARCH DESIGN: Psychophysical data on spectral and temporal acuity were incorporated into individualized auditory-processing models consisting of three stages: a peripheral stage, customized to reflect individual audiograms and spectral and temporal acuity; a cortical stage, which extracts spectral and temporal modulations relevant to speech; and an evaluation stage, which predicts speech-recognition performance by comparing the modulation content of clean and noisy speech. To investigate the impact of different aspects of peripheral processing on speech predictions, individualized details (absolute thresholds, frequency selectivity, spectrotemporal modulation [STM] sensitivity, compression) were incorporated progressively, culminating in a model simulating level-dependent spectral resolution and dynamic-range compression. STUDY SAMPLE: Psychophysical and speech-reception data from 11 HI and six normal-hearing listeners were used to develop the models. DATA COLLECTION AND ANALYSIS: Eleven individualized HI models were constructed and validated against psychophysical measures of threshold, frequency resolution, compression, and STM sensitivity. Speech-intelligibility predictions were compared with measured performance in stationary speech-shaped noise at signal-to-noise ratios (SNRs) of -6, -3, 0, and 3 dB. Prediction accuracy for the individualized HI models was compared to the traditional audibility-based Speech Intelligibility Index (SII). RESULTS: Models incorporating individualized measures of STM sensitivity yielded significantly more accurate within-SNR predictions than the SII. Additional individualized characteristics (frequency selectivity, compression) improved the predictions only marginally. A nonlinear model including individualized level-dependent cochlear-filter bandwidths, dynamic-range compression, and STM sensitivity predicted performance more accurately than the SII but was no more accurate than a simpler linear model. Predictions of speech-recognition performance simultaneously across SNRs and individuals were also significantly better for some of the auditory-processing models than for the SII. CONCLUSIONS: A computational model simulating individualized suprathreshold auditory-processing abilities produced more accurate speech-intelligibility predictions than the audibility-based SII. Most of this advantage was realized by a linear model incorporating audiometric and STM-sensitivity information. Although more consistent with known physiological aspects of auditory processing, modeling level-dependent changes in frequency selectivity and gain did not result in more accurate predictions of speech-reception performance.


Asunto(s)
Umbral Auditivo/fisiología , Pérdida Auditiva Sensorineural/fisiopatología , Audición/fisiología , Modelos Biológicos , Distorsión de la Percepción/fisiología , Percepción del Habla/fisiología , Algoritmos , Audiometría , Corteza Auditiva/fisiología , Cóclea/fisiología , Cognición/fisiología , Femenino , Pérdida Auditiva Sensorineural/diagnóstico , Humanos , Modelos Lineales , Masculino , Ruido , Psicoacústica , Pruebas de Discriminación del Habla
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA