Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Kidney Int ; 99(5): 1127-1139, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33417998

RESUMEN

Understanding why certain patients with IgA nephropathy progress to kidney failure while others maintain normal kidney function remains a major unanswered question. To help answer this, we performed miRNome profiling by next generation sequencing of kidney biopsies in order to identify microRNAs specifically associated with the risk of IgA nephropathy progression. Following sequencing and validation in independent cohorts, four microRNAs (-150-5p, -155-5p, -146b-5p, -135a-5p) were found to be differentially expressed in IgA nephropathy progressors compared to non-progressors, and patients with thin membrane nephropathy, lupus nephritis and membranous nephropathy, and correlated with estimated glomerular filtration rate, proteinuria, and the Oxford MEST-C scores (five histological features that are independent predictors of clinical outcome). Each individual microRNA increased the discrimination score of the International IgAN Prediction Tool, although due to the small number of samples the results did not reach statistical significance. miR-150-5p exhibited the largest amplitude of expression between cohorts and displayed the best discrimination between IgA nephropathy progressors and non-progressors by receiver operating curve analysis (AUC: 0.8). However, expression was similarly upregulated in kidneys with established fibrosis and low estimated glomerular filtration rates at the time of biopsy. Consistent with a more generic role in kidney fibrosis, in situ hybridization revealed that miR-150-5p was found in lymphoid infiltrates, and areas of proliferation and fibrosis consistent with the known drivers of progression. Thus, miR-150-5p may be a potential functional mediator of kidney fibrosis that may add value in predicting risk of progression in IgA nephropathy and other kidney diseases.


Asunto(s)
Glomerulonefritis por IGA , MicroARNs , Biomarcadores , Progresión de la Enfermedad , Tasa de Filtración Glomerular , Glomerulonefritis por IGA/genética , Humanos , Riñón , MicroARNs/genética
2.
Nephrol Dial Transplant ; 35(11): 1865-1877, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32830258

RESUMEN

BACKGROUND: Tubulointerstitial fibrosis is a powerful predictor of future progression inimmunoglobulin A (IgA) nephropathy (IgAN). Proximal tubular epithelial cells (PTECs), in concert with infiltrating macrophages, are regarded as the agents provocateurs for driving this fibrotic process. However, evidence is now emerging for a contributory role of the distal nephron. The aim of this study was to examine the potential influence of macrophages on collecting duct epithelial cells (CDECs) and their combined role in the progression of IgAN. METHODS: CDECs were cultured with macrophage-conditioned media (MCM) generated from human monocyte cell lines U937 and THP-1 stimulated with or without 100 µg/mL galactose-deficient IgA1. CDECs were analysed for evidence of inflammation and fibrosis. RESULTS: Staining of IgAN biopsies for CD68+ macrophages revealed the presence of macrophages juxtaposed to collecting ducts and within their lumina. CDEC exposed to MCM from IgA1-stimulated THP-1 cells (THP-1-IgA-MCM) exhibited markedly increased expression of neutrophil-associated gelatinase (NGAL) and proinflammatory cytokinesinterleukin (IL)-1ß, tumour necrosis factor-α, IL-6 and IL-8 compared with MCM from non-IgA-stimulated THP-1 cells (THP-1-MCM). U937-IgA-MCM increased fibronectin levels and reduced E-cadherinmRNA expression. THP-1-IgA-MCM-derived exosomes induced similar increases in NGAL and cytokine expression while in cross-over experiments exosomes extracted from IL-1ß-exposed CDEC induced IL-1ß and IL-6 mRNA expression in both sets of macrophages. MiRnome analysis revealed that microRNA (miR)-146a, -155 and -200b exhibited a >2-fold increase in expression in CDEC treated with THP-1-IgA-MCM compared with THP-1-MCM. Enforced miR-146a suppression further enhanced NGAL expression, while ectopic miR-146a over-expression downregulated it. NGAL mRNA and miR-146a were upregulated in the biopsies of patients with progressive IgAN compared with non-progressive IgAN. CONCLUSIONS: Taken together, these data suggest that CDEC-macrophage interactions potentially contribute to the tubulointerstitial fibrosis characteristic of progressive IgAN.


Asunto(s)
Células Epiteliales/metabolismo , Fibrosis/patología , Glomerulonefritis por IGA/patología , Inflamación/patología , Túbulos Renales/metabolismo , Macrófagos/metabolismo , Células Cultivadas , Células Epiteliales/citología , Células Epiteliales/inmunología , Fibrosis/inmunología , Glomerulonefritis por IGA/inmunología , Humanos , Inflamación/inmunología , Interleucina-1beta/metabolismo , Túbulos Renales/citología , Túbulos Renales/inmunología , Macrófagos/citología , Macrófagos/inmunología , Factor de Necrosis Tumoral alfa/metabolismo
4.
Kidney Int Rep ; 6(8): 2179-2188, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34386667

RESUMEN

INTRODUCTION: Immunoglobulin (Ig)A nephropathy (IgAN) is the most frequently diagnosed primary glomerulonephritis worldwide. Despite the common diagnostic feature of mesangial IgA-containing immune complex deposition, the clinical course of the disease is extremely variable, with 30% of patients developing end-stage kidney disease within 20 years of diagnosis. Therefore, identifying which patients are likely to progress is paramount. RESULTS: In this pilot study, we found that urinary exosomal miR-204 expression was significantly reduced in IgAN compared with healthy subjects. However, there was no difference in miR-204 expression between IgAN and non-IgAN chronic kidney disease controls. Analysis of miR-204 expression in kidney biopsy cores by next-generation sequencing followed by quantitative polymerase chain reaction validation in independent cohorts demonstrated that expression of miR-204 was significantly lower in IgAN compared with thin-membrane nephropathy but not compared with membranous nephropathy. Patients with IgAN at high risk of future progression had significantly lower expression of miR-204 than those at low risk of progression. Cortical localization indicated that miR-204 was preferentially expressed in the interstitium compared with glomeruli in IgAN nonprogressors and that this distribution was lost in IgAN progressors. Receiver operating characteristic curve analysis between the 2 IgAN cohorts revealed an area under the curve of 0.82. In addition, miR-204 expression correlated with known clinicopathological prognostic risk factors. Importantly, incorporating miR-204 into the International IgAN risk prediction tool improved the diagnostic power of the algorithm to predict risk of progression. CONCLUSION: Additional large-scale studies are now needed to validate the additive value of miR-204 in improving risk prediction in IgAN and more broadly in chronic kidney disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA