Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Neuropsychopharmacol ; 27(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38175142

RESUMEN

BACKGROUND: Cannabis use is a risk factor of psychiatric illness, such as bipolar disorder type-I (BDI). Indeed, cannabis use strongly influences the onset and clinical course of BDI, although the biological mechanisms underlying this interaction remain unknown. Therefore, we have reviewed the biological mechanisms affected by cannabis use that may trigger BD. METHODS: A systematic review was carried out of articles in which gene expression was studied in cannabis users or human-derived cells exposed to tetrahydrocannabinol (THC) or cannabidiol (CBD). A second systematic review was then performed to identify articles in which gene expression was studied in BDI samples, highlighting those that described alterations to the same molecular and cellular mechanisms affected by cannabis/THC/CBD. RESULTS: The initial search identified 82 studies on cannabis and 962 on BDI. After removing duplicates and applying the inclusion/exclusion criteria, 9 studies into cannabis and 228 on BDI were retained. The molecular and cellular mechanisms altered by cannabis use or THC/CBD exposure were then identified, including neural development and function, cytoskeletal function, cell adhesion, mitochondrial biology, inflammatory related pathways, lipid metabolism, the endocannabinoid system, the hypocretin/orexin system, and apoptosis. Alterations to those activities were also described in 19 of 228 focused on BDI. CONCLUSIONS: The biological mechanisms described in this study may be good candidates to the search for diagnostic biomarkers and therapeutic targets for BDI. Because cannabis use can trigger the onset of BD, further studies would be of interest to determine whether they are involved in the early development of the disorder, prompting early treatment.


Asunto(s)
Trastorno Bipolar , Cannabidiol , Cannabis , Alucinógenos , Humanos , Trastorno Bipolar/tratamiento farmacológico , Agonistas de Receptores de Cannabinoides , Cannabidiol/farmacología , Alucinógenos/uso terapéutico , Factores de Riesgo , Dronabinol/efectos adversos
2.
Anesthesiology ; 141(1): 131-150, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38602502

RESUMEN

BACKGROUND: Dynamic changes in neuronal activity and in noradrenergic locus coeruleus (LC) projections have been proposed during the transition from acute to chronic pain. Thus, the authors explored the cellular cFos activity of the LC and its projections in conjunction with spontaneous pain-like behavior in neuropathic rats. METHODS: Tyrosine hydroxylase:Cre and wild-type Long-Evans rats, males and females, were subjected to chronic constriction injury (CCI) for 2 (short-term, CCI-ST) or 30 days (long-term, CCI-LT), evaluating cFos and Fluoro-Gold expression in the LC, and its projections to the spinal cord (SC) and rostral anterior cingulate cortex (rACC). These tests were carried out under basal conditions (unstimulated) and after noxious mechanical stimulation. LC activity was evaluated through chemogenetic and pharmacologic approaches, as were its projections, in association with spontaneous pain-like behaviors. RESULTS: CCI-ST enhanced basal cFos expression in the LC and in its projection to the SC, which increased further after noxious stimulation. Similar basal activation was found in the neurons projecting to the rACC, although this was not modified by stimulation. Strong basal cFos expression was found in CCI-LT, specifically in the projection to the rACC, which was again not modified by stimulation. No cFos expression was found in the CCI-LT LCipsilateral (ipsi)/contralateral (contra)→SC. Chemogenetics showed that CCI-ST is associated with greater spontaneous pain-like behavior when the LCipsi is blocked, or by selectively blocking the LCipsi→SC projection. Activation of the LCipsi or LCipsi/contra→SC dampened pain-like behavior. Moreover, Designer Receptor Exclusively Activated by Designer Drugs (DREADDs)-mediated inactivation of the CCI-ST LCipsi→rACC or CCI-LT LCipsi/contra→rACC pathway, or intra-rACC antagonism of α-adrenoreceptors, also dampens pain-like behavior. CONCLUSIONS: In the short term, activation of the LC after CCI attenuates spontaneous pain-like behaviors via projections to the SC while increasing nociception via projections to the rACC. In the long term, only the projections from the LC to the rACC contribute to modulate pain-like behaviors in this model.


Asunto(s)
Locus Coeruleus , Ratas Long-Evans , Animales , Locus Coeruleus/fisiopatología , Locus Coeruleus/metabolismo , Ratas , Masculino , Femenino , Conducta Animal/fisiología , Factores de Tiempo , Neuralgia/fisiopatología , Neuralgia/etiología , Neuralgia/metabolismo , Modelos Animales de Enfermedad
3.
Angew Chem Int Ed Engl ; : e202403636, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38887153

RESUMEN

A problem of systemic pharmacotherapy is off-target activity, which causes adverse effects. Outstanding examples include neuroinhibitory medications like antiseizure drugs, which are used against epilepsy and neuropathic pain but cause systemic side effects. There is a need of drugs that inhibit nerve signals locally and on-demand without affecting other regions of the body. Photopharmacology aims to address this problem with light-activated drugs and localized illumination in the target organ. Here, we have developed photoswitchable derivatives of the widely prescribed antiseizure drug carbamazepine. For that purpose, we expanded our method of ortho azologization of tricyclic drugs to meta/para and to N-bridged diazocine. Our results validate the concept of ortho cryptoazologs (uniquely exemplified by Carbazopine-1) and bring to light Carbadiazocine (8), which can be photoswitched between 400-590 nm light (using violet LEDs and halogen lamps) and shows good drug-likeness and predicted safety. Both compounds display photoswitchable activity in vitro and in translucent zebrafish larvae. Carbadiazocine (8) also offers in vivo analgesic efficacy (mechanical and thermal stimuli) in a rat model of neuropathic pain and a simple and compelling treatment demonstration with non-invasive illumination.

4.
J Neuroinflammation ; 20(1): 198, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37658434

RESUMEN

BACKGROUND: Most current disease-modifying therapies approved for multiple sclerosis (MS) are immunomodulatory drugs that counteract the aberrant activity of the immune system. Hence, new pharmacological interventions that drive anti-inflammatory activity and neuroprotection would represent interesting alternative therapeutic approaches or complementary strategies to treat progressive forms of MS. There is evidence of reduced noradrenaline levels and alterations to locus coeruleus (LC) noradrenergic neurons in MS patients, as well as in animal models of this disease, potentially factors contributing to the pathophysiology. Drugs that enhance noradrenaline appear to have some beneficial effects in MS, suggesting their potential to dampen the underlying pathology and disease progression. METHODS: Therefore, we explored the consequences of chronic LC noradrenergic neurons activation by chemogenetics in experimental autoimmune encephalomyelitis (EAE) mice, the most widely used experimental model of MS. LC activation from the onset or the peak of motor symptoms was explored as two different therapeutic approaches, assessing the motor and non-motor behavioral changes as EAE progresses, and studying demyelination, inflammation and glial activation in the spinal cord and cerebral cortex during the chronic phase of EAE. RESULTS: LC activation from the onset of motor symptoms markedly alleviated the motor deficits in EAE mice, as well as their anxiety-like behavior and sickness, in conjunction with reduced demyelination and perivascular infiltration in the spinal cord and glial activation in the spinal cord and prefrontal cortex (PFC). When animals exhibited severe paralysis, LC activation produced a modest alleviation of EAE motor symptoms and it enhanced animal well-being, in association with an improvement of the EAE pathology at the spinal cord and PFC level. Interestingly, the reduced dopamine beta-hydroxylase expression associated with EAE in the spinal cord and PFC was reversed through chemogenetic LC activation. CONCLUSION: Therefore, clear anti-inflammatory and neuroprotective effects were produced by the selective activation of LC noradrenergic neurons in EAE mice, having greater benefits when LC activation commenced earlier. Overall, these data suggest noradrenergic LC neurons may be targets to potentially alleviate some of the motor and non-motor symptoms in MS.


Asunto(s)
Neuronas Adrenérgicas , Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Animales , Ratones , Locus Coeruleus , Norepinefrina
5.
Int J Neuropsychopharmacol ; 26(11): 796-807, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-37603404

RESUMEN

BACKGROUND: The clinical debut of schizophrenia is frequently a first episode of psychosis (FEP). As such, there is considerable interest in identifying associations between biological markers and clinical or cognitive characteristics that help predict the progression and outcome of FEP patients. Previous studies showed that high prolactin, low oxytocin, and high homocysteine are factors associated with FEP 6 months after diagnosis, at which point plasma levels were correlated with some clinical and cognitive characteristics. METHODS: We reexamined 75 patients at 12 months after diagnosis to measure the evolution of these molecules and assess their association with clinical features. RESULTS: At follow-up, FEP patients had lower prolactin levels than at baseline, and patients treated with risperidone or paliperidone had higher prolactin levels than patients who received other antipsychotic agents. By contrast, no changes in oxytocin and homocysteine plasma levels were observed between the baseline and follow-up. In terms of clinical features, we found that plasma prolactin and homocysteine levels were correlated with the severity of the psychotic symptoms in male FEP patients, suggesting that they might be factors associated with psychotic symptomatology but only in men. Together with oxytocin, these molecules may also be related to sustained attention, verbal ability, and working memory cognitive domains in FEP patients. CONCLUSION: This study suggests that focusing on prolactin, oxytocin, and homocysteine at a FEP may help select adequate pharmacological treatments and develop new tools to improve the outcome of these patients, where sex should also be borne in mind.


Asunto(s)
Homocisteína , Oxitocina , Prolactina , Trastornos Psicóticos , Humanos , Masculino , Cognición , Estudios de Seguimiento , Oxitocina/sangre , Prolactina/sangre , Trastornos Psicóticos/sangre , Trastornos Psicóticos/diagnóstico , Trastornos Psicóticos/psicología , Homocisteína/sangre
6.
Brain ; 145(1): 154-167, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-34373893

RESUMEN

There is strong comorbidity between chronic pain and depression, although the neural circuits and mechanisms underlying this association remain unclear. By combining immunohistochemistry, tracing studies and western blotting, with the use of different DREADDS (designer receptor exclusively activated by designer drugs) and behavioural approaches in a rat model of neuropathic pain (chronic constriction injury), we explore how this comorbidity arises. To this end, we evaluated the time-dependent plasticity of noradrenergic locus coeruleus neurons relative to the site of injury: ipsilateral (LCipsi) or contralateral (LCcontra) locus coeruleus at three different time points: short (2 days), mid (7 days) and long term (30-35 days from nerve injury). Nerve injury led to sensorial hypersensitivity from the onset of injury, whereas depressive-like behaviour was only evident following long-term pain. Global chemogenetic blockade of the LCipsi system alone increased short-term pain sensitivity while the blockade of the LCipsi or LCcontra relieved pain-induced depression. The asymmetric contribution of locus coeruleus modules was also evident as neuropathy develops. Hence, chemogenetic blockade of the LCipsi→spinal cord projection, increased pain-related behaviours in the short term. However, this lateralized circuit is not universal as the bilateral chemogenetic inactivation of the locus coeruleus-rostral anterior cingulate cortex pathway or the intra-rostral anterior cingulate cortex antagonism of alpha1- and alpha2-adrenoreceptors reversed long-term pain-induced depression. Furthermore, chemogenetic locus coeruleus to spinal cord activation, mainly through LCipsi, reduced sensorial hypersensitivity irrespective of the time post-injury. Our results indicate that asymmetric activation of specific locus coeruleus modules promotes early restorative analgesia, as well as late depressive-like behaviour in chronic pain and depression comorbidity.


Asunto(s)
Locus Coeruleus , Neuralgia , Animales , Comorbilidad , Depresión , Humanos , Locus Coeruleus/metabolismo , Neuralgia/metabolismo , Neuronas/metabolismo , Ratas
7.
Mol Med ; 28(1): 40, 2022 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-35397534

RESUMEN

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has already caused 6 million deaths worldwide. While asymptomatic individuals are responsible of many potential transmissions, the difficulty to identify and isolate them at the high peak of infection constitutes still a real challenge. Moreover, SARS-CoV-2 provokes severe vascular damage and thromboembolic events in critical COVID-19 patients, deriving in many related deaths and long-hauler symptoms. Understanding how these processes are triggered as well as the potential long-term sequelae, even in asymptomatic individuals, becomes essential. METHODS: We have evaluated, by application of a proteomics-based quantitative approach, the effect of serum from COVID-19 asymptomatic individuals over circulating angiogenic cells (CACs). Healthy CACs were incubated ex-vivo with the serum of either COVID-19 negative (PCR -/IgG -, n:8) or COVID-19 positive asymptomatic donors, at different infective stages: PCR +/IgG - (n:8) and PCR -/IgG + (n:8). Also, a label free quantitative approach was applied to identify and quantify protein differences between these serums. Finally, machine learning algorithms were applied to validate the differential protein patterns in CACs. RESULTS: Our results confirmed that SARS-CoV-2 promotes changes at the protein level in the serum of infected asymptomatic individuals, mainly correlated with altered coagulation and inflammatory processes (Fibrinogen, Von Willebrand Factor, Thrombospondin-1). At the cellular level, proteins like ICAM-1, TLR2 or Ezrin/Radixin were only up-regulated in CACs treated with the serum of asymptomatic patients at the highest peak of infection (PCR + /IgG -), but not with the serum of PCR -/IgG + individuals. Several proteins stood out as significantly discriminating markers in CACs in response to PCR or IgG + serums. Many of these proteins particiArticle title: Kindly check and confirm the edit made in the article title.pate in the initial endothelial response against the virus. CONCLUSIONS: The ex vivo incubation of CACs with the serum of asymptomatic COVID-19 donors at different stages of infection promoted protein changes representative of the endothelial dysfunction and inflammatory response after viral infection, together with activation of the coagulation process. The current approach constitutes an optimal model to study the response of vascular cells to SARS-CoV-2 infection, and an alternative platform to test potential inhibitors targeting either the virus entry pathway or the immune responses following SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Humanos , Inmunoglobulina G , Técnicas de Amplificación de Ácido Nucleico , SARS-CoV-2
8.
Int J Neuropsychopharmacol ; 25(8): 666-677, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35353882

RESUMEN

BACKGROUND: Approximately 3% of the population suffers a first episode of psychosis (FEP), and a high percentage of these patients subsequently relapse. Because the clinical course following a FEP is hard to predict, it is of interest to identify cognitive and biological markers that will help improve the diagnosis, treatment, and outcome of such events and to define new therapeutic targets. Here we analyzed the plasma oxytocin and prolactin levels during an FEP, assessing their correlation with clinical and cognitive features. METHODS: The oxytocin and prolactin in plasma was measured in 120 FEP patients and 106 healthy controls, all of whom were subjected to a clinical and neuropsychological assessment. Most patients were under antipsychotics. Statistical analyses aimed to identify factors associated with the FEP and to search for associations between the variables. This study is preliminary and exploratory because the P-values were not corrected for multiple comparisons. RESULTS: FEP patients had less oxytocin, more prolactin, and a poor premorbid IQ, and they performed worse in sustained attention. Male patients with higher prolactin levels experienced more severe psychotic symptoms and required higher doses of antipsychotics. Low oxytocin was associated with poor sustained attention in women, whereas low oxytocin and high prolactin in men correlated with better performance in sustained attention. CONCLUSION: Low oxytocin, high prolactin, and poor premorbid IQ and sustained attention are factors associated with an FEP, representing potential therapeutic targets in these patients. These biological factors and cognitive domains might play an important role during a FEP, which could help us to develop new strategies that improve the outcomes of this disorder and that should perhaps be gender specific.


Asunto(s)
Antipsicóticos , Trastornos Psicóticos , Antipsicóticos/uso terapéutico , Cognición , Femenino , Humanos , Masculino , Oxitocina , Prolactina , Trastornos Psicóticos/tratamiento farmacológico , Trastornos Psicóticos/psicología , Caracteres Sexuales
9.
Int J Neuropsychopharmacol ; 24(9): 734-748, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34165516

RESUMEN

BACKGROUND: Minocycline (MIN) is a tetracycline with antioxidant, anti-inflammatory, and neuroprotective properties. Given the likely involvement of inflammation and oxidative stress (IOS) in schizophrenia, MIN has been proposed as a potential adjuvant treatment in this pathology. We tested an early therapeutic window, during adolescence, as prevention of the schizophrenia-related deficits in the maternal immune stimulation (MIS) animal model. METHODS: On gestational day 15, Poly I:C or vehicle was injected in pregnant Wistar rats. A total 93 male offspring received MIN (30 mg/kg) or saline from postnatal day (PND) 35-49. At PND70, rats were submitted to the prepulse inhibition test. FDG-PET and T2-weighted MRI brain studies were performed at adulthood. IOS markers were evaluated in frozen brain tissue. RESULTS: MIN treatment did not prevent prepulse inhibition test behavioral deficits in MIS offspring. However, MIN prevented morphometric abnormalities in the third ventricle but not in the hippocampus. Additionally, MIN reduced brain metabolism in cerebellum and increased it in nucleus accumbens. Finally, MIN reduced the expression of iNOS (prefrontal cortex, caudate-putamen) and increased the levels of KEAP1 (prefrontal cortex), HO1 and NQO1 (amygdala, hippocampus), and HO1 (caudate-putamen). CONCLUSIONS: MIN treatment during adolescence partially counteracts volumetric abnormalities and IOS deficits in the MIS model, likely via iNOS and Nrf2-ARE pathways, also increasing the expression of cytoprotective enzymes. However, MIN treatment during this peripubertal stage does not prevent sensorimotor gating deficits. Therefore, even though it does not prevent all the MIS-derived abnormalities evaluated, our results suggest the potential utility of early treatment with MIN in other schizophrenia domains.


Asunto(s)
Antiinflamatorios/farmacología , Antioxidantes/farmacología , Encefalopatías Metabólicas/tratamiento farmacológico , Minociclina/farmacología , Malformaciones del Sistema Nervioso/patología , Trastornos del Neurodesarrollo/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Efectos Tardíos de la Exposición Prenatal/tratamiento farmacológico , Inhibición Prepulso/efectos de los fármacos , Esquizofrenia/tratamiento farmacológico , Animales , Antiinflamatorios/administración & dosificación , Antioxidantes/administración & dosificación , Conducta Animal/efectos de los fármacos , Encefalopatías Metabólicas/etiología , Modelos Animales de Enfermedad , Femenino , Imagen por Resonancia Magnética , Masculino , Minociclina/administración & dosificación , Malformaciones del Sistema Nervioso/diagnóstico por imagen , Malformaciones del Sistema Nervioso/etiología , Trastornos del Neurodesarrollo/inducido químicamente , Trastornos del Neurodesarrollo/inmunología , Tomografía de Emisión de Positrones , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/inmunología , Ratas , Ratas Wistar , Esquizofrenia/inducido químicamente , Esquizofrenia/inmunología
10.
Sensors (Basel) ; 21(21)2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34770410

RESUMEN

Strong evidence from studies on primates and rodents shows that changes in pupil diameter may reflect neural activity in the locus coeruleus (LC). Pupillometry is the only available non-invasive technique that could be used as a reliable and easily accessible real-time biomarker of changes in the in vivo activity of the LC. However, the application of pupillometry to preclinical research in rodents is not yet fully standardized. A lack of consensus on the technical specifications of some of the components used for image recording or positioning of the animal and cameras have been recorded in recent scientific literature. In this study, a novel pupillometry system to indirectly assess, in real-time, the function of the LC in anesthetized rodents is presented. The system comprises a deep learning SOLOv2 instance-based fast segmentation framework and a platform designed to place the experimental subject, the video cameras for data acquisition, and the light source. The performance of the proposed setup was assessed and compared to other baseline methods using a validation and an external test set. In the latter, the calculated intersection over the union was 0.93 and the mean absolute percentage error was 1.89% for the selected method. The Bland-Altman analysis depicted an excellent agreement. The results confirmed a high accuracy that makes the system suitable for real-time pupil size tracking, regardless of the pupil's size, light intensity, or any features typical of the recording process in sedated mice. The framework could be used in any neurophysiological study with sedated or fixed-head animals.


Asunto(s)
Aprendizaje Profundo , Locus Coeruleus , Animales , Luz , Ratones , Pupila
11.
Cell Tissue Res ; 377(1): 107-113, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30627806

RESUMEN

Major depressive disorder is a severe, disabling disorder that affects around 4.7% of the population worldwide. Based on the monoaminergic hypothesis of depression, monoamine reuptake inhibitors have been developed as antidepressants and nowadays, they are used widely in clinical practice. However, these drugs have a limited efficacy and a slow onset of therapeutic action. Several strategies have been implemented to overcome these limitations, including switching to other drugs or introducing combined or augmentation therapies. In clinical practice, the most often used augmenting drugs are lithium, triiodothyronine, atypical antipsychotics, buspirone, and pindolol, although some others are in the pipeline. Moreover, multitarget antidepressants have been developed to improve efficacy. Despite the enormous effort exerted to improve these monoaminergic drugs, they still fail to produce a rapid and sustained antidepressant response in a substantial proportion of depressed patients. Recently, new compounds that target other neurotransmission system, such as the glutamatergic system, have become the focus of research into fast-acting antidepressant agents. These promising alternatives could represent a new pharmacological trend in the management of depression.


Asunto(s)
Antidepresivos/farmacología , Monoaminas Biogénicas/farmacología , Trastorno Depresivo Mayor/tratamiento farmacológico , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Antipsicóticos/farmacología , Buspirona/farmacología , Sinergismo Farmacológico , Humanos , Litio/farmacología , Pindolol/farmacología , Triyodotironina/farmacología
12.
Int J Neuropsychopharmacol ; 20(6): 463, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28158734

RESUMEN

Background: There is increasing evidence suggesting that the Locus Coeruleus plays a role in pain-related anxiety. Indeed, we previously found that prolonged arthritis produces anxiety-like behavior in rats, along with enhanced expression of phosphorylated extracellular signal-regulated kinase 1/2 (a marker of plasticity) in the Locus Coeruleus. However, it is unknown how this effect correlates with the electrophysiological activity of Locus Coeruleus neurons or pain-related anxiety. Methods: Using the complete Freund's adjuvant model of monoarthritis in male Sprague-Dawley rats, we studied the behavioral attributes of pain and anxiety as well as Locus Coeruleus electrophysiology in vivo 1 (MA1W) and 4 weeks (MA4W) after disease induction. Results: The manifestation of anxiety in MA4W was accompanied by dampened tonic Locus Coeruleus activity, which was coupled to an exacerbated evoked Locus Coeruleus response to noxious stimulation of the inflamed and healthy paw. When a mitogen-activating extracellular kinase inhibitor was administered to the contralateral Locus Coeruleus of MA4W, the phosphorylated extracellular signal-regulated kinase 1/2 levels in the Locus Coeruleus were restored and the exaggerated evoked response was blocked, reversing the anxiogenic-like behavior while pain hypersensitivity remained unaltered. Conclusion: As phosphorylated extracellular signal-regulated kinase 1/2 blockade in the Locus Coeruleus relieved anxiety and counteracted altered LC function, we propose that phosphorylated extracellular signal-regulated kinase 1/2 activation in the Locus Coeruleus plays a crucial role in pain-related anxiety.


Asunto(s)
Ansiedad/enzimología , Artritis Experimental/enzimología , Artritis Experimental/psicología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Locus Coeruleus/enzimología , Dolor/enzimología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Aminoacetonitrilo/análogos & derivados , Aminoacetonitrilo/farmacología , Animales , Ansiedad/tratamiento farmacológico , Ansiedad/etiología , Ansiedad/patología , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/patología , Estudios de Cohortes , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Adyuvante de Freund , Locus Coeruleus/efectos de los fármacos , Locus Coeruleus/patología , Masculino , Neuronas/enzimología , Neuronas/patología , Nocicepción/efectos de los fármacos , Nocicepción/fisiología , Dolor/complicaciones , Dolor/tratamiento farmacológico , Dolor/patología , Fosforilación/efectos de los fármacos , Inhibidores de Proteasas/farmacología , Ratas Sprague-Dawley , Tirosina 3-Monooxigenasa/metabolismo
13.
Cereb Cortex ; 26(6): 2778-2789, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26088969

RESUMEN

Although deep brain stimulation (DBS) has been used with success in treatment-resistant depression, little is known about its mechanism of action. We examined the antidepressant-like activity of short (1 h) DBS applied to the infralimbic prefrontal cortex in the forced swim test (FST) and the novelty-suppressed feeding test (NSFT). We also used in vivo microdialysis to evaluate the release of glutamate, γ-aminobutyric acid, serotonin, dopamine, and noradrenaline in the prefrontal cortex and c-Fos immunohistochemistry to determine the brain regions activated by DBS. One hour of DBS of the infralimbic prefrontal cortex has antidepressant-like effects in FST and NSFT, and increases prefrontal efflux of glutamate, which would activate AMPA receptors (AMPARs). This effect is specific of the infralimbic area since it is not observed after DBS of the prelimbic subregion. The activation of prefrontal AMPARs would result in a stimulation of prefrontal output to the brainstem, thus increasing serotonin, dopamine, and noradrenaline in the prefrontal cortex. Further, the activation of prefrontal AMPARs is necessary and sufficient condition for the antidepressant response of 1 h DBS.


Asunto(s)
Estimulación Encefálica Profunda/métodos , Trastorno Depresivo/metabolismo , Trastorno Depresivo/terapia , Corteza Prefrontal/metabolismo , Receptores AMPA/metabolismo , Animales , Trastorno Depresivo/patología , Modelos Animales de Enfermedad , Dopamina/metabolismo , Ácido Glutámico/metabolismo , Inmunohistoquímica , Masculino , Microdiálisis , Norepinefrina/metabolismo , Corteza Prefrontal/patología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas Wistar , Serotonina/metabolismo , Ácido gamma-Aminobutírico/metabolismo
14.
Nanomedicine ; 13(8): 2623-2632, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28756090

RESUMEN

Neuropathic pain, resistant to opiates and other drugs, is a chronic/persistent state with a complex treatment and often poor efficacy. In this scenario, cannabinoids are increasingly regarded as a genuine alternative. In this paper, and in an experimental animal model of neuropathic pain, we studied the efficacy of three kinds of PLGA nanoparticles containing synthetic cannabinoid CB13: (i) plain nanoparticles (PLGA); (ii) particles coated with PEG chains (PLGA+PEG) and (iii) particles possessing hydrophilic surfaces obtained by covalently binding PEG chains (PLGA-PEG). The optimized formulation, CB13-PLGA-PEG, showed high drug loading (13%) and small size (<300nm) with a narrow distribution and controlled surface properties (near-neutral zeta potential and stable PEG corona). Animal nociceptive behavioral studies were conducted by paw pressure and acetone tests. Versus the free CB13, CB13-PLGA-PEG nanoparticles showed a very noticeable analgesic efficacy with the longest sustained pain-relieving effect, lasting up to eleven days after one oral dose.


Asunto(s)
Analgésicos/administración & dosificación , Agonistas de Receptores de Cannabinoides/administración & dosificación , Portadores de Fármacos/química , Naftalenos/administración & dosificación , Neuralgia/tratamiento farmacológico , Poliésteres/química , Polietilenglicoles/química , Analgésicos/uso terapéutico , Animales , Agonistas de Receptores de Cannabinoides/uso terapéutico , Perros , Ácido Láctico/química , Masculino , Nanopartículas/química , Naftalenos/uso terapéutico , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ratas Sprague-Dawley
15.
Int J Neuropsychopharmacol ; 18(8)2015 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-25716783

RESUMEN

BACKGROUND: The corticotropin-releasing factor is a stress-related neuropeptide that modulates locus coeruleus activity. As locus coeruleus has been involved in pain and stress-related patologies, we tested whether the pain-induced anxiety is a result of the corticotropin-releasing factor released in the locus coeruleus. METHODS: Complete Freund's adjuvant-induced monoarthritis was used as inflammatory chronic pain model. α-Helical corticotropin-releasing factor receptor antagonist was microinjected into the contralateral locus coeruleus of 4-week-old monoarthritic animals. The nociceptive and anxiety-like behaviors, as well as phosphorylated extracellular signal-regulated kinases 1/2 and corticotropin-releasing factor receptors expression, were quantified in the paraventricular nucleus and locus coeruleus. RESULTS: Monoarthritic rats manifested anxiety and increased phosphorylated extracellular signal-regulated kinases 1/2 levels in the locus coeruleus and paraventricular nucleus, although the expression of corticotropin-releasing factor receptors was unaltered. α-Helical corticotropin-releasing factor antagonist administration reversed both the anxiogenic-like behavior and the phosphorylated extracellular signal-regulated kinases 1/2 levels in the locus coeruleus. CONCLUSIONS: Pain-induced anxiety is mediated by corticotropin-releasing factor neurotransmission in the locus coeruleus through extracellular signal-regulated kinases 1/2 signaling cascade.


Asunto(s)
Trastornos de Ansiedad/fisiopatología , Dolor Crónico/fisiopatología , Dolor Crónico/psicología , Hormona Liberadora de Corticotropina/metabolismo , Locus Coeruleus/fisiopatología , Sistema de Señalización de MAP Quinasas/fisiología , Animales , Trastornos de Ansiedad/tratamiento farmacológico , Trastornos de Ansiedad/etiología , Artritis Experimental , Dolor Crónico/complicaciones , Dolor Crónico/tratamiento farmacológico , Hormona Liberadora de Corticotropina/farmacología , Adyuvante de Freund , Antagonistas de Hormonas/farmacología , Locus Coeruleus/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Neuronas/efectos de los fármacos , Neuronas/fisiología , Dolor Nociceptivo/tratamiento farmacológico , Dolor Nociceptivo/etiología , Dolor Nociceptivo/fisiopatología , Fragmentos de Péptidos/farmacología , Fosforilación/efectos de los fármacos , Ratas Sprague-Dawley , Receptores de Hormona Liberadora de Corticotropina/antagonistas & inhibidores , Receptores de Hormona Liberadora de Corticotropina/metabolismo
16.
Anesth Analg ; 121(4): 1078-1088, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26218865

RESUMEN

BACKGROUND: Patients with chronic pain often suffer from affective disorders and cognitive decline, which significantly impairs their quality of life. In addition, many of these patients also experience stress unrelated to their illness, which can aggravate their symptoms. These nociceptive inputs are received by the hippocampus, in which maladaptive neuroplastic changes may occur in the conditions of chronic pain. The hippocampus is a structure involved in emotionality, learning, and memory, and the proliferating cells in the granular layer of the hippocampal dentate gyrus respond to chronic pain by slowing their turnover. However, whether the maturation, survival, and integration of newborn cells in the hippocampus are affected by chronic pain remains unclear. In addition, it is unknown whether an added stress may increase this effect. METHODS: We have evaluated the proliferation, differentiation, and survival of newborn hippocampal cells in a rat model of neuropathic pain (chronic constriction injury), with or without stress (chronic immobilization), by assessing the incorporation of bromodeoxyuridine into proliferating cells and immunostaining. RESULTS: The data obtained indicated that there was a decrease in the number of proliferating cells 8 days after nerve injury in animals subjected to neuropathic pain, an effect that was exacerbated by stress. Moreover, 4 weeks after nerve injury, neuropathic pain was associated with a loss of neuroblasts and the reduced survival of new mature neurons in the hippocampal granular layer, phenomena that also were increased by stress. By contrast, the rate of differentiation was not affected in this paradigm. CONCLUSIONS: Neuropathic pain negatively influences hippocampal neurogenesis (proliferation and survival), and this effect is exacerbated by stress. These neuroplastic changes may account for the affective and cognitive impairment seen in patients with chronic pain.


Asunto(s)
Dolor Crónico/patología , Hipocampo/citología , Hipocampo/patología , Neurogénesis , Estrés Psicológico/patología , Animales , Proliferación Celular/fisiología , Dolor Crónico/psicología , Masculino , Neurogénesis/fisiología , Ratas , Ratas Sprague-Dawley , Estrés Psicológico/psicología
17.
Int J Neuropsychopharmacol ; 18(2)2014 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-25577666

RESUMEN

BACKGROUND: Previous studies indicated a systemic deregulation of the pro-/antiinflammatory balance in subjects after 6 months of a first psychotic episode. This disruption was reexamined 12 months after diagnosis to identify potential risk/protective factors and associations with symptom severity. METHODS: Eighty-five subjects were followed during 12 months and the determination of the same pro-/antiinflammatory mediators was carried out in plasma and peripheral blood mononuclear cells. Multivariate logistic regression analyses were used to identify risk/protective factors. Multiple linear regression models were performed to detect the change of each biological marker during follow-up in relation to clinical characteristics and confounding factors. RESULTS: This study suggests a more severe systemic pro-/antiinflammatory deregulation than in earlier pathological stages in first psychotic episode, because not only were intracellular components of the inflammatory response increased but also the majority of soluble elements. Nitrite plasma levels and cyclooxygenase-2 expression in peripheral blood mononuclear cells are reliable potential risk factors and 15d-prostaglandin-J2 plasma levels a protection biomarker. An interesting relationship exists between antipsychotic dose and the levels of prostaglandin-E2 (inverse) and 15d-prostaglandin-J2 (direct). An inverse relationship between the Global Assessment of Functioning scale and lipid peroxidation is also present. CONCLUSIONS: Summing up, pro-/antiinflammatory mediators can be used as risk/protection biomarkers. The inverse association between oxidative/nitrosative damage and the Global Assessment of Functioning scale, and the possibility that one of the targets of antipsychotics could be the restoration of the pro-/antiinflammatory balance support the use of antiinflammatory drugs as coadjuvant to antipsychotics.


Asunto(s)
Trastornos Psicóticos/inmunología , Adolescente , Adulto , Biomarcadores/sangre , Niño , Femenino , Estudios de Seguimiento , Humanos , Leucocitos Mononucleares/inmunología , Modelos Lineales , Modelos Logísticos , Masculino , Persona de Mediana Edad , Análisis Multivariante , Trastornos Psicóticos/sangre , Trastornos Psicóticos/tratamiento farmacológico , Factores de Riesgo , Adulto Joven
18.
Anesthesiology ; 120(6): 1476-90, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24534905

RESUMEN

BACKGROUND: Nonsteroidal anti-inflammatory drugs are effective for arthritic pain, but it is unknown whether they also benefit anxiety and depression that frequently coexist with pain. Using the monoarthritis model, the authors evaluated the activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) in structures implicated in both sensorial and emotional pain spheres, and it was verified whether analgesia can reverse monoarthritis-mediated affective responses. METHODS: Monoarthritis was induced in male rats by complete Freund's adjuvant injection. Allodynia (ankle-bend test), mechanical hyperalgesia (paw-pinch test), anxiety- and depression-like behaviors (elevated zero maze and forced swimming tests, respectively), and ERK1/2 phosphorylation (Western blot) in the spinal cord, paragigantocellularis nucleus, locus coeruleus, and prefrontal cortex were evaluated at 4, 14, and 28 days postinoculation (n = 6 per group). Changes in these parameters were evaluated after induction of analgesia by topical diclofenac (n = 5 to 6 per group). RESULTS: Despite the pain hypersensitivity and inflammation throughout the testing period, chronic monoarthritis (28 days) also resulted in depressive- (control [mean ± SEM]: 38.3 ± 3.7 vs. monoarthritis: 51.3 ± 2.0; P < 0.05) and anxiogenic-like behaviors (control: 36.8 ± 3.7 vs. monoarthritis: 13.2 ± 2.9; P < 0.001). These changes coincided with increased ERK1/2 activation in the spinal cord, paragigantocellularis, locus coeruleus, and prefrontal cortex (control vs. monoarthritis: 1.0 ± 0.0 vs. 5.1 ± 20.8, P < 0.001; 0.9 ± 0.0 vs. 1.9 ± 0.4, P < 0.05; 1.0 ± 0.3 vs. 2.9 ± 0.6, P < 0.01; and 1.0 ± 0.0 vs. 1.8 ± 0.1, P < 0.05, respectively). Diclofenac decreased the pain threshold of the inflamed paw and reversed the anxio-depressive state, restoring ERK1/2 activation levels in the regions analyzed. CONCLUSION: Chronic monoarthritis induces affective disorders associated with ERK1/2 phosphorylation in paragigantocellularis, locus coeruleus, and prefrontal cortex which are reversed by diclofenac analgesia. (Anesthesiology 2014; 120:1476-90).


Asunto(s)
Antiinflamatorios no Esteroideos/uso terapéutico , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/metabolismo , Diclofenaco/uso terapéutico , Trastornos del Humor/tratamiento farmacológico , Trastornos del Humor/metabolismo , Animales , Antiinflamatorios no Esteroideos/farmacología , Artritis Experimental/patología , Diclofenaco/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Trastornos del Humor/patología , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Ratas , Ratas Sprague-Dawley
19.
Int J Bipolar Disord ; 12(1): 18, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38758506

RESUMEN

BACKGROUND: Bipolar disorder (BD) is a severe psychiatric disorder characterized by changes in mood that alternate between (hypo) mania or depression and mixed states, often associated with functional impairment and cognitive dysfunction. But little is known about biomarkers that contribute to the development and sustainment of cognitive deficits. The aim of this study was to review the association between neurocognition and biomarkers across different mood states. METHOD: Search databases were Web of Science, Scopus and PubMed. A systematic review was carried out following the PRISMA guidelines. Risk of bias was assessed with the Newcastle-Ottawa Scale. Studies were selected that focused on the correlation between neuroimaging, physiological, genetic or peripheral biomarkers and cognition in at least two phases of BD: depression, (hypo)mania, euthymia or mixed. PROSPERO Registration No.: CRD42023410782. RESULTS: A total of 1824 references were screened, identifying 1023 published articles, of which 336 were considered eligible. Only 16 provided information on the association between biomarkers and cognition in the different affective states of BD. The included studies found: (i) Differences in levels of total cholesterol and C reactive protein depending on mood state; (ii) There is no association found between cognition and peripheral biomarkers; (iii) Neuroimaging biomarkers highlighted hypoactivation of frontal areas as distinctive of acute state of BD; (iv) A deactivation failure has been reported in the ventromedial prefrontal cortex (vmPFC), potentially serving as a trait marker of BD. CONCLUSION: Only a few recent articles have investigated biomarker-cognition associations in BD mood phases. Our findings underline that there appear to be central regions involved in BD that are observed in all mood states. However, there appear to be underlying mechanisms of cognitive dysfunction that may vary across different mood states in BD. This review highlights the importance of standardizing the data and the assessment of cognition, as well as the need for biomarkers to help prevent acute symptomatic phases of the disease, and the associated functional and cognitive impairment.

20.
Psychiatry Res ; 331: 115643, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38064909

RESUMEN

Prenatal infections and cannabis use during adolescence are well-recognized risk factors for schizophrenia. As inflammation and oxidative stress (OS) contribute to this disorder, anti-inflammatory drugs have been proposed as potential therapies. This study aimed to evaluate the association between delta-9-tetrahydrocannabinol (THC) and schizophrenia-like abnormalities in a maternal immune activation (MIA) model. Additionally, we assessed the preventive effect of cannabidiol (CBD), a non-psychotropic/anti-inflammatory cannabinoid. THC and/or CBD were administered to Saline- and MIA-offspring during periadolescence. At adulthood, THC-exposed MIA-offspring showed significant improvements in sensorimotor gating deficits. Structural and metabolic brain changes were evaluated by magnetic resonance imaging, revealing cortical shrinkage in Saline- and enlargement in MIA-offspring after THC-exposure. Additionally, MIA-offspring displayed enlarged ventricles and decreased hippocampus, which were partially reverted by both cannabinoids. CBD prevented THC-induced reduction in the corpus callosum, despite affecting white matter structure. Post-mortem studies revealed detrimental effects of THC, including increased inflammation and oxidative stress. CBD partially reverted these pro-inflammatory alterations and modulated THC's effects on the endocannabinoid system. In conclusion, contrary to expectations, THC exhibited greater behavioural and morphometric benefits, despite promoting a pro-inflammatory state that CBD partially reverted. Further research is needed to elucidate the underlying mechanisms involved in the observed benefits of THC.


Asunto(s)
Cannabidiol , Cannabinoides , Cannabis , Esquizofrenia , Humanos , Embarazo , Femenino , Adulto , Cannabidiol/farmacología , Cannabidiol/uso terapéutico , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/metabolismo , Dronabinol/farmacología , Poli I-C , Inflamación , Antiinflamatorios
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA