RESUMEN
The fibroblast growth factor (FGF) signalling pathway plays various roles during vertebrate embryogenesis, from mesoderm formation to brain patterning. This diversity of functions relies on the fact that vertebrates possess the largest FGF gene complement among metazoans. In the cephalochordate amphioxus, which belongs to the chordate clade together with vertebrates and tunicates, we have previously shown that the main role of FGF during early development is the control of rostral somite formation. Inhibition of this signalling pathway induces the loss of these structures, resulting in an embryo without anterior segmented mesoderm, as in the vertebrate head. Here, by combining several approaches, we show that the anterior presumptive paraxial mesoderm cells acquire an anterior axial fate when FGF signal is inhibited and that they are later incorporated in the anterior notochord. Our analysis of notochord formation in wild type and in embryos in which FGF signalling is inhibited also reveals that amphioxus anterior notochord presents transient prechordal plate features. Altogether, our results give insight into how changes in FGF functions during chordate evolution might have participated to the emergence of the complex vertebrate head.
Asunto(s)
Anfioxos , Somitos , Animales , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Anfioxos/genética , Anfioxos/metabolismo , Mesodermo/metabolismo , Notocorda/metabolismo , Somitos/metabolismo , Vertebrados/metabolismoRESUMEN
SignificanceIn this manuscript, we address an essential question in developmental and evolutionary biology: How have changes in gene regulatory networks contributed to the invertebrate-to-vertebrate transition? To address this issue, we perturbed four signaling pathways critical for body plan formation in the cephalochordate amphioxus and in zebrafish and compared the effects of such perturbations on gene expression and gene regulation in both species. Our data reveal that many developmental genes have gained response to these signaling pathways in the vertebrate lineage. Moreover, we show that the interconnectivity between these pathways is much higher in zebrafish than in amphioxus. We conclude that this increased signaling pathway complexity likely contributed to vertebrate morphological novelties during evolution.
Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Anfioxos , Pez Cebra , Animales , Evolución Biológica , Gastrulación/genética , Anfioxos/embriología , Anfioxos/genética , Pez Cebra/embriología , Pez Cebra/genéticaRESUMEN
Vertebrates have greatly elaborated the basic chordate body plan and evolved highly distinctive genomes that have been sculpted by two whole-genome duplications. Here we sequence the genome of the Mediterranean amphioxus (Branchiostoma lanceolatum) and characterize DNA methylation, chromatin accessibility, histone modifications and transcriptomes across multiple developmental stages and adult tissues to investigate the evolution of the regulation of the chordate genome. Comparisons with vertebrates identify an intermediate stage in the evolution of differentially methylated enhancers, and a high conservation of gene expression and its cis-regulatory logic between amphioxus and vertebrates that occurs maximally at an earlier mid-embryonic phylotypic period. We analyse regulatory evolution after whole-genome duplications, and find that-in vertebrates-over 80% of broadly expressed gene families with multiple paralogues derived from whole-genome duplications have members that restricted their ancestral expression, and underwent specialization rather than subfunctionalization. Counter-intuitively, paralogues that restricted their expression increased the complexity of their regulatory landscapes. These data pave the way for a better understanding of the regulatory principles that underlie key vertebrate innovations.
Asunto(s)
Regulación de la Expresión Génica , Genómica , Anfioxos/genética , Vertebrados/genética , Animales , Tipificación del Cuerpo/genética , Metilación de ADN , Humanos , Anfioxos/embriología , Anotación de Secuencia Molecular , Regiones Promotoras Genéticas , Transcriptoma/genéticaRESUMEN
Neurons are a highly specialized cell type only found in metazoans. They can be scattered throughout the body or grouped together, forming ganglia or nerve cords. During embryogenesis, centralized nervous systems develop from the ectoderm, which also forms the epidermis. How pluripotent ectodermal cells are directed toward neural or epidermal fates, and to which extent this process is shared among different animal lineages, are still open questions. Here, by using micromere explants, we were able to define in silico the putative gene regulatory networks (GRNs) underlying the first steps of the epidermis and the central nervous system formation in the cephalochordate amphioxus. We propose that although the signal triggering neural induction in amphioxus (i.e., Nodal) is different from vertebrates, the main transcription factors implicated in this process are conserved. Moreover, our data reveal that transcription factors of the neural program seem to not only activate neural genes but also to potentially have direct inputs into the epidermal GRN, suggesting that the Nodal signal might also contribute to neural fate commitment by repressing the epidermal program. Our functional data on whole embryos support this result and highlight the complex interactions among the transcription factors activated by the signaling pathways that drive ectodermal cell fate choice in chordates.
Asunto(s)
Redes Reguladoras de Genes , Anfioxos , Animales , Epidermis/metabolismo , Regulación del Desarrollo de la Expresión Génica , Sistema Nervioso/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
RNA interference (RNAi) requires RNA-dependent RNA polymerases (RdRPs) in many eukaryotes, and RNAi amplification constitutes the only known function for eukaryotic RdRPs. Yet in animals, classical model organisms can elicit RNAi without possessing RdRPs, and only nematode RNAi was shown to require RdRPs. Here we show that RdRP genes are much more common in animals than previously thought, even in insects, where they had been assumed not to exist. RdRP genes were present in the ancestors of numerous clades, and they were subsequently lost at a high frequency. In order to probe the function of RdRPs in a deuterostome (the cephalochordate Branchiostoma lanceolatum), we performed high-throughput analyses of small RNAs from various Branchiostoma developmental stages. Our results show that Branchiostoma RdRPs do not appear to participate in RNAi: we did not detect any candidate small RNA population exhibiting classical siRNA length or sequence features. Our results show that RdRPs have been independently lost in dozens of animal clades, and even in a clade where they have been conserved (cephalochordates) their function in RNAi amplification is not preserved. Such a dramatic functional variability reveals an unexpected plasticity in RNA silencing pathways.
Asunto(s)
ARN Polimerasa Dependiente del ARN/genética , Animales , Células Eucariotas/fisiología , Anfioxos/genética , Filogenia , Interferencia de ARN/fisiología , ARN Interferente Pequeño/genéticaRESUMEN
Global gene delivery to the CNS has therapeutic importance for the treatment of neurological disorders that affect the entire CNS. Due to direct contact with the CNS, cerebrospinal fluid (CSF) is an attractive route for CNS gene delivery. A safe and effective route to achieve global gene distribution in the CNS is needed, and administration of genes through the cisterna magna (CM) via a suboccipital puncture results in broad distribution in the brain and spinal cord. However, translation of this technique to clinical practice is challenging due to the risk of serious and potentially fatal complications in patients. Herein, we report development of a gene therapy delivery method to the CM through adaptation of an intravascular microcatheter, which can be safely navigated intrathecally under fluoroscopic guidance. We examined the safety, reproducibility, and distribution/transduction of this method in sheep using a self-complementary adeno-associated virus 9 (scAAV9)-GFP vector. This technique was used to treat two Tay-Sachs disease patients (30 months old and 7 months old) with AAV gene therapy. No adverse effects were observed during infusion or post-treatment. This delivery technique is a safe and minimally invasive alternative to direct infusion into the CM, achieving broad distribution of AAV gene transfer to the CNS.
Asunto(s)
Cisterna Magna/metabolismo , Dependovirus/genética , Expresión Génica , Técnicas de Transferencia de Gen , Vectores Genéticos/genética , Transducción Genética , Animales , Catéteres , Sistema Nervioso Central/metabolismo , Genes Reporteros , Terapia Genética , Vectores Genéticos/administración & dosificación , Humanos , Inyecciones Espinales , Imagen por Resonancia Magnética , Modelos Animales , Ovinos , Cirugía Asistida por Computador , Tomografía Computarizada por Rayos X , Transgenes , Grabación en VideoRESUMEN
Complex metazoan bodies require cell-to-cell communication for development, a process often mediated by signaling molecules binding to specific receptors. Relatively few signaling pathways have been recruited during evolution to build multicellular animals from unicellular zygotes. Of these few signaling pathways, one of particular importance is the receptor tyrosine kinase (RTK) pathway. In metazoans, fibroblast growth factors (FGFs) bind to receptors in the RTK family, but the origin of the FGF gene family has so far remained a mystery. Here we show that extant bona fide FGFs most likely originated from proteins bearing an FGF-like domain that arose in a choanoflagellate/metazoan ancestor. We found orthologous genes closely related to FGF in choanoflagellates as well as in many metazoans such as sponges, acoels, protostomes, or nonvertebrate deuterostomes. We also show that these genes have a common evolutionary history with Retinitis Pigmentosa 1 (RP1). Even if some metazoan signaling pathways emerged long before multicellularity, we show that FGFs, like their receptors, originated in a eumetazoan ancestor.
Asunto(s)
Eucariontes/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Transducción de Señal , Secuencia de Aminoácidos , Animales , Eucariontes/clasificación , Evolución Molecular , Factores de Crecimiento de Fibroblastos/química , Factores de Crecimiento de Fibroblastos/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Filogenia , Estructura Terciaria de Proteína , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Alineación de SecuenciaRESUMEN
Guidance of cells and tissue sheets is an essential function in developing and differentiating animal tissues. In Hydra, where cells and tissue move dynamically due to constant cell proliferation towards the termini or into lateral, vegetative buds, factors essential for guidance are still unknown. Good candidates to take over this function are fibroblast growth factors (FGFs). We present the phylogeny of several Hydra FGFs and analysis of their expression patterns. One of the FGFs is expressed in all terminal regions targeted by tissue movement and at boundaries crossed by moving tissue and cells with an expression pattern slightly differing in two Hydra strains. A model addressing an involvement of this FGF in cell movement and morphogenesis is proposed: Hydra FGFf-expressing cells might serve as sources to attract tissue and cells towards the termini of the body column and across morphological boundaries. Moreover, a function in morphogenesis and/or differentiation of cells and tissue is suggested.
Asunto(s)
Evolución Molecular , Factores de Crecimiento de Fibroblastos/genética , Hydra/genética , Hydra/metabolismo , Animales , Etiquetas de Secuencia Expresada , Factores de Crecimiento de Fibroblastos/metabolismo , Hydra/crecimiento & desarrollo , Morfogénesis , Filogenia , Regulación hacia ArribaRESUMEN
Multinucleated muscle fibres arise by fusion of precursor cells called myoblasts. We previously showed that CKIP-1 ectopic expression in C2C12 myoblasts increased cell fusion. In this work, we report that CKIP-1 depletion drastically impairs C2C12 myoblast fusion in vitro and in vivo during zebrafish muscle development. Within developing fast-twich myotome, Ckip-1 localises at the periphery of fast precursor cells, closed to the plasma membrane. Unlike wild-type myoblasts that form spatially arrayed multinucleated fast myofibres, Ckip-1-deficient myoblasts show a drastic reduction in fusion capacity. A search for CKIP-1 binding partners identified the ARPC1 subunit of Arp2/3 actin nucleation complex essential for myoblast fusion. We demonstrate that CKIP-1, through binding to plasma membrane phosphoinositides via its PH domain, regulates cell morphology and lamellipodia formation by recruiting the Arp2/3 complex at the plasma membrane. These results establish CKIP-1 as a regulator of cortical actin that recruits the Arp2/3 complex at the plasma membrane essential for muscle precursor elongation and fusion.
Asunto(s)
Proteínas Portadoras/fisiología , Fusión de Membrana/fisiología , Mioblastos/citología , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Comunicación Celular/fisiología , Diferenciación Celular/fisiología , Fusión Celular , Línea Celular , Humanos , Péptidos y Proteínas de Señalización Intracelular , Mamíferos , Ratones , Mioblastos/metabolismo , Transfección , Pez CebraRESUMEN
The phylogenetic position of amphioxus, together with its relatively simple and evolutionarily conserved morphology and genome structure, has led to its use as a model for studies of vertebrate evolution. In particular, the recent development of technical approaches, as well as access to the complete amphioxus genome sequence, has provided the community with tools with which to study the invertebrate-chordate to vertebrate transition. Here, we present this animal model, discussing its life cycle, the model species studied and the experimental techniques that it is amenable to. We also summarize the major findings made using amphioxus that have informed us about the evolution of vertebrate traits.
Asunto(s)
Evolución Biológica , Cordados , Biología Evolutiva , Animales , Cordados/genética , Cordados/crecimiento & desarrollo , Estadios del Ciclo de Vida/genética , Estadios del Ciclo de Vida/fisiología , Modelos Animales , Modelos Biológicos , Filogenia , Vertebrados/genética , Vertebrados/crecimiento & desarrolloRESUMEN
FGF signaling is one of the few cell-cell signaling pathways conserved among all metazoans. The diversity of FGF gene content among different phyla suggests that evolution of FGF signaling may have participated in generating the current variety of animal forms. Vertebrates possess the greatest number of FGF genes, the functional evolution of which may have been implicated in the acquisition of vertebrate-specific morphological traits. In this study, we have investigated the roles of the FGF signal during embryogenesis of the cephalochordate amphioxus, the best proxy for the chordate ancestor. We first isolate the full FGF gene complement and determine the evolutionary relationships between amphioxus and vertebrate FGFs via phylogenetic and synteny conservation analysis. Using pharmacological treatments, we inhibit the FGF signaling pathway in amphioxus embryos in different time windows. Our results show that the requirement for FGF signaling during gastrulation is a conserved character among chordates, whereas this signal is not necessary for neural induction in amphioxus, in contrast to what is known in vertebrates. We also show that FGF signal, acting through the MAPK pathway, is necessary for the formation of the most anterior somites in amphioxus, whereas more posterior somite formation is not FGF-dependent. This result leads us to propose that modification of the FGF signal function in the anterior paraxial mesoderm in an amphioxus-like vertebrate ancestor might have contributed to the loss of segmentation in the preotic paraxial mesoderm of the vertebrate head.
Asunto(s)
Cordados/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Animales , Evolución Biológica , Retículo Endoplásmico/metabolismo , Evolución Molecular , Gástrula , Humanos , Sistema de Señalización de MAP Quinasas , Modelos Biológicos , Datos de Secuencia Molecular , Filogenia , Estructura Terciaria de Proteína , Transducción de Señal , SomitosRESUMEN
The emergence of new structures can often be linked to the evolution of novel cell types that follows the rewiring of developmental gene regulatory subnetworks. Vertebrates are characterized by a complex body plan compared to the other chordate clades and the question remains of whether and how the emergence of vertebrate morphological innovations can be related to the appearance of new embryonic cell populations. We previously proposed, by studying mesoderm development in the cephalochordate amphioxus, a scenario for the evolution of the vertebrate head mesoderm. To further test this scenario at the cell population level, we used scRNA-seq to construct a cell atlas of the amphioxus neurula, stage at which the main mesodermal compartments are specified. Our data allowed us to validate the presence of a prechordal-plate like territory in amphioxus. Additionally, the transcriptomic profile of somite cell populations supports the homology between specific territories of amphioxus somites and vertebrate cranial/pharyngeal and lateral plate mesoderm. Finally, our work provides evidence that the appearance of the specific mesodermal structures of the vertebrate head was associated to both segregation of pre-existing cell populations, and co-option of new genes for the control of myogenesis.
Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Cabeza , Anfioxos , Mesodermo , Vertebrados , Animales , Mesodermo/citología , Mesodermo/embriología , Anfioxos/embriología , Anfioxos/genética , Cabeza/embriología , Vertebrados/embriología , Vertebrados/genética , Somitos/embriología , Somitos/citología , Somitos/metabolismo , Evolución Biológica , TranscriptomaRESUMEN
Regulation of gene expression is arguably the main mechanism underlying the phenotypic diversity of tissues within and between species. Here we assembled an extensive transcriptomic dataset covering 8 tissues across 20 bilaterian species and performed analyses using a symmetric phylogeny that allowed the combined and parallel investigation of gene expression evolution between vertebrates and insects. We specifically focused on widely conserved ancestral genes, identifying strong cores of pan-bilaterian tissue-specific genes and even larger groups that diverged to define vertebrate and insect tissues. Systematic inferences of tissue-specificity gains and losses show that nearly half of all ancestral genes have been recruited into tissue-specific transcriptomes. This occurred during both ancient and, especially, recent bilaterian evolution, with several gains being associated with the emergence of unique phenotypes (for example, novel cell types). Such pervasive evolution of tissue specificity was linked to gene duplication coupled with expression specialization of one of the copies, revealing an unappreciated prolonged effect of whole-genome duplications on recent vertebrate evolution.
Asunto(s)
Evolución Molecular , Insectos , Vertebrados , Animales , Insectos/genética , Vertebrados/genética , Especificidad de Órganos , Transcriptoma , FilogeniaRESUMEN
The "ribbon," a structural arrangement in which Golgi stacks connect to each other, is considered to be restricted to vertebrate cells. Although ribbon disruption is linked to various human pathologies, its functional role in cellular processes remains unclear. In this study, we investigate the evolutionary origin of the Golgi ribbon. We observe a ribbon-like architecture in the cells of several metazoan taxa suggesting its early emergence in animal evolution predating the appearance of vertebrates. Supported by AlphaFold2 modeling, we propose that the evolution of Golgi reassembly and stacking protein (GRASP) binding by golgin tethers may have driven the joining of Golgi stacks resulting in the ribbon-like configuration. Additionally, we find that Golgi ribbon assembly is a shared developmental feature of deuterostomes, implying a role in embryogenesis. Overall, our study points to the functional significance of the Golgi ribbon beyond vertebrates and underscores the need for further investigations to unravel its elusive biological roles.
Asunto(s)
Aparato de Golgi , Proteínas de la Membrana , Animales , Humanos , Proteínas de la Membrana/metabolismo , Aparato de Golgi/metabolismo , Citoesqueleto/metabolismo , Células HeLa , VertebradosRESUMEN
The vertebrates share the ability to produce a skeleton made of mineralized extracellular matrix. However, our understanding of the molecular changes that accompanied their emergence remains scarce. Here, we describe the evolutionary history of the SPARC (secreted protein acidic and rich in cysteine) family, because its vertebrate orthologues are expressed in cartilage, bones and teeth where they have been proposed to bind calcium and act as extracellular collagen chaperones, and because further duplications of specific SPARC members produced the small calcium-binding phosphoproteins (SCPP) family that is crucial for skeletal mineralization to occur. Both phylogeny and synteny conservation analyses reveal that, in the eumetazoan ancestor, a unique ancestral gene duplicated to give rise to SPARC and SPARCB described here for the first time. Independent losses have eliminated one of the two paralogues in cnidarians, protostomes and tetrapods. Hence, only non-tetrapod deuterostomes have conserved both genes. Remarkably, SPARC and SPARCB paralogues are still linked in the amphioxus genome. To shed light on the evolution of the SPARC family members in chordates, we performed a comprehensive analysis of their embryonic expression patterns in amphioxus, tunicates, teleosts, amphibians and mammals. Our results show that in the chordate lineage SPARC and SPARCB family members were recurrently recruited in a variety of unrelated tissues expressing collagen genes. We propose that one of the earliest steps of skeletal evolution involved the co-expression of SPARC paralogues with collagenous proteins.
Asunto(s)
Calcificación Fisiológica/genética , Evolución Molecular , Duplicación de Gen , Osteonectina/química , Animales , Secuencia de Bases , Cordados/embriología , Cordados/genética , Cordados/metabolismo , Clonación Molecular , Secuencia Conservada , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Osteonectina/genética , Filogenia , SinteníaRESUMEN
Cephalochordates and tunicates represent the only two groups of invertebrate chordates, and extant cephalochordates - commonly known as amphioxus or lancelets - are considered the best proxy for the chordate ancestor, from which they split around 520 million years ago. Amphioxus has been an important organism in the fields of zoology and embryology since the 18th century, and the morphological and genomic simplicity of cephalochordates (compared to vertebrates) makes amphioxus an attractive model for studying chordate biology at the cellular and molecular levels. Here we describe the life cycle of amphioxus, and discuss the natural histories and habitats of the different species of amphioxus. We also describe their use as laboratory animal models, and discuss the techniques that have been developed to study different aspects of amphioxus.
Asunto(s)
Anfioxos , Urocordados , Animales , Anfioxos/genética , Genómica , Modelos AnimalesRESUMEN
Oceanic plastic pollution is of major concern to marine organisms, especially filter feeders. However, limited is known about the toxic effects of the weathered microplastics instead of the pristine ones. This study evaluates the effects of weathered polystyrene microplastic on a filter-feeder amphioxus under starvation conditions via its exposure to the microplastics previously deployed in the natural seawater allowing for the development of a mature biofilm (so-called plastisphere). The study focused on the integration of physiological, histological, biochemical, molecular, and microbiota impacts on amphioxus. Overall, specific alterations in gene expression of marker genes were observed to be associated with oxidative stresses and immune systems. Negligible impacts were observed on antioxidant biochemical activities and gut microbiota of amphioxus, while we highlighted the potential transfer of 12 bacterial taxa from the plastisphere to the amphioxus gut microbiota. Moreover, the classical perturbation of body shape detected in control animals under starvation conditions (a slim and curved body) but not for amphioxus exposed to microplastic, indicates that the microorganisms colonizing plastics could serve as a nutrient source for this filter-feeder, commitment with the elevated proportions of goblet cell-like structures after the microplastic exposure. The multidisciplinary approach developed in this study underlined the trait of microplastics that acted as vectors for transporting microorganisms from the plastisphere to amphioxus.
Asunto(s)
Microbioma Gastrointestinal , Anfioxos , Animales , Microplásticos/toxicidad , Plásticos/toxicidad , Agua de Mar/microbiologíaRESUMEN
Oligonucleotide therapeutics offer great promise in the treatment of previously untreatable neurodegenerative disorders; however, there are some challenges to overcome in pre-clinical studies. (1) They carry a well-established dose-related acute neurotoxicity at the time of administration. (2) Repeated administration into the cerebrospinal fluid may be required for long-term therapeutic effect. Modifying oligonucleotide formulation has been postulated to prevent acute toxicity, but a sensitive and quantitative way to track seizure activity in pre-clinical studies is lacking. The use of intracerebroventricular (i.c.v.) catheters offers a solution for repeated dosing; however, fixation techniques in large animal models are not standardized and are not reliable. Here we describe a novel surgical technique in a sheep model for i.c.v. delivery of neurotherapeutics based on the fixation of the i.c.v. catheter with a 3D-printed anchorage system composed of plastic and ceramic parts, compatible with magnetic resonance imaging, computed tomography, and electroencephalography (EEG). Our technique allowed tracking electrical brain activity in awake animals via EEG and video recording during and for the 24-h period after administration of a novel oligonucleotide in sheep. Its anchoring efficiency was demonstrated for at least 2 months and will be tested for up to a year in ongoing studies.
RESUMEN
The current diversity of metazoans has been achieved through a long process of evolution since the appearance of their unicellular ancestor about 1000 Mya [...].
Asunto(s)
Evolución Molecular , Invertebrados , Animales , FilogeniaRESUMEN
Photoconvertible proteins are powerful tools widely used in cellular biology to study cell dynamics and organelles. Over the past decade, photoconvertible proteins have also been used for developmental biology applications to analyze cell lineage and cell fate during embryonic development. One of these photoconvertible proteins called Kaede, from the stony coral Trachyphyllia geoffroyi, undergoes irreversible photoconversion from green to red fluorescence when illuminated with UV light. Undertaking a cell tracing approach using photoconvertible proteins can be challenging when using unconventional animal models. In this protocol, we describe the use of Kaede to track specific cells during embryogenesis of the cephalochordate Branchiostoma lanceolatum. This protocol can be adapted to other unconventional models, especially marine animals.