Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Nature ; 561(7721): 88-93, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30150772

RESUMEN

The rising demand for radiation detection materials in many applications has led to extensive research on scintillators1-3. The ability of a scintillator to absorb high-energy (kiloelectronvolt-scale) X-ray photons and convert the absorbed energy into low-energy visible photons is critical for applications in radiation exposure monitoring, security inspection, X-ray astronomy and medical radiography4,5. However, conventional scintillators are generally synthesized by crystallization at a high temperature and their radioluminescence is difficult to tune across the visible spectrum. Here we describe experimental investigations of a series of all-inorganic perovskite nanocrystals comprising caesium and lead atoms and their response to X-ray irradiation. These nanocrystal scintillators exhibit strong X-ray absorption and intense radioluminescence at visible wavelengths. Unlike bulk inorganic scintillators, these perovskite nanomaterials are solution-processable at a relatively low temperature and can generate X-ray-induced emissions that are easily tunable across the visible spectrum by tailoring the anionic component of colloidal precursors during their synthesis. These features allow the fabrication of flexible and highly sensitive X-ray detectors with a detection limit of 13 nanograys per second, which is about 400 times lower than typical medical imaging doses. We show that these colour-tunable perovskite nanocrystal scintillators can provide a convenient visualization tool for X-ray radiography, as the associated image can be directly recorded by standard digital cameras. We also demonstrate their direct integration with commercial flat-panel imagers and their utility in examining electronic circuit boards under low-dose X-ray illumination.

2.
Inorg Chem ; 61(41): 16333-16346, 2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36201622

RESUMEN

In this work, we investigated from a theoretical point of view the dynamics of the energy transfer process from the ligand to Eu(III) ion for 12 isomeric species originating from six different complexes differing by nature of the ligand and the total charge. The cationic complexes present the general formula [Eu(L)(H2O)2]+ (where L = bpcd2- = N,N'-bis(2-pyridylmethyl)-trans-1,2-diaminocyclohexane N,N'-diacetate; bQcd2- = N,N'-bis(2-quinolinmethyl)-trans-1,2-diaminocyclohexane N,N'-diacetate; and bisoQcd2- = N,N'-bis(2-isoquinolinmethyl)-trans-1,2-diaminocyclohexane N,N'-diacetate), while the neutral complexes present the Eu(L)(H2O)2 formula (where L = PyC3A3- = N-picolyl-N,N',N'-trans-1,2-cyclohexylenediaminetriacetate; QC3A3- = N-quinolyl-N,N',N'-trans-1,2-cyclohexylenediaminetriacetate; and isoQC3A3- = N-isoquinolyl-N,N',N'-trans-1,2-cyclohexylenediaminetriacetate). Time-dependent density functional theory (TD-DFT) calculations provided the energy of the ligand excited donor states, distances between donor and acceptor orbitals involved in the energy transfer mechanism (RL), spin-orbit coupling matrix elements, and excited-state reorganization energies. The intramolecular energy transfer (IET) rates for both singlet-triplet intersystem crossing and ligand-to-metal (and vice versa) involving a multitude of ligand and Eu(III) levels and the theoretical overall quantum yields (ϕovl) were calculated (the latter for the first time without the introduction of experimental parameters). This was achieved using a blend of DFT, Judd-Ofelt theory, IET theory, and rate equation modeling. Thanks to this study, for each isomeric species, the most efficient IET process feeding the Eu(III) excited state, its related physical mechanism (exchange interaction), and the reasons for a better or worse overall energy transfer efficiency (ηsens) in the different complexes were determined. The spectroscopically measured ϕovl values are in good agreement with the ones obtained theoretically in this work.

3.
Inorg Chem ; 60(11): 8259-8266, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34019423

RESUMEN

Eu3+ (1 mol %)-doped Ca2LnSbO6 (replacing Ln3+; Ln = Lu, Y, Gd, and La) and Ca2EuSbO6 were synthesized and structurally characterized by means of X-ray powder diffraction. The Eu3+ luminescence spectroscopy of the doped samples and of Ca2EuSbO6 has been carefully investigated upon collection of the excitation/emission spectra and luminescence decay curves of the main excited states. Surprisingly, apart from the dominant red emission from 5D0, all the doped samples show an uncommon blue and green emission contribution from 5DJ (J = 1, 2, and 3). This is made possible thanks to both multiphonon and cross-relaxation mechanism inefficiencies. However, the emission from 5D3 is more efficient and the decay kinetics of the 5DJ (J = 0, 1, and 2) levels is slower in the case of Y- and Lu-based doped samples. This evidence can find a possible explanation in the crystal chemistry of this family of double perovskites: our structural investigation suggests an uneven distribution of the Eu3+ dopant ions in Ca2YSbO6 and Ca2LuSbO6 hosts of the general A2BB'O6 formula. The luminescent center is mainly located in the A crystal site, and on average, the Eu-Eu distances are longer than in the case of the Gd- and La-based matrix. These longer distances can further reduce the efficiency of the cross-relaxation mechanism and, consequently, the radiative transitions are more efficient. The slower depopulation of Eu3+ 5D2 and 5D1 levels in Ca2YSbO6 and Ca2LuSbO6 hosts is reflected in the longer rise observed in the 5D1 and 5D0 decay curves, respectively. Finally, in Ca2EuSbO6, the high Eu3+ concentration gives rise to an efficient cross-relaxation within the subset of the lanthanide ions so that no emission from 5DJ (J = 1, 2, and 3) is possible and the 5D0 decay kinetics is faster than for the doped samples.

4.
Inorg Chem ; 59(9): 6623-6630, 2020 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-32302127

RESUMEN

We have studied the high-pressure behavior of FeVO4 by means of single-crystal X-ray diffraction (XRD) and density functional theory (DFT) calculations. We have found that the structural sequence of FeVO4 is different from that previously assumed. In particular, we have discovered a new high-pressure phase at 2.11(4) GPa (FeVO4-I'), which was not detected by previous powder XRD studies. We have determined that FeVO4, under compression (at room temperature), first transforms at 2.11(4) GPa from the ambient-pressure triclinic structure (FeVO4-I) to a second previously unknown triclinic structure (FeVO4-I'), which experiences a subsequent phase transition at 4.80(4) GPa to a monoclinic structure (FeVO4-II'), which was also previously detected in powder XRD experiments. Single-crystal XRD has enabled these novel findings as well as an accurate determination of the crystal structure of FeVO4 polymorphs under high-pressure conditions. The crystal structure of all polymorphs has been accurately solved at all measured pressures. The pressure dependence of the unit-cell parameters and polyhedral coordination have been obtained and are discussed. The room-temperature equation of state and the principal axes of the isothermal compressibility tensor of FeVO4-I and FeVO4-I' have also been determined. The structural phase transition observed here between these two triclinic structures at 2.11(4) GPa implies abrupt coordination polyhedra modifications, including coordination number changes. DFT calculations support the conclusions extracted from our experiments.

5.
Inorg Chem ; 59(24): 18325-18337, 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33291884

RESUMEN

In the pursuit of a systematic characterization of rare-earth vanadates under compression, in this work we present a multifaceted study of the phase behavior of zircon-type orthovanadate PrVO4 under high-pressure conditions, up to 24 GPa. We have found that PrVO4 undergoes a zircon to monazite transition at around 6 GPa, confirming previous results found by Raman experiments. A second transition takes place above 14 GPa, to a BaWO4-II type structure. The zircon to monazite structural sequence is an irreversible first-order transition, accompanied by a volume collapse of about 9.6%. The monazite phase is thus a metastable polymorph of PrVO4. The monazite-BaWO4-II transition is found instead to be reversible and occurs with a similar volume change. Here we report and discuss the axial and bulk compressibility of all phases. We also compare our results with those for other rare-earth orthovanadates. Finally, by means of optical-absorption experiments and resistivity measurements, we determined the effect of pressure on the electronic properties of PrVO4. We found that the zircon-monazite transition produces a collapse of the band gap and an abrupt decrease in the resistivity. The physical reasons for this behavior are discussed. Density functional theory simulations support our conclusions.

6.
Inorg Chem ; 59(7): 4882-4894, 2020 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-32191461

RESUMEN

We present a structural and optical characterization of magnetoelastic zircon-type TmVO4 at ambient pressure and under high pressure. The properties under high pressure have been determined experimentally under hydrostatic conditions and theoretically using density functional theory. By powder X-ray diffraction we show that TmVO4 undergoes a first-order irreversible phase transition to a scheelite structure above 6 GPa. We have also determined (from powder and single-crystal X-ray diffraction) the bulk moduli of both phases and found that their compressibilities are anisotropic. The band gap of TmVO4 is found to be Eg = 3.7(2) eV. Under compression the band gap opens linearly, until it undergoes a huge collapse following the structural phase transition (ΔEg = 1.15 eV). Ab initio structural and free energy calculations support our findings. Moreover, calculations of the band structure and density of states reveal that for both zircon and scheelite TmVO4 the band gap is entirely determined by the V 3d and O 2p states of the VO43- ion. The behavior of the band gap can thus be understood entirely in terms of the structural modifications of the VO4 units under compression. Additionally, we have calculated the evolution of the infrared and Raman phonons of both phases upon compression. The presence of soft modes is related to the dynamic instability of the low-pressure phase and to the phase transition.

7.
Chem Rev ; 117(5): 4488-4527, 2017 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-28240879

RESUMEN

The synthesis of lanthanide-activated phosphors is pertinent to many emerging applications, ranging from high-resolution luminescence imaging to next-generation volumetric full-color display. In particular, the optical processes governed by the 4f-5d transitions of divalent and trivalent lanthanides have been the key to enabling precisely tuned color emission. The fundamental importance of lanthanide-activated phosphors for the physical and biomedical sciences has led to rapid development of novel synthetic methodologies and relevant tools that allow for probing the dynamics of energy transfer processes. Here, we review recent progress in developing methods for preparing lanthanide-activated phosphors, especially those featuring 4f-5d optical transitions. Particular attention will be devoted to two widely studied dopants, Ce3+ and Eu2+. The nature of the 4f-5d transition is examined by combining phenomenological theories with quantum mechanical calculations. An emphasis is placed on the correlation of host crystal structures with the 5d-4f luminescence characteristics of lanthanides, including quantum yield, emission color, decay rate, and thermal quenching behavior. Several parameters, namely Debye temperature and dielectric constant of the host crystal, geometrical structure of coordination polyhedron around the luminescent center, and the accurate energies of 4f and 5d levels, as well as the position of 4f and 5d levels relative to the valence and conduction bands of the hosts, are addressed as basic criteria for high-throughput computational design of lanthanide-activated phosphors.

8.
Inorg Chem ; 57(15): 9241-9250, 2018 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-30016088

RESUMEN

A detailed investigation of the overall crystal structure, and in particular of the local structure around the cations in M2La3Sb3O14 (M = Mg, Ca) was accomplished using X-ray diffraction, steady state luminescence spectroscopy and decay kinetics, and state of the art density functional calculations. The computational tool was also used to investigate the structure of Mn2La3Sb3O14. The Eu3+ dopant ion was employed as an optical probe of the local symmetry at the cationic sites. The use of these complementary techniques shows that the antimonates under investigation belong to the rhombohedral pyrochlore family with space group R3̅ m (No. 166), but while Mg2La3Sb3O14 and Mn2La3Sb3O14 show an ordered cationic configuration, the Ca2+ and La3+ of Ca2La3Sb3O14 are disordered because of their similar ionic radii. In both the Mg- and the Ca-based compounds, the Eu3+ ions formally occupy centrosymmetric sites, but in the case of Ca2La3Sb3O14 the presence of disorder in the outer coordination spheres removes the local inversion symmetry in these sites. This has a strong influence on the Eu3+ luminescence spectrum and on the radiative decay rate of the 5D0 emitting level.

9.
Inorg Chem ; 57(16): 10257-10264, 2018 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-30080030

RESUMEN

A new chiral complex {[EuL(tta)2(H2O)]CF3SO3; L = N, N'-bis(2-pyridylmethylidene)-1,2-( R, R + S, S)-cyclohexanediamine; tta = 2-thenoyltrifluoroacetyl-acetonate} has been synthesized and characterized from a structural and spectroscopic point of view. The molecular structure in the solid state shows the presence of one chiral L, two tta, and one water molecules bound to the metal center. L and tta molecules can efficiently harvest and transfer to Eu(III) the UV light absorbed in the 250-400 nm range. The forced electric-dipole 5D0 → 7F2 emission band dominates the Eu(III) emission spectra recorded in the solid state and in solution of acetonitrile or methanol and the calculated intrinsic quantum yield of the metal ion is around 40-50%. The light emitted by the enantiopure complex shows a sizable degree of polarization with a maximum value of the emission dissymmetry factor ( glum) equal to 0.2 in methanol solution. If compared with the complex in the solid state or in acetonitrile solution, then the first coordination sphere of Eu(III) when the complex is dissolved in methanol is characterized by the presence of one CH3OH molecule instead of water. This fact is related to different Eu(III) CPL signatures in the two solvents.

10.
Inorg Chem ; 57(13): 7550-7557, 2018 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-29927586

RESUMEN

We studied the electronic and vibrational properties of monazite-type SrCrO4 under compression. The study extended the pressure range of previous studies from 26 to 58 GPa. The existence of two previously reported phase transitions was confirmed at 9 and 14 GPa, and two new phase transitions were found at 35 and 48 GPa. These transitions involve several changes in the vibrational and transport properties with the new high-pressure phases having a conductivity lower than that of the previously known phases. No evidence of chemical decomposition or metallization of SrCrO4 was detected. A tentative explanation for the reported observations is discussed.

11.
Inorg Chem ; 57(21): 14005-14012, 2018 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-30370764

RESUMEN

The zircon to scheelite phase boundary of ErVO4 has been studied by high-pressure and high-temperature powder and single-crystal X-ray diffraction. This study has allowed us to delimit the best synthesis conditions of its scheelite-type phase, determine the ambient-temperature equation of state of the zircon and scheelite-type structures, and obtain the thermal equation of state of the zircon-type polymorph. The results obtained with powder samples indicate that zircon-type ErVO4 transforms to scheelite at 8.2 GPa and 293 K and at 7.5 GPa and 693 K. The analyses yield bulk moduli K0 of 158(13) GPa for the zircon phase and 158(17) GPa for the scheelite phase, with a temperature derivative of d K0/d T = -[3.8(2)] × 10-3 GPa K-1 and a volumetric thermal expansion of α0 = [0.9(2)] × 10-5 K-1 for the zircon phase according to the Berman model. The results are compared with those of other zircon-type vanadates, raising the need for careful experiments with highly crystalline scheelite to obtain reliable bulk moduli of this phase. Finally, we have performed single-crystal diffraction experiments from 110 to 395 K, and the obtained volumetric thermal expansion (α0) for zircon-type ErVO4 in the 300-395 K range is [1.4(2)] × 10-5 K-1, in good agreement with previous data and with our experimental value given from the thermal equation of state fit within the limits of uncertainty.

12.
Small ; 11(13): 1555-61, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25451550

RESUMEN

3D remote control of multifunctional fluorescent up-converting nanoparticles (UCNPs) using optical forces is being required for a great variety of applications including single-particle spectroscopy, single-particle intracellular sensing, controlled and selective light-activated drug delivery and light control at the nanoscale. Most of these potential applications find a serious limitation in the reduced value of optical forces (tens of fN) acting on these nanoparticles, due to their reduced dimensions (typically around 10 nm). In this work, this limitation is faced and it is demonstrated that the magnitude of optical forces acting on UCNPs can be enhanced by more than one order of magnitude by a controlled modification of the particle/medium interface. In particular, substitution of cationic species at the surface by other species with higher mobility could lead to UCNPs trapping with constants comparable to those of spherical metallic nanoparticles.


Asunto(s)
Nanopartículas , Óptica y Fotónica , Fluorescencia , Microscopía Electrónica de Transmisión , Propiedades de Superficie
13.
Inorg Chem ; 54(15): 7524-35, 2015 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-26161677

RESUMEN

The crystal structures, lattice vibrations, and electronic band structures of PbCrO4, PbSeO4, SrCrO4, and SrSeO4 were studied by ab initio calculations, Raman spectroscopy, X-ray diffraction, and optical-absorption measurements. Calculations properly describe the crystal structures of the four compounds, which are isomorphic to the monazite structure and were confirmed by X-ray diffraction. Information is also obtained on the Raman- and IR-active phonons, with all of the vibrational modes assigned. In addition, the band structures and electronic densities of states of the four compounds were determined. All are indirect-gap semiconductors. In particular, chromates are found to have band gaps smaller than 2.5 eV and selenates higher than 4.3 eV. In the chromates (selenates), the upper part of the valence band is dominated by O 2p states and the lower part of the conduction band is composed primarily of electronic states associated with the Cr 3d and O 2p (Se 4s and O 2p) states. Calculations also show that the band gap of PbCrO4 (PbSeO4) is smaller than the band gap of SrCrO4 (SrSeO4). This phenomenon is caused by Pb states, which, to some extent, also contribute to the top of the valence band and the bottom of the conduction band. The agreement between experiments and calculations is quite good; however, the band gaps are underestimated by calculations, with the exception of the bang gap of SrCrO4, for which theory and calculations agree. Calculations also provide predictions of the bulk modulus of the studied compounds.


Asunto(s)
Cromatos/química , Plomo/química , Metales de Tierras Raras/química , Modelos Moleculares , Ácido Selénico/química , Estroncio/química , Vibración , Cristalografía por Rayos X , Electrones , Conformación Molecular , Teoría Cuántica
14.
Opt Express ; 22(12): 14646-56, 2014 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-24977560

RESUMEN

The energy transfer mechanisms between Er3+ and Yb3+ ions have been investigated in LiLa9(SiO4)6O2 under selective Er3+ excitation. IR emission spectra, measured in the CW excitation regime, were used to establish a relationship between the macroscopic transfer and back transfer parameters. These measurements were combined with the results obtained under pulsed excitation to quantify the absolute values of transfer (Yb3+ → Er3+) and back transfer coefficients (Er3+ → Yb3+), C25 = 9.5 × 10−17 cm3s−1 and C52 = 1.4 × 10−17 cm3s−1, respectively. Additionally, it has been observed an energy transfer that reduces the quantum efficiency of the green emitting Er3+ levels. The corresponding macroscopic coefficient has been also determined (CGQ = 6.1 × 10−17 cm3s−1).

15.
Dalton Trans ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38916062

RESUMEN

This study presents evidence that lead metavanadate, PbV2O6, is a material with zero-linear compressibility, which maintains its crystal size in one crystallographic direction even under external pressures of up to 20 GPa. The orthorhombic polymorph of PbV2O6 (space group Pnma) was studied up to 20 GPa using synchrotron powder X-ray diffraction, Raman spectroscopy, and density-functional theory simulations to investigate its structural and vibrational evolution under compression. Up to this pressure we find no evidence of any structural phase transitions by any diagnostic technique, however, a progressive transformation of the coordination polyhedron of vanadium atoms is revealed which results in the zero-linear compressibility. High-pressure Raman experiments enabled the identification and symmetry assignation of all 54 zone-centre Raman-active modes as well as the calculation of their respective pressure coefficients. Three independent high-pressure powder X-ray diffraction experiments were performed using different pressure-transmitting media (Ne, 4 : 1 methanol-ethanol mixture, and silicone oil). The results show a high anisotropic behaviour in the linear compressibility of the crystallographic axes. The PbV2O6 bulk modulus of 86.1(9) GPa was determined using a third-order Birch-Murnaghan equation of state. The experimental results are supported by ab initio density-functional theory calculations, which provide vibrational patterns, unit-cell parameters, and atomic positions. These calculations also reveal that, unlike MgV2O6 and ZnV2O6, the band gap of PbV2O6 closes with pressure at a rate of -54 meV GPa-1 due to the contribution of the Pb 6s orbital to the top of the valence band.

16.
Small ; 9(12): 2162-70, 2013 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-23401166

RESUMEN

Laser-induced thermal effects in optically trapped microspheres and single cells are investigated by quantum dot luminescence thermometry. Thermal spectroscopy has revealed a non-localized temperature distribution around the trap that extends over tens of micrometers, in agreement with previous theoretical models besides identifying water absorption as the most important heating source. The experimental results of thermal loading at a variety of wavelengths reveal that an optimum trapping wavelength exists for biological applications close to 820 nm. This is corroborated by a simultaneous analysis of the spectral dependence of cellular heating and damage in human lymphocytes during optical trapping. This quantum dot luminescence thermometry demonstrates that optical trapping with 820 nm laser radiation produces minimum intracellular heating, well below the cytotoxic level (43 °C), thus, avoiding cell damage.

17.
Inorg Chem ; 49(11): 4916-21, 2010 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-20465246

RESUMEN

Single crystals of CaWO(4) and CaMoO(4) doped with Tb(3+) have been grown by the flux growth method. Their luminescence properties have been investigated in the 10-600 K temperature range under different experimental conditions. In spite of very similar spectra at low temperature upon excitation at 365 nm, the crystals show a very different behavior as the temperature is raised or the excitation wavelength is changed. These differences have been accounted for on the basis of models that take into consideration the position of the energy levels of the rare earth relative to the bandgap of the host material.

18.
Adv Sci (Weinh) ; 7(22): 2002444, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33240779

RESUMEN

Despite the outstanding optoelectronic properties of MoS2 and its analogues, synthesis of such materials with desired features including fewer layers, arbitrary hollow structures, and particularly specifically customized morphologies, via inorganic reactions has always been challenging. Herein, using predesigned lanthanide-doped upconversion luminescent materials (e.g., NaYF4:Ln) as templates, arbitrary MoS2 hollow structures with precisely defined morphologies, widely variable dimensions, and very small shell thickness (≈2.5 nm) are readily constructed. Most importantly, integration of the near-infrared-responsive template significantly improves the photoresponse of up to 600 fold in device made of NaYF4:Yb/Er@MoS2 compared with that of MoS2 nanosheets under 980 nm laser illumination. Multichannel optoelectronic device is further fabricated by simply changing luminescent ions in the template, e.g., NaYF4:Er@MoS2, operating at 1532 nm light excitation with a 276-fold photoresponse enhancement. The simple chemistry, easy operation, high reliability, variable morphologies, and wide universality represent the most important advantages of this novel strategy that has not been accessed before.

19.
J Am Chem Soc ; 131(36): 13155-60, 2009 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-19673522

RESUMEN

Despite the wide application of ceria-zirconia based materials in Three Way Catalysts (TWCs), Solid Oxides Fuel Cells (SOFCs), and H(2) production and purification reactions, an active debate is still open on the correlation between their structure and redox/catalytic performances. Existing reports support the need of either (i) a homogeneous solid solution or (ii) materials with nanoscale heterogeneity to obtain high activity and stability. Here we report on a simple and inexpensive approach to solve this problem taking advantage of the luminescence properties of Eu(III), used as a structural probe introduced either in the bulk or on the surface of the samples. In this way, the real structure of ceria-zirconia materials can be revealed even for amorphous high surface area samples. Formation of small domains is observed in catalytically important metastable samples which appear homogeneous by conventional XRD.


Asunto(s)
Cerio/química , Europio/química , Circonio/química , Luminiscencia , Modelos Moleculares , Termodinámica , Difracción de Rayos X
20.
J Nanosci Nanotechnol ; 9(11): 6315-9, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19908528

RESUMEN

Transparent Pr-doped YAG nanoceramics composed of grains with an average size of about 42 nm, were fabricated with the Low Temperature High Pressure (LTHP) sintering technique using the corresponding nanopowders as the starting materials. The structure of the nanoceramics was analyzed by X-ray diffraction (XRD). The effect of the sintering conditions on the structural properties is discussed on the basis of the changes of the spectroscopic properties of Pr3+ ions. In particular, the intensities and decays of the emission transitions originating from the (3)P0 and (1)D2 levels are investigated and correlated with structural properties of the material, such as microstrains produced by the high-pressure process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA