Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Cell ; 144(5): 644-5, 2011 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-21376229

RESUMEN

Creating long-term memory requires a cellular program in neurons involving gene expression, protein synthesis, and formation of new synaptic connections. Suzuki et al. (2011) show that astrocytes, glial cells of the brain, play a necessary role in this program by converting glycogen to lactate and transporting it to neurons.

2.
Int J Mol Sci ; 24(13)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37445940

RESUMEN

Understanding the complexities of the human brain and its associated disorders poses a significant challenge in neuroscience. Traditional research methods have limitations in replicating its intricacies, necessitating the development of in vitro models that can simulate its structure and function. Three-dimensional in vitro models, including organoids, cerebral organoids, bioprinted brain models, and functionalized brain organoids, offer promising platforms for studying human brain development, physiology, and disease. These models accurately replicate key aspects of human brain anatomy, gene expression, and cellular behavior, enabling drug discovery and toxicology studies while providing insights into human-specific phenomena not easily studied in animal models. The use of human-induced pluripotent stem cells has revolutionized the generation of 3D brain structures, with various techniques developed to generate specific brain regions. These advancements facilitate the study of brain structure development and function, overcoming previous limitations due to the scarcity of human brain samples. This technical review provides an overview of current 3D in vitro models of the human cortex, their development, characterization, and limitations, and explores the state of the art and future directions in the field, with a specific focus on their applications in studying neurodevelopmental and neurodegenerative disorders.


Asunto(s)
Células Madre Pluripotentes Inducidas , Enfermedades Neurodegenerativas , Animales , Humanos , Encéfalo/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Organoides
3.
Glia ; 70(9): 1585-1604, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35634946

RESUMEN

Schizophrenia is a complex, chronic mental health disorder whose heterogeneous genetic and neurobiological background influences early brain development, and whose precise etiology is still poorly understood. Schizophrenia is not characterized by gross brain pathology, but involves subtle pathological changes in neuronal populations and glial cells. Among the latter, astrocytes critically contribute to the regulation of early neurodevelopmental processes, and any dysfunctions in their morphological and functional maturation may lead to aberrant neurodevelopmental processes involved in the pathogenesis of schizophrenia, such as mitochondrial biogenesis, synaptogenesis, and glutamatergic and dopaminergic transmission. Studies of the mechanisms regulating astrocyte maturation may therefore improve our understanding of the cellular and molecular mechanisms underlying the pathogenesis of schizophrenia.


Asunto(s)
Esquizofrenia , Astrocitos/patología , Dopamina , Humanos , Neuroglía/patología , Neuronas/patología , Esquizofrenia/genética
4.
Int J Mol Sci ; 23(8)2022 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-35457231

RESUMEN

The 22q11 deletion syndrome (DS) is the most common microdeletion syndrome in humans and gives a high probability of developing psychiatric disorders. Synaptic and neuronal malfunctions appear to be at the core of the symptoms presented by patients. In fact, it has long been suggested that the behavioural and cognitive impairments observed in 22q11DS are probably due to alterations in the mechanisms regulating synaptic function and plasticity. Often, synaptic changes are related to structural and functional changes observed in patients with cognitive dysfunctions, therefore suggesting that synaptic plasticity has a crucial role in the pathophysiology of the syndrome. Most interestingly, among the genes deleted in 22q11DS, six encode for mitochondrial proteins that, in mouse models, are highly expressed just after birth, when active synaptogenesis occurs, therefore indicating that mitochondrial processes are strictly related to synapse formation and maintenance of a correct synaptic signalling. Because correct synaptic functioning, not only requires correct neuronal function and metabolism, but also needs the active contribution of astrocytes, we summarize in this review recent studies showing the involvement of synaptic plasticity in the pathophysiology of 22q11DS and we discuss the relevance of mitochondria in these processes and the possible involvement of astrocytes.


Asunto(s)
Síndrome de Deleción 22q11 , Astrocitos , Síndrome de Deleción 22q11/genética , Síndrome de Deleción 22q11/metabolismo , Animales , Astrocitos/metabolismo , Humanos , Ratones , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Plasticidad Neuronal/genética
5.
Mol Psychiatry ; 25(4): 732-749, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-30127471

RESUMEN

Astrocytes orchestrate neural development by powerfully coordinating synapse formation and function and, as such, may be critically involved in the pathogenesis of neurodevelopmental abnormalities and cognitive deficits commonly observed in psychiatric disorders. Here, we report the identification of a subset of cortical astrocytes that are competent for regulating dopamine (DA) homeostasis during postnatal development of the prefrontal cortex (PFC), allowing for optimal DA-mediated maturation of excitatory circuits. Such control of DA homeostasis occurs through the coordinated activity of astroglial vesicular monoamine transporter 2 (VMAT2) together with organic cation transporter 3 and monoamine oxidase type B, two key proteins for DA uptake and metabolism. Conditional deletion of VMAT2 in astrocytes postnatally produces loss of PFC DA homeostasis, leading to defective synaptic transmission and plasticity as well as impaired executive functions. Our findings show a novel role for PFC astrocytes in the DA modulation of cognitive performances with relevance to psychiatric disorders.


Asunto(s)
Astrocitos/metabolismo , Disfunción Cognitiva/metabolismo , Dopamina/metabolismo , Animales , Astrocitos/efectos de los fármacos , Encéfalo/metabolismo , Disfunción Cognitiva/fisiopatología , Dopamina/farmacología , Homeostasis , Masculino , Ratones , Ratones Noqueados , Neuronas/metabolismo , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Ratas , Ratas Sprague-Dawley , Transmisión Sináptica/fisiología
6.
Glia ; 66(10): 2188-2199, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30144319

RESUMEN

The gliotransmitter glutamate in different brain regions modulates neuronal excitability and synaptic transmission through a variety of mechanisms. Among the hallmarks of astrocytic glutamate release are the slow depolarizing inward currents (SICs) in neurons mediated by N-methyl-d-aspartate receptor activation. Different stimuli that evoke Ca2+ elevations in astrocytes induce neuronal SICs suggesting a Ca2+ -dependent exocytotic glutamate release mechanism of SIC generation. To gain new insights into this mechanism, we investigated the relationship between astrocytic Ca2+ elevations and neuronal SICs in mouse hippocampal slice preparations. Here we provide evidence that SICs, occurring either spontaneously or following a hypotonic challenge, are unchanged in the virtual absence of Ca2+ signal changes at astrocytic soma and processes, including spatially restricted Ca2+ microdomains. SICs are also unchanged in the presence of Bafilomycin A1 that after prolonged slice incubation depletes glutamate from astrocytic vesicles. We also found that hemichannels and TREK family channels-that recent studies proposed to mediate astrocytic glutamate release - are not involved in SIC generation. SICs are reduced by the volume-sensitive anion channel antagonists diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), quinine and fluoxetine, suggesting a possible contribution of these channels in SIC generation. Direct measurements of astrocytic glutamate release further confirm that hypotonicity-evoked gliotransmission is impaired following DIDS, quinine and fluoxetine while the exocytotic release of glutamate-that is proposed to mediate synaptic transmission modulation by astrocytes-remains unaffected. In conclusion, our data provide evidence that the release of glutamate generating SICs occurs independently on exocytotic Ca2+ -dependent glutamate release mechanism.


Asunto(s)
Astrocitos/metabolismo , Ácido Glutámico/metabolismo , Potenciales de la Membrana/fisiología , Neuronas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transmisión Sináptica/fisiología , Animales , Astrocitos/efectos de los fármacos , Calcio/metabolismo , Cationes Bivalentes/metabolismo , Fármacos del Sistema Nervioso Central/farmacología , Exocitosis/fisiología , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/efectos de los fármacos , Canales de Potasio de Dominio Poro en Tándem/genética , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Transmisión Sináptica/efectos de los fármacos , Técnicas de Cultivo de Tejidos
7.
Cereb Cortex ; 27(3): 2365-2384, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-27075036

RESUMEN

In astrocytes, the intracellular calcium (Ca2+) signaling mediated by activation of metabotropic glutamate receptor 5 (mGlu5) is crucially involved in the modulation of many aspects of brain physiology, including gliotransmission. Here, we find that the mGlu5-mediated Ca2+ signaling leading to release of glutamate is governed by mGlu5 interaction with Homer1 scaffolding proteins. We show that the long splice variants Homer1b/c are expressed in astrocytic processes, where they cluster with mGlu5 at sites displaying intense local Ca2+ activity. We show that the structural and functional significance of the Homer1b/c-mGlu5 interaction is to relocate endoplasmic reticulum (ER) to the proximity of the plasma membrane and to optimize Ca2+ signaling and glutamate release. We also show that in reactive astrocytes the short dominant-negative splice variant Homer1a is upregulated. Homer1a, by precluding the mGlu5-ER interaction decreases the intensity of Ca2+ signaling thus limiting the intensity and the duration of glutamate release by astrocytes. Hindering upregulation of Homer1a with a local injection of short interfering RNA in vivo restores mGlu5-mediated Ca2+ signaling and glutamate release and sensitizes astrocytes to apoptosis. We propose that Homer1a may represent one of the cellular mechanisms by which inflammatory astrocytic reactions are beneficial for limiting brain injury.


Asunto(s)
Astrocitos/metabolismo , Calcio/metabolismo , Proteínas de Andamiaje Homer/metabolismo , Animales , Isquemia Encefálica/metabolismo , Cationes Bivalentes/metabolismo , Células Cultivadas , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/metabolismo , Retículo Endoplásmico/metabolismo , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Ácido Glutámico/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Andamiaje Homer/antagonistas & inhibidores , Proteínas de Andamiaje Homer/genética , Humanos , Recién Nacido , Masculino , Ratones Transgénicos , Ratas Sprague-Dawley , Receptor del Glutamato Metabotropico 5/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Técnicas de Cultivo de Tejidos
8.
Hum Mol Genet ; 21(4): 826-40, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22072391

RESUMEN

Collective evidence indicates that motor neuron degeneration in amyotrophic lateral sclerosis (ALS) is non-cell-autonomous and requires the interaction with the neighboring astrocytes. Recently, we reported that a subpopulation of spinal cord astrocytes degenerates in the microenvironment of motor neurons in the hSOD1(G93A) mouse model of ALS. Mechanistic studies in vitro identified a role for the excitatory amino acid glutamate in the gliodegenerative process via the activation of its inositol 1,4,5-triphosphate (IP(3))-generating metabotropic receptor 5 (mGluR5). Since non-physiological formation of IP(3) can prompt IP(3) receptor (IP(3)R)-mediated Ca(2+) release from the intracellular stores and trigger various forms of cell death, here we investigated the intracellular Ca(2+) signaling that occurs downstream of mGluR5 in hSOD1(G93A)-expressing astrocytes. Contrary to wild-type cells, stimulation of mGluR5 causes aberrant and persistent elevations of intracellular Ca(2+) concentrations ([Ca(2+)](i)) in the absence of spontaneous oscillations. The interaction of IP(3)Rs with the anti-apoptotic protein Bcl-X(L) was previously described to prevent cell death by modulating intracellular Ca(2+) signals. In mutant SOD1-expressing astrocytes, we found that the sole BH4 domain of Bcl-X(L), fused to the protein transduction domain of the HIV-1 TAT protein (TAT-BH4), is sufficient to restore sustained Ca(2+) oscillations and cell death resistance. Furthermore, chronic treatment of hSOD1(G93A) mice with the TAT-BH4 peptide reduces focal degeneration of astrocytes, slightly delays the onset of the disease and improves both motor performance and animal lifespan. Our results point at TAT-BH4 as a novel glioprotective agent with a therapeutic potential for ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Astrocitos/metabolismo , Astrocitos/patología , Señalización del Calcio , Proteína bcl-X/química , Proteína bcl-X/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Astrocitos/citología , Astrocitos/efectos de los fármacos , Señalización del Calcio/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Femenino , Regulación de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Transgénicos , Péptidos/química , Péptidos/metabolismo , Péptidos/farmacología , Estructura Terciaria de Proteína , Desempeño Psicomotor/efectos de los fármacos , Receptores de Ácido Kaínico/genética , Receptores de Ácido Kaínico/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1 , Análisis de Supervivencia , Proteína bcl-X/farmacología
9.
Neural Plast ; 2014: 254574, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24551459

RESUMEN

Astrocytes are highly secretory cells, participating in rapid brain communication by releasing glutamate. Recent evidences have suggested that this process is largely mediated by Ca(2+)-dependent regulated exocytosis of VGLUT-positive vesicles. Here by taking advantage of VGLUT1-pHluorin and TIRF illumination, we characterized mechanisms of glutamate exocytosis evoked by endogenous transmitters (glutamate and ATP), which are known to stimulate Ca(2+) elevations in astrocytes. At first we characterized the VGLUT1-pHluorin expressing vesicles and found that VGLUT1-positive vesicles were a specific population of small synaptic-like microvesicles containing glutamate but which do not express VGLUT2. Endogenous mediators evoked a burst of exocytosis through activation of G-protein coupled receptors. Subsequent glutamate exocytosis was reduced by about 80% upon pharmacological blockade of the prostaglandin-forming enzyme, cyclooxygenase. On the other hand, receptor stimulation was accompanied by extracellular release of prostaglandin E2 (PGE2). Interestingly, administration of exogenous PGE2 produced per se rapid, store-dependent burst exocytosis of glutamatergic vesicles in astrocytes. Finally, when PGE2-neutralizing antibody was added to cell medium, transmitter-evoked exocytosis was again significantly reduced (by about 50%). Overall these data indicate that cyclooxygenase products are responsible for a major component of glutamate exocytosis in astrocytes and that large part of such component is sustained by autocrine/paracrine action of PGE2.


Asunto(s)
Astrocitos/fisiología , Exocitosis/fisiología , Ácido Glutámico/fisiología , Prostaglandinas/fisiología , Receptores Acoplados a Proteínas G/fisiología , Animales , Anticuerpos Bloqueadores/farmacología , Aspirina/farmacología , Células Cultivadas , Inhibidores de la Ciclooxigenasa/farmacología , Dinoprostona/antagonistas & inhibidores , Dinoprostona/farmacología , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Indometacina/farmacología , Metoxihidroxifenilglicol/análogos & derivados , Metoxihidroxifenilglicol/farmacología , Prostaglandina-Endoperóxido Sintasas/fisiología , Ratas , Transducción de Señal/fisiología , Transfección , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo
10.
Front Cell Neurosci ; 18: 1354259, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38419654

RESUMEN

Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition characterized by elusive underlying mechanisms. Recent attention has focused on the involvement of astrocytes and microglia in ASD pathology. These glial cells play pivotal roles in maintaining neuronal homeostasis, including the regulation of metabolism. Emerging evidence suggests a potential association between ASD and inborn errors of metabolism. Therefore, gaining a comprehensive understanding of the functions of microglia and astrocytes in ASD is crucial for the development of effective therapeutic interventions. This review aims to provide a summary of the metabolism of astrocytes and microglia during post-natal development and the evidence of disrupted metabolic pathways in ASD, with particular emphasis on those potentially important for the regulation of neuronal post-natal maturation by astrocytes and microglia.

11.
Cells ; 12(24)2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-38132147

RESUMEN

Synapses are the fundamental structures of neural circuits that control brain functions and behavioral and cognitive processes. Synapses undergo formation, maturation, and elimination mainly during postnatal development via a complex interplay with neighboring astrocytes and microglia that, by shaping neural connectivity, may have a crucial role in the strengthening and weakening of synaptic functions, that is, the functional plasticity of synapses. Indeed, an increasing number of studies have unveiled the roles of microglia and astrocytes in synapse formation, maturation, and elimination as well as in regulating synaptic function. Over the past 15 years, the mechanisms underlying the microglia- and astrocytes-dependent regulation of synaptic plasticity have been thoroughly studied, and researchers have reported that the disruption of these glial cells in early postnatal development may underlie the cause of synaptic dysfunction that leads to neurodevelopmental disorders such as autism spectrum disorder (ASD) and schizophrenia.


Asunto(s)
Trastorno del Espectro Autista , Esquizofrenia , Humanos , Microglía/fisiología , Sinapsis/fisiología , Neuroglía
12.
Front Mol Neurosci ; 16: 1333745, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38292023

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with no effective therapy, causing progressive loss of motor neurons in the spinal cord, brainstem, and motor cortex. Regardless of its genetic or sporadic origin, there is currently no cure for ALS or therapy that can reverse or control its progression. In the present study, taking advantage of a human superoxide dismutase-1 mutant (hSOD1-G93A) mouse that recapitulates key pathological features of human ALS, we investigated the possible role of voltage-gated potassium channel Kv1.3 in disease progression. We found that chronic administration of the brain-penetrant Kv1.3 inhibitor, PAP-1 (40 mg/Kg), in early symptomatic mice (i) improves motor deficits and prolongs survival of diseased mice (ii) reduces astrocyte reactivity, microglial Kv1.3 expression, and serum pro-inflammatory soluble factors (iii) improves structural mitochondrial deficits in motor neuron mitochondria (iv) restores mitochondrial respiratory dysfunction. Taken together, these findings underscore the potential significance of Kv1.3 activity as a contributing factor to the metabolic disturbances observed in ALS. Consequently, targeting Kv1.3 presents a promising avenue for modulating disease progression, shedding new light on potential therapeutic strategies for ALS.

13.
Biol Psychiatry ; 93(11): 966-975, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36958999

RESUMEN

BACKGROUND: Astrocytes control synaptic activity by modulating perisynaptic concentrations of ions and neurotransmitters including dopamine (DA) and, as such, could be involved in the modulating aspects of mammalian behavior. METHODS: We produced a conditional deletion of the vesicular monoamine transporter 2 (VMAT2) specifically in astrocytes (aVMTA2cKO mice) and studied the effects of the lack of VMAT2 in prefrontal cortex (PFC) astrocytes on the regulation of DA levels, PFC circuit functions, and behavioral processes. RESULTS: We found a significant reduction of medial PFC (mPFC) DA levels and excessive grooming and compulsive repetitive behaviors in aVMAT2cKO mice. The mice also developed a synaptic pathology, expressed through increased relative AMPA versus NMDA receptor currents in synapses of the dorsal striatum receiving inputs from the mPFC. Importantly, behavioral and synaptic phenotypes were rescued by re-expression of mPFC VMAT2 and L-DOPA treatment, showing that the deficits were driven by mPFC astrocytes that are critically involved in developmental DA homeostasis. By analyzing human tissue samples, we found that VMAT2 is expressed in human PFC astrocytes, corroborating the potential translational relevance of our observations in mice. CONCLUSIONS: Our study shows that impairment of the astrocytic control of DA in the mPFC leads to symptoms resembling obsessive-compulsive spectrum disorders such as trichotillomania and has a profound impact on circuit function and behaviors.


Asunto(s)
Astrocitos , Dopamina , Ratones , Animales , Humanos , Astrocitos/fisiología , Aseo Animal , Sinapsis/fisiología , Corteza Prefrontal/fisiología , Mamíferos
14.
J Neuroinflammation ; 9: 198, 2012 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-22894638

RESUMEN

BACKGROUND: Neuroprotective and neurotrophic properties of leukemia inhibitory factor (LIF) have been widely reported. In the central nervous system (CNS), astrocytes are the major source for LIF, expression of which is enhanced following disturbances leading to neuronal damage. How astrocytic LIF expression is regulated, however, has remained an unanswered question. Since neuronal stress is associated with production of extracellular adenosine, we investigated whether LIF expression in astrocytes was mediated through adenosine receptor signaling. METHODS: Mouse cortical neuronal and astrocyte cultures from wild-type and adenosine A(2B) receptor knock-out animals, as well as adenosine receptor agonists/antagonists and various enzymatic inhibitors, were used to study LIF expression and release in astrocytes. When needed, a one-way analysis of variance (ANOVA) followed by Bonferroni post-hoc test was used for statistical analysis. RESULTS: We show here that glutamate-stressed cortical neurons induce LIF expression through activation of adenosine A(2B) receptor subtype in cultured astrocytes and require signaling of protein kinase C (PKC), mitogen-activated protein kinases (MAPKs: p38 and ERK1/2), and the nuclear transcription factor (NF)-κB. Moreover, LIF concentration in the supernatant in response to 5'-N-ethylcarboxamide (NECA) stimulation was directly correlated to de novo protein synthesis, suggesting that LIF release did not occur through a regulated release pathway. Immunocytochemistry experiments show that LIF-containing vesicles co-localize with clathrin and Rab11, but not with pHogrin, Chromogranin (Cg)A and CgB, suggesting that LIF might be secreted through recycling endosomes. We further show that pre-treatment with supernatants from NECA-treated astrocytes increased survival of cultured cortical neurons against glutamate, which was absent when the supernatants were pre-treated with an anti-LIF neutralizing antibody. CONCLUSIONS: Adenosine from glutamate-stressed neurons induces rapid LIF release in astrocytes. This rapid release of LIF promotes the survival of cortical neurons against excitotoxicity.


Asunto(s)
Astrocitos/metabolismo , Corteza Cerebral/metabolismo , Fármacos actuantes sobre Aminoácidos Excitadores/toxicidad , Factor Inhibidor de Leucemia/metabolismo , Neuronas/metabolismo , Receptor de Adenosina A2B/fisiología , Animales , Células Cultivadas , Ácido Glutámico/toxicidad , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fármacos Neuroprotectores/metabolismo , Receptor de Adenosina A2B/uso terapéutico
15.
Adv Exp Med Biol ; 970: 307-31, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22351062

RESUMEN

In the last years, the classical view of glial cells (in particular of astrocytes) as a simple supportive cell for neurons has been replaced by a new vision in which glial cells are active elements of the brain. Such a new vision is based on the existence of a bidirectional communication between astrocytes and neurons at synaptic level. Indeed, perisynaptic processes of astrocytes express active G-protein-coupled receptors that are able (1) to sense neurotransmitters released from the synapse during synaptic activity, (2) to increase cytosolic levels of calcium, and (3) to stimulate the release of gliotransmitters that in turn can interact with the synaptic elements. The mechanism(s) by which astrocytes can release gliotransmitter has been extensively studied during the last years. Many evidences have suggested that a fraction of astrocytes in situ release neuroactive substances both with calcium-dependent and calcium-independent mechanism(s); whether these mechanisms coexist and under what physiological or pathological conditions they occur, it remains unclear. However, the calcium-dependent exocytotic vesicular release has received considerable attention due to its potential to occur under physiological conditions via a finely regulated way. By releasing gliotransmitters in millisecond time scale with a specific vesicular apparatus, astrocytes can integrate and process synaptic information and control or modulate synaptic transmission and plasticity.


Asunto(s)
Astrocitos/fisiología , Señalización del Calcio/fisiología , Hipocampo/fisiología , Neuronas/fisiología , Sinapsis/metabolismo , Transmisión Sináptica/fisiología , Animales , Astrocitos/ultraestructura , Calcio/metabolismo , Comunicación Celular , Exocitosis/fisiología , Colorantes Fluorescentes , Ácido Glutámico/metabolismo , Hipocampo/citología , Humanos , Microscopía Electrónica , Plasticidad Neuronal/fisiología , Neuronas/ultraestructura , Neurotransmisores/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Glutamato/fisiología
16.
J Cell Biol ; 221(4)2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35319768

RESUMEN

The study of human reactive astrocytes has been limited by resource availability. In this issue, Cvetkovic et al. (2022. J. Cell Biol.https://doi.org/10.1083/jcb.202107135) develop multicellular organoid systems containing mature astrocytes to study the dynamics of human astrocytes reactivity and its downstream effects on neuronal activity.


Asunto(s)
Astrocitos , Organoides , Humanos , Neuronas
17.
Life (Basel) ; 12(11)2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36431019

RESUMEN

Maintaining the excitability of neurons and circuits is fundamental for healthy brain functions. The global compensatory increase in excitatory synaptic strength, in response to decreased activity, is one of the main homeostatic mechanisms responsible for such regulation. This type of plasticity has been extensively characterized in rodents in vivo and in vitro, but few data exist on human neurons maturation. We have generated an in vitro cortical model system, based on differentiated human-induced pluripotent stem cells, chronically treated with tetrodotoxin, to investigate homeostatic plasticity at different developmental stages. Our findings highlight the presence of homeostatic plasticity in human cortical networks and show that the changes in synaptic strength are due to both pre- and post-synaptic mechanisms. Pre-synaptic plasticity involves the potentiation of neurotransmitter release machinery, associated to an increase in synaptic vesicle proteins expression. At the post-synaptic level, we report an increase in the expression of post-synaptic density proteins, involved in glutamatergic receptor anchoring. These results extend our understanding of neuronal homeostasis and reveal the developmental regulation of its expression in human cortical networks. Since induced pluripotent stem cell-derived neurons can be obtained from patients with neurodevelopmental and neurodegenerative diseases, our platform offers a versatile model for assessing human neural plasticity under physiological and pathological conditions.

18.
Nat Neurosci ; 10(3): 331-9, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17310248

RESUMEN

The release of transmitters from glia influences synaptic functions. The modalities and physiological functions of glial release are poorly understood. Here we show that glutamate exocytosis from astrocytes of the rat hippocampal dentate molecular layer enhances synaptic strength at excitatory synapses between perforant path afferents and granule cells. The effect is mediated by ifenprodil-sensitive NMDA ionotropic glutamate receptors and involves an increase of transmitter release at the synapse. Correspondingly, we identify NMDA receptor 2B subunits on the extrasynaptic portion of excitatory nerve terminals. The receptor distribution is spatially related to glutamate-containing synaptic-like microvesicles in the apposed astrocytic processes. This glial regulatory pathway is endogenously activated by neuronal activity-dependent stimulation of purinergic P2Y1 receptors on the astrocytes. Thus, we provide the first combined functional and ultrastructural evidence for a physiological control of synaptic activity via exocytosis of glutamate from astrocytes.


Asunto(s)
Astrocitos/metabolismo , Exocitosis/fisiología , Ácido Glutámico/metabolismo , Sinapsis/metabolismo , Transmisión Sináptica/fisiología , Análisis de Varianza , Animales , Astrocitos/efectos de los fármacos , Astrocitos/efectos de la radiación , Astrocitos/ultraestructura , Estimulación Eléctrica/métodos , Agonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Exocitosis/efectos de los fármacos , Exocitosis/efectos de la radiación , Hipocampo/citología , Técnicas In Vitro , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Potenciales de la Membrana/efectos de la radiación , Microscopía Inmunoelectrónica/métodos , N-Metilaspartato/farmacología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Neuronas/efectos de la radiación , Técnicas de Placa-Clamp/métodos , Vía Perforante/fisiología , Vía Perforante/efectos de la radiación , Piperidinas/farmacología , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/ultraestructura , Sinapsis/ultraestructura
19.
Cell Rep ; 35(2): 108952, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33852851

RESUMEN

The mechanisms controlling the post-natal maturation of astrocytes play a crucial role in ensuring correct synaptogenesis. We show that mitochondrial biogenesis in developing astrocytes is necessary for coordinating post-natal astrocyte maturation and synaptogenesis. The astrocytic mitochondrial biogenesis depends on the transient upregulation of metabolic regulator peroxisome proliferator-activated receptor gamma (PPARγ) co-activator 1α (PGC-1α), which is controlled by metabotropic glutamate receptor 5 (mGluR5). At tissue level, the loss or downregulation of astrocytic PGC-1α sustains astrocyte proliferation, dampens astrocyte morphogenesis, and impairs the formation and function of neighboring synapses, whereas its genetic re-expression is sufficient to restore the mitochondria compartment and correct astroglial and synaptic defects. Our findings show that the developmental enhancement of mitochondrial biogenesis in astrocytes is a critical mechanism controlling astrocyte maturation and supporting synaptogenesis, thus suggesting that astrocytic mitochondria may be a therapeutic target in the case of neurodevelopmental and psychiatric disorders characterized by impaired synaptogenesis.


Asunto(s)
Astrocitos/metabolismo , Mitocondrias/genética , Neurogénesis/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Receptor del Glutamato Metabotropico 5/genética , Sinapsis/metabolismo , Transmisión Sináptica/genética , Animales , Animales Recién Nacidos , Astrocitos/citología , Encéfalo/citología , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Diferenciación Celular , Proliferación Celular , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Masculino , Ratones , Ratones Transgénicos , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , ATPasas de Translocación de Protón Mitocondriales/genética , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Biogénesis de Organelos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Cultivo Primario de Células , Receptor del Glutamato Metabotropico 5/metabolismo , Sinapsis/genética , Sinapsis/ultraestructura
20.
Cells ; 9(5)2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32443613

RESUMEN

Adaptation of glioblastoma to caloric restriction induces compensatory changes in tumor metabolism that are incompletely known. Here we show that in human glioblastoma cells maintained in exhausted medium, SHC adaptor protein 3 (SHC3) increases due to down-regulation of SHC3 protein degradation. This effect is reversed by glucose addition and is not present in normal astrocytes. Increased SHC3 levels are associated to increased glucose uptake mediated by changes in membrane trafficking of glucose transporters of the solute carrier 2A superfamily (GLUT/SLC2A). We found that the effects on vesicle trafficking are mediated by SHC3 interactions with adaptor protein complex 1 and 2 (AP), BMP-2-inducible protein kinase and a fraction of poly ADP-ribose polymerase 1 (PARP1) associated to vesicles containing GLUT/SLC2As. In glioblastoma cells, PARP1 inhibitor veliparib mimics glucose starvation in enhancing glucose uptake. Furthermore, cytosol extracted from glioblastoma cells inhibits PARP1 enzymatic activity in vitro while immunodepletion of SHC3 from the cytosol significantly relieves this inhibition. The identification of a new pathway controlling glucose uptake in high grade gliomas represents an opportunity for repositioning existing drugs and designing new ones.


Asunto(s)
Adaptación Fisiológica , Neoplasias Encefálicas/patología , Glioblastoma/patología , Glucosa/deficiencia , Transducción de Señal , Adaptación Fisiológica/efectos de los fármacos , Bencimidazoles/farmacología , Neoplasias Encefálicas/ultraestructura , Línea Celular Tumoral , Endocitosis/efectos de los fármacos , Glioblastoma/ultraestructura , Transportador de Glucosa de Tipo 1/metabolismo , Glicosilación/efectos de los fármacos , Humanos , Ácido Láctico/biosíntesis , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli Adenosina Difosfato Ribosa/metabolismo , Unión Proteica/efectos de los fármacos , Dominios Proteicos , Estabilidad Proteica/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proteína Transformadora 3 que Contiene Dominios de Homología 2 de Src/química , Proteína Transformadora 3 que Contiene Dominios de Homología 2 de Src/metabolismo , Vesículas Transportadoras/efectos de los fármacos , Vesículas Transportadoras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA