Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Law Biosci ; 8(1): lsab001, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33880184

RESUMEN

Investigative genetic genealogy (IGG) is a new technique for identifying criminal suspects that has sparked controversy. The technique involves uploading a crime scene DNA profile to one or more genetic genealogy databases with the intention of identifying a criminal offender's genetic relatives and, eventually, locating the offender within the family tree. IGG was used to identify the Golden State Killer in 2018 and it is now being used in connection with hundreds of cases in the USA. Yet, as more law enforcement agencies conduct IGG, the privacy implications of the technique have come under scrutiny. While these issues deserve careful attention, we are concerned that their discussion is, at times, based on misunderstandings related to how IGG is used in criminal investigations and how IGG departs from traditional investigative techniques. Here, we aim to clarify and sharpen the public debate by addressing four misconceptions about IGG. We begin with a detailed description of IGG as it is currently practiced: what it is and-just as important-what it is not. We then examine misunderstood or not widely known aspects of IGG that are potentially confusing efforts to have constructive discussions about its future. We conclude with recommendations intended to support the productivity of those discussions.

2.
Genetics ; 175(4): 1637-48, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17237521

RESUMEN

Osmotic stress induces activation of an adaptive mitogen-activated protein kinase pathway in concert with disassembly of the actin cytoskeleton by a mechanism that is not understood. We have previously shown that the conserved actin-interacting MAP kinase kinase kinase Ssk2p/MEKK4, a member of the high-osmolarity glycerol (HOG) MAPK pathway of Saccharomyces cerevisiae, mediates recovery of the actin cytoskeleton following osmotic stress. In this study, we have employed in vitro kinase assays to show that Ssk2p kinase activity is activated for the actin recovery pathway via a noncanonical, Ssk1p-independent mechanism. Our work also shows that Ssk2p requires the polarisome proteins Bud6p and Pea2p to promote efficient, polarized actin reassembly but that this requirement can be bypassed by overexpression of Ssk2p. Formin (BNI1 or BNR1) and tropomyosin functions are also required for actin recovery but, unlike for Bud6p and Pea2p, these requirements cannot be bypassed by overexpression of Ssk2p. These results suggest that Ssk2p acts downstream of Bud6p and Pea2p and upstream of tropomyosin to drive actin recovery, possibly by upregulating the actin nucleation activity of the formins.


Asunto(s)
Actinas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Secuencia de Bases , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Cartilla de ADN/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expresión Génica , Genes Fúngicos , Quinasas Quinasa Quinasa PAM , Sistema de Señalización de MAP Quinasas , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Presión Osmótica , Plásmidos/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Tropomiosina/metabolismo
3.
Genetics ; 172(1): 709-11, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16157664

RESUMEN

Synthetic genetic analysis was improved by eliminating leaky expression of the HIS3 reporter and gene conversion between the HIS3 reporter and his3Delta1. Leaky expression was eliminated using 3-aminotriazole and gene conversion was eliminated by using the Schizosaccharomyces pombe his5+ gene, resulting in a 5- to 10-fold improvement in the efficiency of SGA.


Asunto(s)
Amitrol (Herbicida)/metabolismo , Proteínas Fúngicas/genética , Conversión Génica , Histidina/genética , Análisis por Micromatrices , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Cromosomas Fúngicos , Genoma Fúngico
4.
J Mol Biol ; 332(3): 529-36, 2003 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-12963365

RESUMEN

Many proteins are built from structurally and functionally distinct domains. A major goal is to understand how conformational change transmits information between domains in order to achieve biological activity. A two-domain, bi-functional fusion protein has been designed so that the mechanical stress imposed by the folded structure of one subunit causes the other subunit to unfold, and vice versa. The construct consists of ubiquitin inserted into a surface loop of barnase. The distance between the amino and carboxyl ends of ubiquitin is much greater than the distance between the termini of the barnase loop. This topological constraint causes the two domains to engage in a thermodynamic tug-of-war in which only one can exist in its folded state at any given time. This conformational equilibrium, which is cooperative, reversible, and controllable by ligand binding, serves as a model for the coupled binding and folding mechanism widely used to mediate protein-protein interactions and cellular signaling processes. The position of the equilibrium can be adjusted by temperature or ligand binding and is monitored in vivo by cell death. This design forms the basis for a new class of cytotoxic proteins that can be activated by cell-specific effector molecules, and can thus target particular cell types for destruction.


Asunto(s)
Regulación Alostérica , Pliegue de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Bacterianas , Dicroismo Circular , Escherichia coli/genética , Humanos , Concentración de Iones de Hidrógeno , Espectroscopía de Resonancia Magnética , Desnaturalización Proteica , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Ribonucleasas/genética , Ribonucleasas/metabolismo , Estrés Mecánico , Temperatura , Termodinámica , Ubiquitina/genética , Ubiquitina/metabolismo
5.
J Cell Biochem ; 101(1): 34-43, 2007 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-17348032

RESUMEN

The mammalian JNK/p38 MAP kinase kinase kinase MEKK4 and the Saccharomyces cerevisiae Ssk2p are highly homologous. MEKK4 can replace all of the known functions of Ssk2p in yeast, including functioning in the high osmolarity glycerol (HOG) MAPK pathway and the recently described actin recovery pathway. MEKK4 and Ssk2p share a number of conserved domains and appear to be activated by a similar mechanism. Binding of an activating protein to the N-terminal region alleviates auto-inhibition and causes the kinase to auto-phosphorylate, resulting in activation. In this review we will examine the role of the MAP kinase kinase kinase isoform Ssk2p/MEKK4 in the adaptation of both yeast and mammalian systems to specific external stimuli. Recent work has provided a wealth of information about the activation, regulation, and functions of these MEKK kinases to extra-cellular signals. We will also highlight evidence supporting a role for MEKK4 in mediating actin recovery following osmotic shock in mammalian cells.


Asunto(s)
MAP Quinasa Quinasa Quinasa 4/metabolismo , Presión Osmótica , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Actinas/metabolismo , Adaptación Fisiológica , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Activación Enzimática , Predicción , Humanos , Isoenzimas/química , Isoenzimas/metabolismo , MAP Quinasa Quinasa Quinasa 4/química , Quinasas Quinasa Quinasa PAM , Mamíferos , Datos de Secuencia Molecular , Fosforilación , Unión Proteica , Proteínas Serina-Treonina Quinasas/química , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA