RESUMEN
BACKGROUND: The amino acid composition, and rheological, thermal and colloidal stability of plant protein-based oil-in-water emulsion systems containing 1.90, 3.50 and 7.70 g 100 mL-1 protein, fat and carbohydrate, respectively, using quinoa and lentil protein ratios of 100:0 and 60:40 were investigated. The emulsion containing lentil protein showed lower initial, peak and final viscosity values (22.7, 61.7 and 61.6 mPa s, respectively) than the emulsion formulated with quinoa protein alone (34.3, 102 and 80.0 mPa s, respectively) on heat treatment. RESULTS: Particle size analysis showed that both samples had small particle sizes (~1.36 µm) after homogenization; however, the sample with 60:40 quinoa:lentil protein ratio showed greater physical stability, likely related to the superior emulsifying properties of lentil protein. However, upon heat treatment, large aggregates (~100 µm) were formed in both samples, reducing the physical stability of the samples. This physical stability was increased with the addition of 0.20% sodium dodecyl sulfate (SDS), whereas it was negatively affected by the addition of α-amylase. Addition of α-amylase led to lower viscosity for both emulsion samples, with measured values of 41.8 and 46.0 mPa s for the 100:0 and 60:40 samples, respectively. This suggests that the heat-induced increases in particle size were partially due to hydrophobic interactions between the proteins as SDS disrupts hydrophobic bonds between proteins. CONCLUSION: These results demonstrated that using a mixture of lentil and quinoa proteins positively affected the physical stability of plant protein-based emulsions, in addition to contributing to a more nutritionally complete amino acid profile - both important considerations in the development of plant-based beverages. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Asunto(s)
Chenopodium quinoa , Lens (Planta) , Aminoácidos , Emulsiones/química , Lens (Planta)/química , Tamaño de la Partícula , Proteínas de Plantas/química , Agua/química , alfa-AmilasasRESUMEN
BACKGROUND: Infant formula is a human milk substitute for consumption during the first months of life. The protein component of such products is generally of dairy origin. Alternative sources of protein, such as those of plant origin, are of interest due to dairy allergies, intolerances, and ethical and environmental considerations. Lentils have high levels of protein (20-30%) with a good amino acid profile and functional properties. In this study, a model lentil protein-based formula (LF), in powder format, was produced and compared to two commercial plant-based infant formulae (i.e., soy; SF and rice; RF) in terms of physicochemical properties and digestibility. RESULTS: The macronutrient composition was similar between all the samples; however, RF and SF had larger volume-weighted mean particle diameters (D[4,3] of 121-134 µm) than LF (31.9 µm), which was confirmed using scanning electron and confocal laser microscopy. The larger particle sizes of the commercial powders were attributed to their agglomeration during the drying process. Regarding functional properties, the LF showed higher D[4,3] values (17.8 µm) after 18 h reconstitution in water, compared with the SF and RF (5.82 and 4.55 µm, respectively), which could be partially attributed to hydrophobic protein-protein interactions. Regarding viscosity at 95 °C and physical stability, LF was more stable than RF. The digestibility analysis showed LF to have similar values (P < 0.05) to the standard SF. CONCLUSION: These results demonstrated that, from the nutritional and physicochemical perspectives, lentil proteins represent a good alternative to other sources of plant proteins (e.g., soy and rice) in infant nutritional products. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Asunto(s)
Fórmulas Infantiles , Lens (Planta) , Alérgenos , Desecación , Humanos , Lactante , Fórmulas Infantiles/química , Tamaño de la Partícula , PolvosRESUMEN
The substitution of animal protein with proteins of plant origin is a viable way to decrease the negative impact caused by animal husbandry on the environment. Pulse consumption has been widely promoted as a nutritious contribution to protein supplementation. In this study, an emulsion of lentil (Lens culinaris) protein isolate is fermented with lactic acid bacteria (LAB) to manufacture a yoghurt alternative and the techno-functional properties compared to a dairy- and a soy-based product with similar protein contents. The yoghurt-like products are subjected to large and small deformation analysis, quantification of fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAP), water holding capacity tests, protein profile analysis and the gel structure is visualised by confocal laser scanning microscopy (CLSM). The lentil yoghurt alternative shows good water holding capacity, high firmness and consistency values in large deformation analysis, with cohesiveness and viscosity not significantly different from that of dairy yoghurt. The high gel strength and rigidity of the lentil yoghurt gels measured by small deformation analysis is well-reflected in the dense protein matrix in the CLSM graphs. FODMAP content of the lentil yoghurt is very low, making it suitable for consumption by irritable bowel syndrome (IBS) patients. Our results show that lentil protein isolate is an excellent base material for producing a plant-based yoghurt alternative.
RESUMEN
Oil-in-water emulsion systems formulated with plant proteins are of increasing interest to food researchers and industry due to benefits associated with cost-effectiveness, sustainability and animal well-being. The aim of this study was to understand how the stability of complex model emulsions formulated using lentil proteins are influenced by calcium fortification (0 to 10 mM CaCl2) and thermal processing (95 or 140 °C). A valve homogeniser, operating at first and second stage pressures of 15 and 3 MPa, was used to prepare emulsions. On heating at 140 °C, the heat coagulation time (pH 6.8) for the emulsions was successively reduced from 4.80 to 0.40 min with increasing CaCl2 concentration from 0 to 10 mM, respectively. Correspondingly, the sample with the highest CaCl2 addition level developed the highest viscosity during heating (95 °C × 30 s), reaching a final value of 163 mPa·s. This was attributed to calcium-mediated interactions of lentil proteins, as confirmed by the increase in the mean particle diameter (D[4,3]) to 36.5 µm for the sample with 6 mM CaCl2, compared to the unheated and heated control with D[4,3] values of 0.75 and 0.68 µm, respectively. This study demonstrated that the combination of calcium and heat promoted the aggregation of lentil proteins in concentrated emulsions.
RESUMEN
Similarly prepared protein isolates from blue lupin (Lupinus angustifolius) and white lupin (L. albus) were assessed in relation to their composition, functional properties, nutritional attributes and environmental impacts. Blue lupin protein isolate (BLPI) and white lupin protein isolate (WLPI) were found to be quite similar in composition, although differences in the electrophoretic protein profiles were apparent. Both lupin protein isolates (LPIs) had good protein solubility (76.9% for BLPI and 69.8% for WLPI at pH 7) and foaming properties. However, a remarkable difference in heat gelation performance was observed between BLPI and WLPI. WLPI had a minimum gelling concentration of 7% protein, whereas BLPI required 23% protein in order to form a gel. WLPI also resulted in stronger gels over a range of concentrations compared to BLPI. Nutritional properties of both LPIs were similar, with no significant differences in in vitro protein digestibility (IVPD), and both had very low trypsin inhibitor activity (TIA) and fermentable oligo-, di- and monosaccharides, and polyols (FODMAP) content. The amino acid profiles of both LPIs were also similar, with sulfur-containing amino acids (SAAs) being the limiting amino acid in each case. Environmental impacts revealed by the life cycle assessment (LCA) were almost identical for BLPI and WLPI, and in most categories the LPIs demonstrated considerably better performance per kg protein when compared to cow's whole milk powder.
RESUMEN
Dry fractionated faba bean protein-rich flour (FPR) produced by milling/air classification, and faba bean protein isolate (FPI) produced by acid extraction/isoelectric precipitation were compared in terms of composition, techno-functional properties, nutritional properties and environmental impacts. FPR had a lower protein content (64.1%, dry matter (DM)) compared to FPI (90.1%, DM), due to the inherent limitations of air classification. Of the two ingredients, FPR demonstrated superior functionality, including higher protein solubility (85%), compared to FPI (32%) at pH 7. Foaming capacity was higher for FPR, although foam stability was similar for both ingredients. FPR had greater gelling ability compared to FPI. The higher carbohydrate content of FPR may have contributed to this difference. An amino acid (AA) analysis revealed that both ingredients were low in sulfur-containing AAs, with FPR having a slightly higher level than FPI. The potential nutritional benefits of the aqueous process compared to the dry process used in this study were apparent in the higher in vitro protein digestibility (IVPD) and lower trypsin inhibitor activity (TIA) in FPI compared to FPR. Additionally, vicine/convicine were detected in FPR, but not in FPI. Furthermore, much lower levels of fermentable oligo-, di- and monosaccharides, and polyols (FODMAPs) were found in FPI compared to FPR. The life cycle assessment (LCA) revealed a lower environmental impact for FPR, partly due to the extra water and energy required for aqueous processing. However, in a comparison with cow's milk protein, both FPR and FPI were shown to have considerably lower environmental impacts.