Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
EMBO J ; 43(4): 533-567, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38316990

RESUMEN

The phospholipid and free fatty acid (FFA) composition of neuronal membranes plays a crucial role in learning and memory, but the mechanisms through which neuronal activity affects the brain's lipid landscape remain largely unexplored. The levels of saturated FFAs, particularly of myristic acid (C14:0), strongly increase during neuronal stimulation and memory acquisition, suggesting the involvement of phospholipase A1 (PLA1) activity in synaptic plasticity. Here, we show that genetic ablation of the PLA1 isoform DDHD2 in mice dramatically reduces saturated FFA responses to memory acquisition across the brain. Furthermore, DDHD2 loss also decreases memory performance in reward-based learning and spatial memory models prior to the development of neuromuscular deficits that mirror human spastic paraplegia. Via pulldown-mass spectrometry analyses, we find that DDHD2 binds to the key synaptic protein STXBP1. Using STXBP1/2 knockout neurosecretory cells and a haploinsufficient STXBP1+/- mouse model of human early infantile encephalopathy associated with intellectual disability and motor dysfunction, we show that STXBP1 controls targeting of DDHD2 to the plasma membrane and generation of saturated FFAs in the brain. These findings suggest key roles for DDHD2 and STXBP1 in lipid metabolism and in the processes of synaptic plasticity, learning, and memory.


Asunto(s)
Ácidos Grasos no Esterificados , Memoria a Largo Plazo , Proteínas Munc18 , Fosfolipasas , Animales , Ratones , Encéfalo/metabolismo , Ácidos Grasos no Esterificados/metabolismo , Memoria/fisiología , Proteínas Munc18/genética , Fosfolipasas/genética
2.
EMBO J ; 38(3)2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30538104

RESUMEN

Accumulation of the protein tau characterises Alzheimer's disease and other tauopathies, including familial forms of frontotemporal dementia (FTD) that carry pathogenic tau mutations. Another hallmark feature of these diseases is the accumulation of dysfunctional mitochondria. Although disease-associated tau is known to impair several aspects of mitochondrial function, it is still unclear whether it also directly impinges on mitochondrial quality control, specifically Parkin-dependent mitophagy. Using the mito-QC mitophagy reporter, we found that both human wild-type (hTau) and FTD mutant tau (hP301L) inhibited mitophagy in neuroblastoma cells, by reducing mitochondrial translocation of Parkin. In the Caenorhabditis elegans nervous system, hTau expression reduced mitophagy, whereas hP301L expression completely inhibited it. These effects were not due to changes in the mitochondrial membrane potential or the cytoskeleton, as tau specifically impaired Parkin recruitment to defective mitochondria by sequestering it in the cytosol. This sequestration was mediated by aberrant interactions of Parkin with the projection domain of tau. As mitochondria are dysfunctional in neurodegenerative conditions, these data suggest a vicious cycle, with tau also inhibiting the degradation of damaged mitochondria.


Asunto(s)
Mitocondrias/patología , Mitofagia , Neuroblastoma/patología , Neuronas/patología , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas tau/metabolismo , Animales , Caenorhabditis elegans , Masculino , Potencial de la Membrana Mitocondrial , Ratones , Ratones Transgénicos , Mitocondrias/genética , Mitocondrias/metabolismo , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuronas/metabolismo , Transporte de Proteínas , Células Tumorales Cultivadas , Ubiquitina-Proteína Ligasas/genética , Proteínas tau/genética
3.
J Neurosci ; 37(43): 10372-10388, 2017 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-28935766

RESUMEN

Addiction is a maladaptive pattern of behavior following repeated use of reinforcing drugs in predisposed individuals, leading to lifelong changes. Common among these changes are alterations of neurons releasing dopamine in the ventral and dorsal territories of the striatum. The serotonin 5-HT2B receptor has been involved in various behaviors, including impulsivity, response to antidepressants, and response to psychostimulants, pointing toward putative interactions with the dopamine system. Despite these findings, it remains unknown whether 5-HT2B receptors directly modulate dopaminergic activity and the possible mechanisms involved. To answer these questions, we investigated the contribution of 5-HT2B receptors to cocaine-dependent behavioral responses. Male mice permanently lacking 5-HT2B receptors, even restricted to dopamine neurons, developed heightened cocaine-induced locomotor responses. Retrograde tracing combined with single-cell mRNA amplification indicated that 5-HT2B receptors are expressed by mesolimbic dopamine neurons. In vivo and ex vivo electrophysiological recordings showed that 5-HT2B-receptor inactivation in dopamine neurons affects their neuronal activity and increases AMPA-mediated over NMDA-mediated excitatory synaptic currents. These changes are associated with lower ventral striatum dopamine activity and blunted cocaine self-administration. These data identify the 5-HT2B receptor as a pharmacological intermediate and provide mechanistic insight into attenuated dopamine tone following exposure to drugs of abuse.SIGNIFICANCE STATEMENT Here we report that mice lacking 5-HT2B receptors totally or exclusively in dopamine neurons exhibit heightened cocaine-induced locomotor responses. Despite the sensitized state of these mice, we found that associated changes include lower ventral striatum dopamine activity and lower cocaine operant self-administration. We described the selective expression of 5-HT2B receptors in a subpopulation of dopamine neurons sending axons to the ventral striatum. Increased bursting in vivo properties of these dopamine neurons and a concomitant increase in AMPA synaptic transmission to ex vivo dopamine neurons were found in mice lacking 5-HT2B receptors. These data support the idea that the chronic 5-HT2B-receptor inhibition makes mice behave like animals already exposed to cocaine with higher cocaine-induced locomotion associated with changes in dopamine neuron reactivity.


Asunto(s)
Cocaína/administración & dosificación , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Núcleo Accumbens/metabolismo , Receptor de Serotonina 5-HT2B/biosíntesis , Transducción de Señal/fisiología , Animales , Neuronas Dopaminérgicas/efectos de los fármacos , Femenino , Locomoción/efectos de los fármacos , Locomoción/fisiología , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Núcleo Accumbens/efectos de los fármacos , Proyectos Piloto , Distribución Aleatoria , Receptor de Serotonina 5-HT2B/deficiencia , Autoadministración , Transducción de Señal/efectos de los fármacos
4.
J Neurosci ; 34(4): 1358-69, 2014 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-24453326

RESUMEN

Decision-making depends on the ability to extract predictive information from the environment to guide future actions. Outcome-specific Pavlovian-instrumental transfer (PIT) provides an animal model of this process in which a stimulus predicting a particular outcome biases choice toward actions earning that outcome. Recent evidence suggests that cellular adaptations of δ-opioid receptors (DORs) on cholinergic interneurons (CINs) in the nucleus accumbens shell (NAc-S) are necessary for PIT. Here we found that modulation of DORs in CINs critically influences D1-receptor (D1R)-expressing projection neurons in the NAc-S to promote PIT. First, we assessed PIT-induced changes in signaling processes in dopamine D1- and D2-receptor-expressing neurons using drd2-eGFP mice, and found that PIT-related signaling was restricted to non-D2R-eGFP-expressing neurons, suggesting major involvement of D1R-neurons. Next we confirmed the role of D1Rs pharmacologically: the D1R antagonist SCH-23390, but not the D2R antagonist raclopride, infused into the NAc-S abolished PIT in rats, an effect that depended on DOR activity. Moreover, asymmetrical infusion of SCH-23390 and the DOR antagonist naltrindole into the NAc-S also abolished PIT. DOR agonists were found to sensitize the firing responses of CINs in brain slices prepared immediately after the PIT test. We confirmed the opioid-acetylcholinergic influence over D1R-neurons by selectively blocking muscarinic M4 receptors in the NAc-S, which tightly regulate the activity of D1Rs, a treatment that rescued the deficit in PIT induced by naltrindole. We describe a model of NAc-S function in which DORs modulate CINs to influence both D1R-neurons and stimulus-guided choice between goal-directed actions.


Asunto(s)
Conducta de Elección/fisiología , Interneuronas/fisiología , Aprendizaje/fisiología , Núcleo Accumbens/fisiología , Receptores Opioides delta/metabolismo , Acetilcolina/metabolismo , Animales , Condicionamiento Clásico , Técnica del Anticuerpo Fluorescente , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neurotransmisores/metabolismo , Técnicas de Placa-Clamp , Ratas , Ratas Long-Evans , Receptores Dopaminérgicos/metabolismo
5.
J Neurosci ; 33(41): 16060-71, 2013 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-24107940

RESUMEN

The ability of animals to extract predictive information from the environment to inform their future actions is a critical component of decision-making. This phenomenon is studied in the laboratory using the pavlovian-instrumental transfer protocol in which a stimulus predicting a specific pavlovian outcome biases choice toward those actions earning the predicted outcome. It is well established that this transfer effect is mediated by corticolimbic afferents on the nucleus accumbens shell (NAc-S), and recent evidence suggests that δ-opioid receptors (DORs) play an essential role in this effect. In DOR-eGFP knock-in mice, we show a persistent, learning-related plasticity in the translocation of DORs to the somatic plasma membrane of cholinergic interneurons (CINs) in the NAc-S during the encoding of the specific stimulus-outcome associations essential for pavlovian-instrumental transfer. We found that increased membrane DOR expression reflected both stimulus-based predictions of reward and the degree to which these stimuli biased choice during the pavlovian-instrumental transfer test. Furthermore, this plasticity altered the firing pattern of CINs increasing the variance of action potential activity, an effect that was exaggerated by DOR stimulation. The relationship between the induction of membrane DOR expression in CINs and both pavlovian conditioning and pavlovian-instrumental transfer provides a highly specific function for DOR-related modulation in the NAc-S, and it is consistent with an emerging role for striatal CIN activity in the processing of predictive information. Therefore, our results reveal evidence of a long-term, experience-dependent plasticity in opioid receptor expression on striatal modulatory interneurons critical for the cognitive control of action.


Asunto(s)
Conducta de Elección/fisiología , Neuronas Colinérgicas/metabolismo , Interneuronas/metabolismo , Aprendizaje/fisiología , Receptores Opioides delta/metabolismo , Animales , Ganglios Basales/fisiología , Técnica del Anticuerpo Fluorescente , Técnicas de Sustitución del Gen , Objetivos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Técnicas de Placa-Clamp , Transporte de Proteínas , Recompensa
6.
Nature ; 453(7197): 879-84, 2008 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-18496528

RESUMEN

Dopamine orchestrates motor behaviour and reward-driven learning. Perturbations of dopamine signalling have been implicated in several neurological and psychiatric disorders, and in drug addiction. The actions of dopamine are mediated in part by the regulation of gene expression in the striatum, through mechanisms that are not fully understood. Here we show that drugs of abuse, as well as food reinforcement learning, promote the nuclear accumulation of 32-kDa dopamine-regulated and cyclic-AMP-regulated phosphoprotein (DARPP-32). This accumulation is mediated through a signalling cascade involving dopamine D1 receptors, cAMP-dependent activation of protein phosphatase-2A, dephosphorylation of DARPP-32 at Ser 97 and inhibition of its nuclear export. The nuclear accumulation of DARPP-32, a potent inhibitor of protein phosphatase-1, increases the phosphorylation of histone H3, an important component of nucleosomal response. Mutation of Ser 97 profoundly alters behavioural effects of drugs of abuse and decreases motivation for food, underlining the functional importance of this signalling cascade.


Asunto(s)
Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Nucleosomas/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Recompensa , Transducción de Señal , Animales , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Dopamina/metabolismo , Fosfoproteína 32 Regulada por Dopamina y AMPc/química , Fosfoproteína 32 Regulada por Dopamina y AMPc/genética , Alimentos , Histonas/metabolismo , Aprendizaje , Masculino , Ratones , Ratones Endogámicos C57BL , Motivación , Actividad Motora/fisiología , Neostriado/citología , Neuronas/metabolismo , Fosfoproteínas Fosfatasas/antagonistas & inhibidores , Fosforilación/efectos de los fármacos , Fosfoserina/metabolismo , Transporte de Proteínas , Ratas , Transducción de Señal/efectos de los fármacos , Trastornos Relacionados con Sustancias
7.
iScience ; 27(3): 109274, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38496293

RESUMEN

Streamlined action sequences must remain flexible should stable contingencies in the environment change. By combining analyses of behavioral structure with a circuit-specific manipulation in mice, we report on a relationship between action timing variability and successful adaptation that relates to post-synaptic targets of primary motor cortical (M1) projections to dorsolateral striatum (DLS). In a two-lever instrumental task, mice formed successful action sequences by, first, establishing action scaffolds and, second, smoothly extending action duration to adapt to increased task requirements. Interruption of DLS neurons in M1 projection territories altered this process, evoking higher-rate actions that were more stereotyped in their timing, reducing opportunities for success. Based on evidence from neuronal tracing experiments, we propose that DLS neurons in M1 projection territories supply action timing variability to facilitate adaptation, a function that may involve additional downstream subcortical processing relating to collateralization of descending motor pathways to multiple basal ganglia centers.

8.
Curr Biol ; 33(10): 1997-2007.e5, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37141886

RESUMEN

Multidisciplinary evidence suggests that the control of voluntary action arbitrates between two major forms of behavioral processing: cognitively guided (or goal directed) and autonomously guided (or habitual). Brain-state irregularities affecting the striatum-such as aging-commonly shift control toward the latter, although the responsible neural mechanisms remain unknown. Combining instrumental conditioning with cell-specific mapping and chemogenetics in striatal neurons, we explored strategies that invigorate goal-directed capacity in aged mice. We found that, under conditions favoring goal-directed control, aged animals resiliently expressed autonomously guided behavior, a response that was underpinned by a characteristic one-to-one functional engagement of the two main neuronal populations in the striatum-D1- and D2-dopamine receptor-expressing spiny projection neurons (SPNs). Chemogenetically induced desensitization of D2-SPN signaling in aged transgenic mice recapitulated the striatal plasticity state observed in young mice, an effect that shifted behavior toward vigorous, goal-directed action. Our findings contribute to the understanding of the neural bases of behavioral control and propose neural system interventions that enhance cognitive functioning in habit-prone brains.


Asunto(s)
Cuerpo Estriado , Neuronas , Ratones , Animales , Cuerpo Estriado/fisiología , Neuronas/fisiología , Ratones Transgénicos , Condicionamiento Operante/fisiología , Cognición
9.
eNeuro ; 8(5)2021.
Artículo en Inglés | MEDLINE | ID: mdl-34462310

RESUMEN

Psychostimulants such as amphetamine (AMPH) target dopamine (DA) neuron synapses to engender drug-induced plasticity. While DA neurons modulate the activity of striatal (Str) cholinergic interneurons (ChIs) with regional heterogeneity, how AMPH affects ChI activity has not been elucidated. Here, we applied quantitative fluorescence imaging approaches to map the dose-dependent effects of a single dose of AMPH on ChI activity at 2.5 and 24 h after injection across the mouse Str using the activity-dependent marker phosphorylated ribosomal protein S6 (p-rpS6240/244). AMPH did not affect the distribution or morphology of ChIs in any Str subregion. While AMPH at either dose had no effect on ChI activity after 2.5 h, ChI activity was dose dependently reduced after 24 h specifically in the ventral Str/nucleus accumbens (NAc), a critical site of psychostimulant action. AMPH at either dose did not affect the spontaneous firing of ChIs. Altogether this work demonstrates that a single dose of AMPH has delayed regionally heterogeneous effects on ChI activity, which most likely involves extra-Str synaptic input.


Asunto(s)
Anfetamina , Dopamina , Anfetamina/farmacología , Animales , Colinérgicos , Interneuronas , Ratones , Núcleo Accumbens
10.
Curr Biol ; 30(22): 4541-4546.e5, 2020 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-33007245

RESUMEN

In mammalian species, the capacity for goal-directed action relies on a process of cognitive-emotional integration, which melds the causal and incentive learning processes that link action-goal associations with the current value of the goal [1]. Recent evidence suggests that such integration depends on a cortical-limbic-striatal circuit centered on the posterior dorsomedial striatum (pDMS) [2]. Learning-related plasticity has been described at both classes of principal neuron in the pDMS, the direct (dSPNs) and indirect (iSPNs) pathway spiny projection neurons [3-5], and is thought to depend on inputs from prelimbic cortex (PL) [6] and the basolateral amygdala (BLA) [7]. Nevertheless, the relative contribution of these structures to the cellular changes associated with goal-directed learning has not been assessed, nor is it known whether any plasticity specific to the PL and BLA inputs to the pDMS is localized to dSPNs, iSPNs, or both cell types. Here, by combining instrumental conditioning with circuit-specific manipulations and ex vivo optogenetics in mice, we discovered that the PL and not the BLA input to pDMS is pivotal for goal-directed learning and that plasticity in the PL-pDMS pathway was bilateral and specific to dSPNs in the pDMS. Subsequent experiments revealed the BLA is critically but indirectly involved in striatal plasticity via its input to the PL; inactivation of the BLA projection to PL blocked goal-directed learning and prevented learning-related plasticity at dSPNs in pDMS.


Asunto(s)
Complejo Nuclear Basolateral/fisiología , Cuerpo Estriado/fisiología , Aprendizaje/fisiología , Corteza Prefrontal/fisiología , Animales , Complejo Nuclear Basolateral/citología , Condicionamiento Operante , Cuerpo Estriado/citología , Femenino , Objetivos , Masculino , Ratones , Modelos Animales , Vías Nerviosas/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Optogenética , Corteza Prefrontal/citología
11.
Neuron ; 106(5): 855-869.e8, 2020 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-32240599

RESUMEN

Predictive learning exerts a powerful influence over choice between instrumental actions. Nevertheless, how this learning is encoded in a sufficiently stable manner to influence choices that can occur much later in time is unclear. Here, we report that the basolateral amygdala (BLA) encodes predictive learning and establishes the memory necessary for future choices by driving the accumulation of delta-opioid receptors (DOPRs) on the somatic membrane of cholinergic interneurons in the nucleus accumbens shell (NAc-S). We found that the BLA controls DOPR accumulation via its influence on substance P release in the NAc-S, and that although DOPR accumulation is not necessary for predictive learning per se, it is necessary for the influence of this learning on later choice between actions. This study uncovers, therefore, a novel GPCR-based form of memory that is established by predictive learning and is necessary for such learning to guide the selection and execution of specific actions.


Asunto(s)
Complejo Nuclear Basolateral/fisiología , Conducta de Elección/fisiología , Neuronas Colinérgicas/metabolismo , Interneuronas/metabolismo , Memoria/fisiología , Núcleo Accumbens/metabolismo , Receptores Opioides delta/metabolismo , Sustancia P/metabolismo , Animales , Condicionamiento Clásico/fisiología , Condicionamiento Operante/fisiología , Aprendizaje/fisiología , Ratones , Receptores Acoplados a Proteínas G/metabolismo , Estriado Ventral
12.
Science ; 367(6477): 549-555, 2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-32001651

RESUMEN

Extinction learning allows animals to withhold voluntary actions that are no longer related to reward and so provides a major source of behavioral control. Although such learning is thought to depend on dopamine signals in the striatum, the way the circuits that mediate goal-directed control are reorganized during new learning remains unknown. Here, by mapping a dopamine-dependent transcriptional activation marker in large ensembles of spiny projection neurons (SPNs) expressing dopamine receptor type 1 (D1-SPNs) or 2 (D2-SPNs) in mice, we demonstrate an extensive and dynamic D2- to D1-SPN transmodulation across the striatum that is necessary for updating previous goal-directed learning. Our findings suggest that D2-SPNs suppress the influence of outdated D1-SPN plasticity within functionally relevant striatal territories to reshape volitional action.


Asunto(s)
Cuerpo Estriado/fisiología , Neuronas Dopaminérgicas/fisiología , Objetivos , Aprendizaje/fisiología , Receptores de Dopamina D1/fisiología , Receptores de Dopamina D2/fisiología , Animales , Cuerpo Estriado/efectos de los fármacos , Antagonistas de Dopamina/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Nucleosomas/metabolismo , Racloprida/farmacología , Receptores de Dopamina D1/antagonistas & inhibidores
13.
J Neurosci ; 28(22): 5671-85, 2008 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-18509028

RESUMEN

Psychostimulants and other drugs of abuse activate extracellular signal-regulated kinase (ERK) in the striatum, through combined stimulation of dopamine D(1) receptors (D1Rs) and glutamate NMDA receptors. Antipsychotic drugs activate similar signaling proteins in the striatum by blocking dopamine D(2) receptors (D2Rs). However, the neurons in which these pathways are activated by psychotropic drugs are not precisely identified. We used transgenic mice, in which enhanced green fluorescent protein (EGFP) expression was driven by D1R promoter (drd1a-EGFP) or D2R promoter (drd2-EGFP). We confirmed the expression of drd1a-EGFP in striatonigral and drd2-EGFP in striatopallidal neurons. Drd2-EGFP was also expressed in cholinergic interneurons, whereas no expression of either promoter was detected in GABAergic interneurons. Acute cocaine treatment increased phosphorylation of ERK and its direct or indirect nuclear targets, mitogen- and stress-activated kinase-1 (MSK1) and histone H3, exclusively in D1R-expressing output neurons in the dorsal striatum and nucleus accumbens. Cocaine-induced expression of c-Fos and Zif268 predominated in D1R-expressing neurons but was also observed in D2R-expressing neurons. One week after repeated cocaine administration, cocaine-induced signaling responses were decreased, with the exception of enhanced ERK phosphorylation in dorsal striatum. The responses remained confined to D1R neurons. In contrast, acute haloperidol injection activated phosphorylation of ERK, MSK1, and H3 only in D2R neurons and induced c-fos and zif268 predominantly in these neurons. Our results demonstrate that cocaine and haloperidol specifically activate signaling pathways in two completely segregated populations of striatal output neurons, providing direct evidence for the selective mechanisms by which these drugs exert their long-term effects.


Asunto(s)
Cocaína/farmacología , Cuerpo Estriado/citología , Antagonistas de Dopamina/farmacología , Inhibidores de Captación de Dopamina/farmacología , Haloperidol/farmacología , Neuronas/efectos de los fármacos , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Análisis de Varianza , Animales , Fosfoproteína 32 Regulada por Dopamina y AMPc/metabolismo , Activación Enzimática/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Genes Inmediatos-Precoces/efectos de los fármacos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Histonas/metabolismo , Ratones , Ratones Transgénicos , Actividad Motora/efectos de los fármacos , Receptores de Dopamina D1/genética , Receptores de Dopamina D2/genética , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Tiempo
14.
Neuron ; 100(3): 521-523, 2018 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-30408439

RESUMEN

Sequential ordering of motor commands is required for the simplest of our daily activities. In this issue of Neuron, Díaz-Hernández et al. (2018) show that distinct thalamic inputs to different regions of the dorsal striatum critically modulate the initiation and execution of action sequences.


Asunto(s)
Cuerpo Estriado , Tálamo , Neuronas
15.
J Neurosci ; 31(19): 6944-6, 2011 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-21562255
16.
Elife ; 62017 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-29058672

RESUMEN

The acquisition of motor skills involves implementing action sequences that increase task efficiency while reducing cognitive loads. This learning capacity depends on specific cortico-basal ganglia circuits that are affected by normal ageing. Here, combining a series of novel behavioural tasks with extensive neuronal mapping and targeted cell manipulations in mice, we explored how ageing of cortico-basal ganglia networks alters the microstructure of action throughout sequence learning. We found that, after extended training, aged mice produced shorter actions and displayed squeezed automatic behaviours characterised by ultrafast oligomeric action chunks that correlated with deficient reorganisation of corticostriatal activity. Chemogenetic disruption of a striatal subcircuit in young mice reproduced age-related within-sequence features, and the introduction of an action-related feedback cue temporarily restored normal sequence structure in aged mice. Our results reveal static properties of aged cortico-basal ganglia networks that introduce temporal limits to action automaticity, something that can compromise procedural learning in ageing.


Asunto(s)
Envejecimiento/patología , Ganglios Basales/fisiología , Aprendizaje , Corteza Motora/fisiología , Destreza Motora , Animales , Conducta Animal , Ratones , Red Nerviosa/fisiología
17.
PLoS One ; 11(6): e0157682, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27314496

RESUMEN

Information processing in the striatum requires the postsynaptic integration of glutamatergic and dopaminergic signals, which are then relayed to the output nuclei of the basal ganglia to influence behavior. Although cellularly homogeneous in appearance, the striatum contains several rare interneuron populations which tightly modulate striatal function. Of these, cholinergic interneurons (CINs) have been recently shown to play a critical role in the control of reward-related learning; however how the striatal cholinergic network is functionally organized at the mesoscopic level and the way this organization influences striatal function remains poorly understood. Here, we systematically mapped and digitally reconstructed the entire ensemble of CINs in the mouse striatum and quantitatively assessed differences in densities, spatial arrangement and neuropil content across striatal functional territories. This approach demonstrated that the rostral portion of the striatum contained a higher concentration of CINs than the caudal striatum and that the cholinergic content in the core of the ventral striatum was significantly lower than in the rest of the regions. Additionally, statistical comparison of spatial point patterns in the striatal cholinergic ensemble revealed that only a minor portion of CINs (17%) aggregated into cluster and that they were predominantly organized in a random fashion. Furthermore, we used a fluorescence reporter to estimate the activity of over two thousand CINs in naïve mice and found that there was a decreasing gradient of CIN overall function along the dorsomedial-to-ventrolateral axis, which appeared to be independent of their propensity to aggregate within the striatum. Altogether this work suggests that the regulation of striatal function by acetylcholine across the striatum is highly heterogeneous, and that signals originating in external afferent systems may be principally determining the function of CINs in the striatum.


Asunto(s)
Neuronas Colinérgicas/fisiología , Cuerpo Estriado/fisiología , Interneuronas/fisiología , Aprendizaje/fisiología , Acetilcolina/metabolismo , Animales , Ganglios Basales/fisiología , Cuerpo Estriado/diagnóstico por imagen , Dopamina/metabolismo , Ratones , Recompensa
18.
Neuron ; 90(2): 362-73, 2016 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-27100198

RESUMEN

For goal-directed action to remain adaptive, new strategies are required to accommodate environmental changes, a process for which parafascicular thalamic modulation of cholinergic interneurons in the striatum (PF-to-CIN) appears critical. In the elderly, however, previously acquired experience frequently interferes with new learning, yet the source of this effect has remained unexplored. Here, combining sophisticated behavioral designs, cell-specific manipulation, and extensive neuronal imaging, we investigated the involvement of the PF-to-CIN pathway in this process. We found functional alterations of this circuit in aged mice that were consistent with their incapacity to update initial goal-directed learning, resulting in faulty activation of projection neurons in the striatum. Toxicogenetic ablation of CINs in young mice reproduced these behavioral and neuronal defects, suggesting that age-related deficits in PF-to-CIN function reduce the ability of older individuals to resolve conflict between actions, likely contributing to impairments in adaptive goal-directed action and executive control in aging. VIDEO ABSTRACT.


Asunto(s)
Envejecimiento/fisiología , Neuronas Colinérgicas/fisiología , Cuerpo Estriado/citología , Cuerpo Estriado/fisiología , Interneuronas/fisiología , Aprendizaje/fisiología , Animales , Ratones , Ratones Mutantes , Vías Nerviosas/fisiología , Tálamo/fisiología
19.
Neuropharmacology ; 72: 197-203, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23643747

RESUMEN

The ribosomal protein S6 (rpS6) is a component of the small 40S ribosomal subunit, involved in multiple physiological functions. Here, we examined the effects produced by haloperidol, a typical antipsychotic drug, on the phosphorylation of rpS6 at Ser240/244 in the striatum, a brain region involved in neurodegenerative and neuropsychiatric disorders. We found that administration of haloperidol increased Ser240/244 phosphorylation in a subpopulation of GABA-ergic medium spiny neurons (MSNs), which preferentially express dopamine D2 receptors (D2Rs). This effect was abolished by rapamycin, an inhibitor of the mammalian target of rapamycin complex 1 (mTORC1), or by PF470867, a selective inhibitor of the p70 ribosomal S6 kinase 1 (S6K1). We also found that the effect of haloperidol on Ser240/244 phosphorylation was prevented by functional inactivation of dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32), an endogenous inhibitor of protein phosphatase-1 (PP-1). In line with this observation, incubation of striatal slices with okadaic acid and calyculin A, two inhibitors of PP-1, increased Ser240/244 phosphorylation. These results show that haloperidol promotes mTORC1- and S6K1-dependent phosphorylation of rpS6 at Ser240/244, in a subpopulation of striatal MSNs expressing D2Rs. They also indicate that this effect is exerted by suppressing dephosphorylation at Ser240/244, through PKA-dependent activation of DARPP-32 and inhibition of PP-1.


Asunto(s)
Cuerpo Estriado/efectos de los fármacos , Antagonistas de Dopamina/farmacología , Haloperidol/farmacología , Complejos Multiproteicos/metabolismo , Proteína Fosfatasa 1/metabolismo , Proteína S6 Ribosómica/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Antagonistas del Receptor de Adenosina A2/farmacología , Aminoacetonitrilo/análogos & derivados , Aminoacetonitrilo/farmacología , Animales , Clozapina/farmacología , Cuerpo Estriado/metabolismo , Fosfoproteína 32 Regulada por Dopamina y AMPc/genética , Antagonistas del GABA/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Técnicas In Vitro , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación/genética , Fosforilación/efectos de los fármacos , Fosforilación/genética , Inhibidores de Proteasas/farmacología , Purinas/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
20.
Neuron ; 79(1): 153-66, 2013 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-23770257

RESUMEN

The capacity for goal-directed action depends on encoding specific action-outcome associations, a learning process mediated by the posterior dorsomedial striatum (pDMS). In a changing environment, plasticity has to remain flexible, requiring interference between new and existing learning to be minimized, yet it is not known how new and existing learning are interlaced in this way. Here we investigated the role of the thalamostriatal pathway linking the parafascicular thalamus (Pf) with cholinergic interneurons (CINs) in the pDMS in this process. Removing the excitatory input from Pf to the CINs was found to reduce the firing rate and intrinsic activity of these neurons and produced an enduring deficit in goal-directed learning after changes in the action-outcome contingency. Disconnection of the Pf-pDMS pathway produced similar behavioral effects. These data suggest that CINs reduce interference between new and existing learning, consistent with claims that the thalamostriatal pathway exerts state control over learning-related plasticity.


Asunto(s)
Neuronas Colinérgicas/fisiología , Cuerpo Estriado/fisiología , Interneuronas/fisiología , Aprendizaje/fisiología , Tálamo/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Neuronas Colinérgicas/efectos de los fármacos , Neuronas Colinérgicas/metabolismo , Condicionamiento Operante/efectos de los fármacos , Condicionamiento Operante/fisiología , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Objetivos , Interneuronas/efectos de los fármacos , Interneuronas/metabolismo , Aprendizaje/efectos de los fármacos , Masculino , N-Metilaspartato/toxicidad , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/metabolismo , Vías Nerviosas/fisiología , Ratas , Ratas Long-Evans , Aprendizaje Inverso/efectos de los fármacos , Aprendizaje Inverso/fisiología , Tálamo/efectos de los fármacos , Tálamo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA