Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Vet Res ; 50(1): 89, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31675983

RESUMEN

In the 2014-2015 Eurasian lineage clade 2.3.4.4A H5 highly pathogenic avian influenza (HPAI) outbreak in the U.S., backyard flocks with minor gallinaceous poultry and large commercial poultry (chickens and turkeys) operations were affected. The pathogenesis of the first H5N8 and reassortant H5N2 clade 2.3.4.4A HPAI U.S. isolates was investigated in six gallinaceous species: chickens, Japanese quail, Bobwhite quail, Pearl guinea fowl, Chukar partridges, and Ring-necked pheasants. Both viruses caused 80-100% mortality in all species, except for H5N2 virus that caused 60% mortality in chickens. The surviving challenged birds remained uninfected based on lack of clinical disease and lack of seroconversion. Among the infected birds, chickens and Japanese quail in early clinical stages (asymptomatic and listless) lacked histopathologic findings. In contrast, birds of all species in later clinical stages (moribund and dead) had histopathologic lesions and systemic virus replication consistent with HPAI virus infection in gallinaceous poultry. These birds had widespread multifocal areas of necrosis, sometimes with heterophilic or lymphoplasmacytic inflammatory infiltrate, and viral antigen in parenchymal cells of most tissues. In general, lesions and antigen distribution were similar regardless of virus and species. However, endotheliotropism was the most striking difference among species, with only Pearl guinea fowl showing widespread replication of both viruses in endothelial cells of most tissues. The expression of IFN-γ and IL-10 in Japanese quail, and IL-6 in chickens, were up-regulated in later clinical stages compared to asymptomatic birds.


Asunto(s)
Galliformes , Inmunidad Innata , Virus de la Influenza A/fisiología , Gripe Aviar/inmunología , Gripe Aviar/virología , Enfermedades de las Aves de Corral/inmunología , Enfermedades de las Aves de Corral/virología , Animales , Estados Unidos
2.
J Virol ; 91(21)2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28794040

RESUMEN

In 2014 and 2015, the United States experienced an unprecedented outbreak of Eurasian clade 2.3.4.4 H5 highly pathogenic avian influenza (HPAI) virus. Initial cases affected mainly wild birds and mixed backyard poultry species, while later outbreaks affected mostly commercial chickens and turkeys. The pathogenesis, transmission, and intrahost evolutionary dynamics of initial Eurasian H5N8 and reassortant H5N2 clade 2.3.4.4 HPAI viruses in the United States were investigated in minor gallinaceous poultry species (i.e., species for which the U.S. commercial industries are small), namely, Japanese quail, bobwhite quail, pearl guinea fowl, chukar partridges, and ring-necked pheasants. Low mean bird infectious doses (<2 to 3.7 log10) support direct introduction and infection of these species as observed in mixed backyard poultry during the early outbreaks. Pathobiological features and systemic virus replication in all species tested were consistent with HPAI virus infection. Sustained virus shedding with transmission to contact-exposed birds, alongside long incubation periods, may enable unrecognized dissemination and adaptation to other gallinaceous species, such as chickens and turkeys. Genome sequencing of excreted viruses revealed numerous low-frequency polymorphisms and 20 consensus-level substitutions in all genes and species, but especially in Japanese quail and pearl guinea fowl and in internal proteins PB1 and PB2. This genomic flexibility after only one passage indicates that influenza viruses can continue to evolve in galliform species, increasing their opportunity to adapt to other species. Our findings suggest that these gallinaceous poultry are permissive for infection and sustainable transmissibility with the 2014 initial wild bird-adapted clade 2.3.4.4 virus, with potential acquisition of mutations leading to host range adaptation.IMPORTANCE The outbreak of clade 2.3.4.4 H5 highly pathogenic avian influenza (HPAI) virus that occurred in the United States in 2014 and 2015 represents the worst livestock disease event in the country, with unprecedented socioeconomic and commercial consequences. Epidemiological and molecular investigations can identify transmission pathways of the HPAI virus. However, understanding the pathogenesis, transmission, and intrahost evolutionary dynamics of new HPAI viruses in different avian species is paramount. The significance of our research is in examining the susceptibility of minor gallinaceous species to HPAI virus, as this poultry sector also suffers from HPAI epizootics, and identifying the biological potential of these species as an epidemiological link between the waterfowl reservoir and the commercial chicken and turkey populations, with the ultimate goal of refining surveillance in these populations to enhance early detection, management, and control in future HPAI virus outbreaks.


Asunto(s)
Brotes de Enfermedades/veterinaria , Subtipo H5N2 del Virus de la Influenza A/patogenicidad , Subtipo H5N8 del Virus de la Influenza A/patogenicidad , Gripe Aviar/transmisión , Gripe Aviar/virología , Enfermedades de las Aves de Corral/transmisión , Enfermedades de las Aves de Corral/virología , Animales , Pollos , Coturnix , Gripe Aviar/epidemiología , Enfermedades de las Aves de Corral/epidemiología , Estados Unidos/epidemiología , Virulencia , Esparcimiento de Virus
3.
Vet Res ; 49(1): 82, 2018 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-30157963

RESUMEN

In March 2017, H7N9 highly pathogenic avian influenza (HPAI) virus was detected in 2 broiler breeder farms in the state of Tennessee, USA. Subsequent surveillance detected the low pathogenicity avian influenza (LPAI) virus precursor in multiple broiler breeder farms and backyard poultry in Tennessee and neighboring states. The pathogenesis of the H7N9 LPAI virus was investigated in commercial broiler breeders, the bird type mostly affected in this outbreak. Infectivity, transmissibility, and pathogenesis of the H7N9 HPAI and LPAI viruses were also studied in 4-week-old specific pathogen free (SPF) leghorn chickens. The mean bird infectious doses (BID50) for the LPAI isolate was 5.6 log10 mean egg infectious dose (EID50) for broiler breeders and 4.3 log10 EID50 for SPF layer chickens, and no transmission to contact-exposed birds was observed. In both bird types, virus shedding was almost exclusively from the oropharyngeal route. These findings suggest sub-optimal adaptation for sustained transmission with the H7N9 LPAI isolate, indicating that factors other than the birds genetic background may explain the epidemiology of the outbreak. The BID50 for the HPAI isolate in SPF layer chickens was more than 2 logs lower (<2 log10 EID50) than the LPAI isolate. Also, the HPAI virus was shed by both the oropharyngeal and cloacal routes and transmitted to contacts. Greater susceptibility and easier transmission of the H7N9 HPAI virus are features of the HP phenotype that could favor the spread of HPAI over LPAI viruses during outbreaks.


Asunto(s)
Pollos , Subtipo H7N9 del Virus de la Influenza A/fisiología , Subtipo H7N9 del Virus de la Influenza A/patogenicidad , Gripe Aviar/transmisión , Gripe Aviar/virología , Enfermedades de las Aves de Corral/transmisión , Enfermedades de las Aves de Corral/virología , Animales , Organismos Libres de Patógenos Específicos , Tennessee , Virulencia
4.
Emerg Infect Dis ; 23(11): 1806-1814, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-29047426

RESUMEN

Exposure to infected poultry is a suspected cause of avian influenza (H5N1) virus infections in humans. We detected infectious droplets and aerosols during laboratory-simulated processing of asymptomatic chickens infected with human- (clades 1 and 2.2.1) and avian- (clades 1.1, 2.2, and 2.1) origin H5N1 viruses. We detected fewer airborne infectious particles in simulated processing of infected ducks. Influenza virus-naive chickens and ferrets exposed to the air space in which virus-infected chickens were processed became infected and died, suggesting that the slaughter of infected chickens is an efficient source of airborne virus that can infect birds and mammals. We did not detect consistent infections in ducks and ferrets exposed to the air space in which virus-infected ducks were processed. Our results support the hypothesis that airborne transmission of HPAI viruses can occur among poultry and from poultry to humans during home or live-poultry market slaughter of infected poultry.


Asunto(s)
Microbiología del Aire , Pollos , Patos , Gripe Aviar/transmisión , Enfermedades de las Aves de Corral/transmisión , Crianza de Animales Domésticos , Animales , Hurones , Subtipo H5N1 del Virus de la Influenza A , Exposición por Inhalación , Enfermedades de las Aves de Corral/virología
5.
Vet Res ; 48(1): 33, 2017 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-28592320

RESUMEN

In late 2014, a H5N8 highly pathogenic avian influenza (HPAI) virus, clade 2.3.4.4, spread by migratory waterfowl into North America reassorting with low pathogenicity AI viruses to produce a H5N2 HPAI virus. Since domestic waterfowl are common backyard poultry frequently in contact with wild waterfowl, the infectivity, transmissibility, and pathogenicity of the United States H5 HPAI index viruses (H5N8 and H5N2) was investigated in domestic ducks and geese. Ducks infected with the viruses had an increase in body temperature but no or mild clinical signs. Infected geese did not show increase in body temperature and most only had mild clinical signs; however, some geese presented severe neurological signs. Ducks became infected and transmitted the viruses to contacts when inoculated with high virus doses [(104 and 106 50% embryo infective dose (EID50)], but not with a lower dose (102 EID50). Geese inoculated with the H5N8 virus became infected regardless of the virus dose given, and transmitted the virus to direct contacts. Only geese inoculated with the higher doses of the H5N2 and their contacts became infected, indicating differences in infectivity between the two viruses and the two waterfowl species. Geese shed higher titers of virus and for a longer period of time than ducks. In conclusion, the H5 HPAI viruses can infect domestic waterfowl and easily transmit to contact birds, with geese being more susceptible to infection and disease than ducks. The disease is mostly asymptomatic, but infected birds shed virus for several days representing a risk to other poultry species.


Asunto(s)
Patos/virología , Gansos/virología , Subtipo H5N2 del Virus de la Influenza A/patogenicidad , Subtipo H5N8 del Virus de la Influenza A/patogenicidad , Gripe Aviar/transmisión , Enfermedades de las Aves de Corral/virología , Animales , Subtipo H5N2 del Virus de la Influenza A/genética , Subtipo H5N8 del Virus de la Influenza A/genética , Gripe Aviar/epidemiología , Gripe Aviar/virología , Enfermedades de las Aves de Corral/epidemiología , Enfermedades de las Aves de Corral/transmisión , ARN Viral/genética , Estados Unidos/epidemiología
6.
Vet Res ; 47(1): 116, 2016 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-27871330

RESUMEN

In 2014-2015, the US experienced an unprecedented outbreak of H5 clade 2.3.4.4 highly pathogenic avian influenza (HPAI) virus. The H5N2 HPAI virus outbreak in the Midwest in 2015 affected commercial turkey and layer farms, but not broiler farms. To assess any potential genetic resistance of broilers and/or age-related effects, we investigated the pathogenesis and transmission of A/turkey/Minnesota/12582/2015 (H5N2) (Tk/MN/15) virus in commercial 5-week-old broilers, 8-week-old broilers, and >30-week-old broiler breeders. The mean bird lethal dose (BLD50) was 5.0 log10 mean egg infectious dose (EID50) for all age groups. The mean death time (MDT) was statistically not different among the three age groups, ranging between 3.2 and 4.8 days. All broilers that became infected shed high levels of virus with transmission to contacts and demonstrated severe pathology. Mortality and virus shedding results indicated that age is not a determinant factor in susceptibility of broilers to H5N2 clade 2.3.4.4 HPAI virus. Previously, the Tk/MN/15 virus had a BLD50 of 3.6 log10 EID50 and MDT of 2 days in White Leghorn chickens and a BLD50 of 5.0 log10 EID50 and MDT of 5.9 days in turkeys, suggesting that the broiler breed is less susceptible to Midwestern H5N2 virus than the layer breed but similarly susceptible to turkeys. Therefore, genetic resistance of broilers to infection may have accounted only partially for the lack of affected broiler farms in the Midwestern outbreaks, with other contributing factors such as fewer outside to on farm exposure to contacts, type of production management system or enhanced biosecurity.


Asunto(s)
Susceptibilidad a Enfermedades/veterinaria , Subtipo H5N2 del Virus de la Influenza A , Gripe Aviar/virología , Enfermedades de las Aves de Corral/virología , Factores de Edad , Animales , Pollos/inmunología , Pollos/virología , Susceptibilidad a Enfermedades/inmunología , Subtipo H5N2 del Virus de la Influenza A/genética , Subtipo H5N2 del Virus de la Influenza A/inmunología , Subtipo H5N2 del Virus de la Influenza A/patogenicidad , Gripe Aviar/inmunología , Gripe Aviar/patología , Lisofosfolípidos , Enfermedades de las Aves de Corral/inmunología , Enfermedades de las Aves de Corral/patología , Esparcimiento de Virus
7.
J Virol ; 87(16): 9086-96, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23760232

RESUMEN

In June of 2012, an H7N3 highly pathogenic avian influenza (HPAI) virus was identified as the cause of a severe disease outbreak in commercial laying chicken farms in Mexico. The purpose of this study was to characterize the Mexican 2012 H7N3 HPAI virus (A/chicken/Jalisco/CPA1/2012) and determine the protection against the virus conferred by different H7 inactivated vaccines in chickens. Both adult and young chickens intranasally inoculated with the virus became infected and died at between 2 and 4 days postinoculation (p.i.). High virus titers and viral replication in many tissues were demonstrated at 2 days p.i. in infected birds. The virus from Jalisco, Mexico, had high sequence similarity of greater than 97% to the sequences of wild bird viruses from North America in all eight gene segments. The hemagglutinin gene of the virus contained a 24-nucleotide insert at the hemagglutinin cleavage site which had 100% sequence identity to chicken 28S rRNA, suggesting that the insert was the result of nonhomologous recombination with the host genome. For vaccine protection studies, both U.S. H7 low-pathogenic avian influenza (LPAI) viruses and a 2006 Mexican H7 LPAI virus were tested as antigens in experimental oil emulsion vaccines and injected into chickens 3 weeks prior to challenge. All H7 vaccines tested provided ≥90% protection against clinical disease after challenge and decreased the number of birds shedding virus and the titers of virus shed. This study demonstrates the pathological consequences of the infection of chickens with the 2012 Mexican lineage H7N3 HPAI virus and provides support for effective programs of vaccination against this virus in poultry.


Asunto(s)
Brotes de Enfermedades , Subtipo H7N3 del Virus de la Influenza A/patogenicidad , Vacunas contra la Influenza/inmunología , Gripe Aviar/epidemiología , Gripe Aviar/virología , Estructuras Animales/virología , Animales , Animales Domésticos , Aves , Pollos , Análisis por Conglomerados , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Subtipo H7N3 del Virus de la Influenza A/inmunología , Subtipo H7N3 del Virus de la Influenza A/aislamiento & purificación , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/aislamiento & purificación , Gripe Aviar/patología , Gripe Aviar/prevención & control , México/epidemiología , Filogenia , ARN Ribosómico 28S/genética , ARN Viral/genética , Recombinación Genética , Homología de Secuencia , Análisis de Supervivencia , Vacunas de Productos Inactivados/administración & dosificación , Vacunas de Productos Inactivados/inmunología , Vacunas de Productos Inactivados/aislamiento & purificación , Carga Viral , Esparcimiento de Virus
8.
Vet Res ; 45: 60, 2014 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-24894438

RESUMEN

High pathogenicity avian influenza viruses (HPAIV) have caused fatal infections in mammals through consumption of infected bird carcasses or meat, but scarce information exists on the dose of virus required and the diversity of HPAIV subtypes involved. Ferrets were exposed to different HPAIV (H5 and H7 subtypes) through consumption of infected chicken meat. The dose of virus needed to infect ferrets through consumption was much higher than via respiratory exposure and varied with the virus strain. In addition, H5N1 HPAIV produced higher titers in the meat of infected chickens and more easily infected ferrets than the H7N3 or H7N7 HPAIV.


Asunto(s)
Hurones , Subtipo H5N1 del Virus de la Influenza A/fisiología , Subtipo H7N3 del Virus de la Influenza A/fisiología , Subtipo H7N7 del Virus de la Influenza A/fisiología , Carne/virología , Infecciones por Orthomyxoviridae/veterinaria , Animales , Pollos , Gripe Aviar/virología , Infecciones por Orthomyxoviridae/mortalidad , Infecciones por Orthomyxoviridae/virología
9.
Avian Pathol ; 43(1): 9-25, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24467281

RESUMEN

Susceptibility to avian influenza viruses (AIVs) can vary greatly among bird species. Chickens and turkeys are major avian species that, like ducks, have been extensively studied for avian influenza. To a lesser extent, minor avian species such as quail, partridges, and pheasants have also been investigated for avian influenza. Usually, such game fowl species are highly susceptible to highly pathogenic AIVs and may consistently spread both highly pathogenic AIVs and low-pathogenic AIVs. These findings, together with the fact that game birds are considered bridge species in the poultry-wildlife interface, highlight their interest from the transmission and biosecurity points of view. Here, the general pathobiological features of low-pathogenic AIV and highly pathogenic AIV infections in this group of avian species have been covered.


Asunto(s)
Enfermedades de las Aves/fisiopatología , Enfermedades de las Aves/virología , Susceptibilidad a Enfermedades/veterinaria , Galliformes , Virus de la Influenza A/patogenicidad , Gripe Aviar/fisiopatología , Animales , Enfermedades de las Aves/transmisión , Susceptibilidad a Enfermedades/virología , Gripe Aviar/transmisión , Especificidad de la Especie , Esparcimiento de Virus
10.
Vet Res ; 44: 23, 2013 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-23537387

RESUMEN

European quail (Coturnix c. coturnix) may share with Japanese quail (Coturnix c. japonica) its potential as an intermediate host and reservoir of avian influenza viruses (AIV). To elucidate this question, European quail were experimentally challenged with two highly pathogenic AIV (HPAIV) (H7N1/HP and H5N1/HP) and one low pathogenic AIV (LPAIV) (H7N2/LP). Contact animals were also used to assess the viral transmission among birds. Severe neurological signs and mortality rates of 67% (H7N1/HP) and 92% (H5N1/HP) were observed. Although histopathological findings were present in both HPAIV-infected groups, H5N1/HP-quail displayed a broader viral antigen distribution and extent of microscopic lesions. Neither clinical nor pathological involvement was observed in LPAIV-infected quail. Consistent long-term viral shedding and effective transmission to naive quail was demonstrated for the three studied AIV. Drinking water arose as a possible transmission route and feathers as a potential origin of HPAIV dissemination. The present study demonstrates that European quail may play a major role in AI epidemiology, highlighting the need to further understand its putative role as an intermediate host for avian/mammalian reassortant viruses.


Asunto(s)
Coturnix , Subtipo H5N1 del Virus de la Influenza A/patogenicidad , Subtipo H7N1 del Virus de la Influenza A/patogenicidad , Subtipo H7N2 del Virus de la Influenza A/patogenicidad , Gripe Aviar/transmisión , Animales , Ensayo de Inmunoadsorción Enzimática/veterinaria , Femenino , Subtipo H5N1 del Virus de la Influenza A/fisiología , Subtipo H7N1 del Virus de la Influenza A/fisiología , Subtipo H7N2 del Virus de la Influenza A/fisiología , Gripe Aviar/virología , Masculino , Reacción en Cadena de la Polimerasa/veterinaria , Distribución Aleatoria , Esparcimiento de Virus
11.
Emerg Microbes Infect ; 12(1): 2218945, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37309051

RESUMEN

Clade 2.3.4.4 Eurasian lineage H5Nx highly pathogenic avian influenza virus (HPAIV) has become the globally dominant clade and caused global outbreaks since 2014. The clade 2.3.4.4 viruses have evolved into eight hemagglutinin subgroups (2.3.4.4a-h). In this study, we evaluated the infectivity, pathobiology, and transmissibility of seven clade 2.3.4.4 viruses (two 2.3.4.4a, two 2.3.4.4b, one 2.3.4.4c and two 2.3.4.4e) in chickens. The two clade 2.3.4.4e viruses caused 100% mortality and transmissibility in chickens. However, clade 2.3.4.4a and c viruses showed 80-90% mortality and 67% transmissibility. Clade 2.3.4.4b viruses showed 100% mortality, but no transmission to co-housed chickens was observed based on lack of seroconversion. All the infected chickens died showing systemic infection, irrespective of subgroup. The results highlight that all the clade 2.3.4.4 HPAIVs used in this study caused high mortality in infected chickens, but the transmissibility of the viruses in chickens was variable in contrast to that of previous Eurasian-lineage H5N1 HPAIVs. Changes in the pathogenicity and transmissibility of clade 2.3.4.4 HPAIVs warrant careful monitoring of the viruses to establish effective control strategies.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Virus de la Influenza A , Sepsis , Animales , Pollos , Brotes de Enfermedades
12.
Vaccine ; 41(18): 2893-2904, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37012117

RESUMEN

Vaccines are an essential tool for the control of viral infections in domestic animals. We generated recombinant vector herpesvirus of turkeys (vHVT) vaccines expressing computationally optimized broadly reactive antigen (COBRA) H5 of avian influenza virus (AIV) alone (vHVT-AI) or in combination with virus protein 2 (VP2) of infectious bursal disease virus (IBDV) (vHVT-IBD-AI) or fusion (F) protein of Newcastle disease virus (NDV) (vHVT-ND-AI). In vaccinated chickens, all three vHVT vaccines provided 90-100% clinical protection against three divergent clades of high pathogenicity avian influenza viruses (HPAIVs), and significantly decreased number of birds and oral viral shedding titers at 2 days post-challenge compared to shams. Four weeks after vaccination, most vaccinated birds had H5 hemagglutination inhibition antibody titers, which significantly increased post-challenge. The vHVT-IBD-AI and vHVT-ND-AI vaccines provided 100% clinical protection against IBDVs and NDV, respectively. Our findings demonstrate that multivalent HVT vector vaccines were efficacious for simultaneous control of HPAIV and other viral infections.


Asunto(s)
Infecciones por Birnaviridae , Herpesviridae , Virus de la Enfermedad Infecciosa de la Bolsa , Virus de la Influenza A , Gripe Aviar , Enfermedad de Newcastle , Enfermedades de las Aves de Corral , Vacunas Virales , Animales , Virus de la Enfermedad de Newcastle/genética , Enfermedad de Newcastle/prevención & control , Pollos , Pavos , Virulencia , Vacunas Sintéticas/genética , Infecciones por Birnaviridae/prevención & control , Infecciones por Birnaviridae/veterinaria , Herpesvirus Meleágrido 1/genética , Vacunas Combinadas , Enfermedades de las Aves de Corral/prevención & control
13.
Sci Total Environ ; 863: 160902, 2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36526195

RESUMEN

Avian influenza viruses (AIVs) can affect wildlife, poultry, and humans, so a One Health perspective is needed to optimize mitigation strategies. Migratory waterfowl globally spread AIVs over long distances. Therefore, the study of AIV persistence in waterfowl staging and breeding areas is key to understanding their transmission dynamics and optimizing management strategies. Here, we used artificial streams mimicking natural conditions of waterfowl habitats in the Mediterranean climate (day/night cycles of photosynthetic active radiation and temperature, low water velocity, and similar microbiome to lowland rivers and stagnant water bodies) and then manipulated temperature and sediment presence (i.e., 10-13 °C vs. 16-18 °C, and presence vs. absence of sediments). An H1N1 low pathogenic AIV (LPAIV) strain was spiked in the streams, and water and sediment samples were collected at different time points until 14 days post-spike to quantify viral RNA and detect infectious particles. Viral RNA was detected until the end of the experiment in both water and sediment samples. In water samples, we observed a significant combined effect of temperature and sediments in viral decay, with higher viral genome loads in colder streams without sediments. In sediment samples, we didn't observe any significant effect of temperature. In contrast to prior laboratory-controlled studies that detect longer persistence times, infectious H1N1 LPAIV was isolated in water samples till 2 days post-spike, and none beyond. Infectious H1N1 LPAIV wasn't isolated from any sediment sample. Our results suggest that slow flowing freshwater surface waters may provide conditions facilitating bird-to-bird transmission for a short period when water temperature are between 10 and 18 °C, though persistence for extended periods (e.g., weeks or months) may be less likely. We hypothesize that experiments simulating real environments, like the one described here, provide a more realistic approach for assessing environmental persistence of AIVs.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Aviar , Animales , Humanos , Ríos , Subtipo H1N1 del Virus de la Influenza A/genética , Ecosistema , Agua , ARN Viral
14.
Emerg Microbes Infect ; 12(2): 2272644, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37847060

RESUMEN

Immature feathers are known replication sites for high pathogenicity avian influenza viruses (HPAIVs) in poultry. However, it is unclear whether feathers play an active role in viral transmission. This study aims to investigate the contribution of the feather epithelium to the dissemination of clade 2.3.4.4b goose/Guangdong/1996 lineage H5 HPAIVs in the environment, based on natural and experimental infections of domestic mule and Muscovy ducks. During the 2016-2022 outbreaks, H5 HPAIVs exhibited persistent and marked feather epitheliotropism in naturally infected commercial ducks. Infection of the feather epithelium resulted in epithelial necrosis and disruption, as well as the production and environmental shedding of infectious virions. Viral and feather antigens colocalized in dust samples obtained from poultry barns housing naturally infected birds. In summary, the feather epithelium contributes to viral replication, and it is a likely source of environmental infectious material. This underestimated excretion route could greatly impact the ecology of HPAIVs, facilitating airborne and preening-related infections within a flock, and promoting prolonged viral infectivity and long-distance viral transmission between poultry farms.


Asunto(s)
Virus de la Influenza A , Gripe Aviar , Enfermedades de las Aves de Corral , Animales , Patos , Plumas , Virulencia , Aves de Corral , Epitelio
15.
Avian Pathol ; 41(3): 277-84, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22702455

RESUMEN

Viral population dynamics of very virulent infectious bursal disease virus (vvIBDV) field strains isolated in the Iberian Peninsula since the first outbreak in the 1990s have been analysed. Low levels of genetic variability and a global purification selection pattern were reported in 480 base pairs of the hypervariable region of the VP2 gene, indicating a lack of a selection-driven immune escape in the evolutive pathway of the virus. The viral population structure of vvIBDV strains in the Iberian Peninsula showed a strong relationship between geography and phylogeny, with two main groups observed. A global comparison among vvIBDV strains also showed an association with sequences from the same country. The low variability, the strong purifying selection and the geographical pattern observed point to a picture where the virus evolves slowly, occupying the same geographical niche for a long time. The scenario depicted fits well with the biological features of the virus: being able to remain viable for long periods of time due to a strong environmental resistance, and as an immunosuppressive agent, capable per se of annihilating temporally the immune system of the host.


Asunto(s)
Demografía , Evolución Molecular , Variación Genética , Virus de la Enfermedad Infecciosa de la Bolsa/genética , Filogenia , Aves de Corral/virología , Análisis de Varianza , Animales , Secuencia de Bases , Análisis por Conglomerados , Virus de la Enfermedad Infecciosa de la Bolsa/clasificación , Virus de la Enfermedad Infecciosa de la Bolsa/fisiología , Modelos Genéticos , Datos de Secuencia Molecular , Filogeografía , Reacción en Cadena de la Polimerasa , Dinámica Poblacional , Portugal , Selección Genética , Análisis de Secuencia de ADN , España , Especificidad de la Especie
16.
Viruses ; 14(6)2022 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-35746661

RESUMEN

The papers published in this Special Issue represent only a glimpse of the vast diversity of viral infectious diseases, and the complexity of their interactions with the host, that have an impact on human and animal health [...].


Asunto(s)
Zoonosis , Animales , Esparcimiento de Virus
18.
Vet Res ; 42: 24, 2011 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-21314907

RESUMEN

An experimental infection with highly pathogenic avian influenza virus (HPAIV) and low pathogenic avian influenza virus (LPAIV) was carried out in red-legged partridges (Alectoris rufa) in order to study clinical signs, gross and microscopic lesions, and viral distribution in tissues and viral shedding. Birds were infected with a HPAIV subtype H7N1 (A/Chicken/Italy/5093/1999) and a LPAIV subtype H7N9 (A/Anas crecca/Spain/1460/2008). Uninoculated birds were included as contacts in both groups. In HPAIV infected birds, the first clinical signs were observed at 3 dpi, and mortality started at 4 dpi, reaching 100% at 8 dpi. The presence of viral antigen in tissues and viral shedding were confirmed by immunohistochemistry and quantitative real time RT-PCR (qRRT-PCR), respectively, in all birds infected with HPAIV. However, neither clinical signs nor histopathological findings were observed in LPAIV infected partridges. In addition, only short-term viral shedding together with seroconversion was detected in some LPAIV inoculated animals. The present study demonstrates that the red-legged partridge is highly susceptible to the H7N1 HPAIV strain, causing severe disease, mortality and abundant viral shedding and thus contributing to the spread of a potential local outbreak of this virus. In contrast, our results concerning H7N9 LPAIV suggest that the red-legged partridge is not a reservoir species for this virus.


Asunto(s)
Galliformes , Subtipo H7N1 del Virus de la Influenza A/patogenicidad , Subtipo H7N9 del Virus de la Influenza A/patogenicidad , Gripe Aviar/virología , Animales , Anticuerpos Antivirales/análisis , Cloaca/virología , Susceptibilidad a Enfermedades/veterinaria , Ensayo de Inmunoadsorción Enzimática/veterinaria , Plumas/virología , Subtipo H7N1 del Virus de la Influenza A/aislamiento & purificación , Subtipo H7N9 del Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/inmunología , Gripe Aviar/patología , Gripe Aviar/transmisión , Orofaringe/virología , Reacción en Cadena de la Polimerasa/veterinaria
19.
Front Immunol ; 12: 800188, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35003125

RESUMEN

Highly pathogenic avian influenza viruses (HPAIVs) cause severe systemic disease and high mortality rates in chickens, leading to a huge economic impact in the poultry sector. However, some chickens are resistant to the disease. This study aimed at evaluating the mechanisms behind HPAIV disease resistance. Chickens of different breeds were challenged with H7N1 HPAIV or clade 2.3.4.4b H5N8 HPAIV, euthanized at 3 days post-inoculation (dpi), and classified as resistant or susceptible depending on the following criteria: chickens that presented i) clinical signs, ii) histopathological lesions, and iii) presence of HPAIV antigen in tissues were classified as susceptible, while chickens lacking all these criteria were classified as resistant. Once classified, we performed RNA-Seq from lung and spleen samples in order to compare the transcriptomic signatures between resistant and susceptible chickens. We identified minor transcriptomic changes in resistant chickens in contrast with huge alterations observed in susceptible chickens. Interestingly, six differentially expressed genes were downregulated in resistant birds and upregulated in susceptible birds. Some of these genes belong to the NF-kappa B and/or mitogen-activated protein kinase signaling pathways. Among these six genes, the serine protease-encoding gene PLAU was of particular interest, being the most significantly downregulated gene in resistant chickens. Expression levels of this protease were further validated by RT-qPCR in a larger number of experimentally infected chickens. Furthermore, HPAIV quasi-species populations were constructed using 3 dpi oral swabs. No substantial changes were found in the viral segments that interact with the innate immune response and with the host cell receptors, reinforcing the role of the immune system of the host in the clinical outcome. Altogether, our results suggest that an early inactivation of important host genes could prevent an exaggerated immune response and/or viral replication, conferring resistance to HPAIV in chickens.


Asunto(s)
Pollos/genética , Pollos/virología , Resistencia a la Enfermedad/genética , Subtipo H7N1 del Virus de la Influenza A , Gripe Aviar/genética , Animales , Gripe Aviar/virología , RNA-Seq
20.
Viruses ; 13(11)2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-34834976

RESUMEN

A surge in fowl adenovirus (FAdV) causing inclusion body hepatitis (IBH) outbreaks has occurred in several countries in the last two decades. In Spain, a sharp increase in case numbers in broilers and broiler breeder pullets arose since 2011, which prompted the vaccination of breeders in some regions. Our retrospective study of IBH cases in Spain from 2011 to 2021 revealed that most cases were reported in broilers (92.21%) and were caused by serotypes FAdV-8b and -11, while cases in broiler breeder pullets were caused by serotypes FAdV-2, -11, and -8b. Vertical transmission was the main route of infection, although horizontal transmission likely happened in some broiler cases. Despite the inconsistent and heterogeneous use of vaccines among regions and over time, the number of cases mirrored the use of vaccines in the country. While IBH outbreaks were recorded year-long, significantly more cases occurred during the cooler and rainier months. The geographic distribution suggested a widespread incidence of IBH and revealed the importance of a highly integrated system. Our findings contribute to a better understanding of FAdV infection dynamics under field conditions and reiterate the importance of surveillance, serological monitoring of breeders, and vaccination of breeders against circulating serotypes to protect progenies.


Asunto(s)
Pollos/virología , Hepatitis Viral Animal/epidemiología , Cuerpos de Inclusión/virología , Enfermedades de las Aves de Corral/epidemiología , Enfermedades de las Aves de Corral/virología , Infecciones por Adenoviridae/veterinaria , Animales , Aviadenovirus/inmunología , Brotes de Enfermedades , Hepatitis Viral Animal/clasificación , Hepatitis Viral Animal/diagnóstico , Filogenia , Aves de Corral/virología , Enfermedades de las Aves de Corral/diagnóstico , Estudios Retrospectivos , Serogrupo , España/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA