Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Mol Endocrinol ; 17(11): 2320-8, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12893883

RESUMEN

The vitamin D receptor (VDR) belongs to the thyroid hormone/retinoid receptor subfamily of nuclear receptors and functions as a heterodimer with retinoid X receptor (RXR). The RXR-VDR heterodimer, in contrast to other members of the class II nuclear receptor subfamily, is nonpermissive where RXR does not bind its cognate ligand, and therefore its role in VDR-mediated transactivation by liganded RXR-VDR has not been fully characterized. Here, we show a unique facet of the intermolecular RXR-VDR interaction, in which RXR actively participates in vitamin D3-dependent gene transcription. Using helix 3 and helix 12 mutants of VDR and RXR, we provide functional evidence that liganded VDR allosterically modifies RXR from an apo (unliganded)- to a holo (liganded)-receptor conformation, in the absence of RXR ligand. As a result of the proposed allosteric modification of RXR by liganded VDR, the heterodimerized RXR shows the "phantom ligand effect" and thus acquires the capability to recruit coactivators steroid receptor coactivator 1, transcriptional intermediary factor 2, and amplified in breast cancer-1. Finally, using a biochemical approach with purified proteins, we show that RXR augments the 1,25-dihydroxyvitamin D3-dependent recruitment of transcriptional intermediary factor 2 in the context of RXR-VDR heterodimer. These results confirm and extend the previous observations suggesting that RXR is a significant contributor to VDR-mediated gene expression and provide a mechanism by which RXR acts as a major contributor to vitamin D3-dependent transcription.


Asunto(s)
Receptores de Calcitriol/metabolismo , Receptores de Ácido Retinoico/metabolismo , Factores de Transcripción/metabolismo , Activación Transcripcional , Vitamina D/análogos & derivados , Regulación Alostérica , Dimerización , Células HeLa , Histona Acetiltransferasas , Humanos , Mutación/genética , Coactivador 1 de Receptor Nuclear , Coactivador 2 del Receptor Nuclear , Coactivador 3 de Receptor Nuclear , Estructura Terciaria de Proteína , Receptores de Calcitriol/química , Receptores de Calcitriol/genética , Receptores de Ácido Retinoico/química , Receptores de Ácido Retinoico/genética , Receptores X Retinoide , Factores de Transcripción/química , Factores de Transcripción/genética , Activación Transcripcional/efectos de los fármacos , Vitamina D/farmacología
2.
J Steroid Biochem Mol Biol ; 89-90(1-5): 195-8, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15225771

RESUMEN

We have recently shown that in colon cancer cells, Vitamin D receptor (VDR) interacts with the catalytic subunit of Ser/Thr protein phosphatases, PP1c and PP2Ac, and induces their enzymatic activity in a ligand-dependent manner. The VDR-PP1c and VDR-PP2Ac interactions were ligand independent in vivo, and 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3))-mediated increase in VDR-associated phosphatase activity resulted in dephosphorylation and inactivation of p70S6 kinase in colon cancer cells. Here, we demonstrate that in myeloid leukemia cells, 1,25(OH)(2)D(3) treatment increased the Thr389 phosphorylation of p70S6 kinase. Accordingly, 1,25(OH)(2)D(3) decreased VDR-associated Ser/Thr protein phosphatase activity by dissociating VDR-PP1c and VDR-PP2Ac interactions. Further, 1,25(OH)(2)D(3) increased the association between VDR and Thr389 phosphorylated p70S6 kinase. Finally, by using non-secosteroidal VDR ligands, we demonstrate a separation between transactivation and p70S6 kinase phosphorylation activities of VDR and show pharmacologically that p70S6 kinase phosphorylation correlates with HL-60 cell differentiation.


Asunto(s)
Fosfoproteínas Fosfatasas/metabolismo , Receptores de Calcitriol/metabolismo , Proteínas Quinasas S6 Ribosómicas/metabolismo , Línea Celular Tumoral , Separación Celular , Citometría de Flujo , Humanos , Ligandos , Fosforilación , Unión Proteica , Proteína Fosfatasa 1
3.
J Steroid Biochem Mol Biol ; 143: 29-39, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24565564

RESUMEN

Prostate cancer (PCa) initially responds to inhibition of androgen receptor (AR) signaling, but inevitably progresses to hormone ablation-resistant disease. Much effort is focused on optimizing this androgen deprivation strategy by improving hormone depletion and AR antagonism. However we found that bicalutamide, a clinically used antiandrogen, actually resembles a selective AR modulator (SARM), as it partially regulates 24% of endogenously 5α-dihydrotestosterone (DHT)-responsive genes in AR(+) MDA-MB-453 breast cancer cells. These data suggested that passive blocking of all AR functions is not required for PCa therapy. Hence, we adopted an active strategy that calls for the development of novel SARMs, which induce a unique gene expression profile that is intolerable to PCa cells. Therefore, we screened 3000 SARMs for the ability to arrest the androgen-independent growth of AR(+) 22Rv1 and LNCaP PCa cells but not AR(-) PC3 or DU145 cells. We identified only one such compound; the 4-aza-steroid, MK-4541, a potent and selective SARM. MK-4541 induces caspase-3 activity and cell death in both androgen-independent, AR(+) PCa cell lines but spares AR(-) cells or AR(+) non-PCa cells. This activity correlates with its promoter context- and cell-type dependent transcriptional effects. In rats, MK-4541 inhibits the trophic effects of DHT on the prostate, but not the levator ani muscle, and triggers an anabolic response in the periosteal compartment of bone. Therefore, MK-4541 has the potential to effectively manage prostatic hypertrophic diseases owing to its antitumor SARM-like mechanism, while simultaneously maintaining the anabolic benefits of natural androgens.


Asunto(s)
Anabolizantes/farmacología , Apoptosis/efectos de los fármacos , Azaesteroides/farmacología , Neoplasias de la Mama/patología , Carbamatos/farmacología , Neoplasias de la Próstata Resistentes a la Castración/patología , Neoplasias de la Próstata/patología , Receptores Androgénicos/química , Anabolizantes/química , Antagonistas de Receptores Androgénicos/farmacología , Andrógenos/farmacología , Animales , Azaesteroides/química , Western Blotting , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Carbamatos/química , Proliferación Celular/efectos de los fármacos , Técnicas Químicas Combinatorias , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , ARN Mensajero/genética , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores Androgénicos/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Tumorales Cultivadas
4.
J Biol Chem ; 280(47): 38898-901, 2005 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-16166078

RESUMEN

Signaling by androgens and interferons (IFN) plays an important role in prostate cancer initiation and progression. Using microarray analysis, we describe here a functional cross-talk between dihydrotestosterone and interferon signaling. Glutathione S-transferase pull-down and co-immunoprecipitation experiments reveal that the androgen receptor and the interferon-activated RNase L interact with each other in a ligand-dependent manner. Furthermore, overexpression of wild type RNase L confers IFN sensitivity to a dihydrotestosterone-inducible reporter gene, whereas R462Q-mutated RNase L does not. Based on our data we hypothesize that in 22RV1 cells, activated androgen receptor (AR) contributes to the insensitivity to IFN of the cell. Accordingly, we show that AR knockdown restores responsiveness to IFNgamma. Our findings support a model in which both the activation of AR and the down-regulation of IFN signaling can synergize to promote cell survival and suppress apoptosis. This model provides the molecular basis to understand how mutated RNase L can lead to early onset PCa and illustrates how inflammatory cytokines and nuclear hormone signaling contribute to tumor development.


Asunto(s)
Endorribonucleasas/metabolismo , Interferones/metabolismo , Receptores Androgénicos/metabolismo , Andrógenos/metabolismo , Apoptosis , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Supervivencia Celular , Dihidrotestosterona/farmacología , Endorribonucleasas/genética , Activación Enzimática , Femenino , Expresión Génica/efectos de los fármacos , Genes Reporteros , Humanos , Interferón gamma/farmacología , Ligandos , Masculino , Modelos Biológicos , Mutación , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Receptor Cross-Talk , Receptores Androgénicos/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal
5.
J Biol Chem ; 277(28): 24847-50, 2002 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-12036952

RESUMEN

We provide evidence of a cross-talk between nuclear receptor and Ser/Thr protein phosphatases and show that vitamin D receptor (VDR) interacts with the catalytic subunit of protein phosphatases, PP1c and PP2Ac, and induces their enzymatic activity in a ligand-dependent manner. PP1c specifically interacts with VDR but not retinoic acid receptor alpha and retinoid X receptor alpha in yeast. Although VDR-PP1c and VDR-PP2Ac interaction is ligand-independent in vivo, 1alpha,25-dihydroxy-vitamin D(3) induces VDR-associated phosphatase activity. Further, VDR modulation of PP1c/PP2Ac activity results in a rapid and specific dephosphorylation and inactivation of their substrate, p70 S6 kinase (p70(S6k)). Finally, we demonstrate that the endogenous VDR, PP1c or PP2Ac, and p70(S6k) are present in a ternary complex in vivo, and the interaction of p70(S6k) with the VDR-PP complex is modulated by the phosphorylation state of the kinase. Since p70(S6k) is essential for G(1)-S transition, our results provide a molecular basis of 1alpha,25-dihydroxyvitamin D(3)-induced G(1) block in colon cancer cells.


Asunto(s)
Fosfoproteínas Fosfatasas/metabolismo , Receptores de Calcitriol/metabolismo , Proteínas Quinasas S6 Ribosómicas/metabolismo , Fase G1 , Humanos , Ligandos , Fosforilación , Proteína Fosfatasa 1 , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA