RESUMEN
Present study aimed at a single component cyclization of 2-benzylidene-1-tetralones for the preparation of 5H-benzo[c]fluorenes and their antiproliferative activity. This ring closure reaction underwent via reductive cyclization in the presence of a sodium borohydride-aluminium chloride system. Ten diverse 5H-benzo[c]fluorene derivatives were prepared and evaluated for antiproliferative activity against three human cancer cell lines by SRB assay. Four of these benzofluorenes exhibited significant antiproliferative effect with an IC50 < 10.75 µM. The best representative compound 21, exhibited IC50 against K562 leukemic cells at 3.27 µM in SRB assay and 7.68 µM in Soft agar colony assay. It exhibited a microtubule destabilization effect in tubulin kinetics and inhibited 82.9 % microtubule polymer mass at 10 µM concentration in Protein Sedimentation assay (Microtubule). Compound 21 exerted G0/G1 phase arrest in cell division cycle analysis in K562 cells. It also induced apoptosis in K562 cells via activation of Caspase cascade pathway. Furthermore, compound 21 also possessed anti-inflammatory activity by inhibiting TNF-α and IL-6 moderately. It exhibited significant in vivo efficacy and reduced K562 tumour in xenograft mice by 47 % at an 80 mg/kg oral dose. Further, it was found to be safe and well tolerable up to 1000 mg/kg in Swiss albino mice. Compound 21 needs to be optimized for better in vivo efficacy in rodent models for further development.
RESUMEN
Artemisia pallens Wall. ex DC (Asteraceae) is cultivated for the production of high-value essential oil from its aerial biomass. In this study, the chemical composition of the root (crop-residue) essential oil was investigated for the first time, using column-chromatography, GC-FID, GC-MS, LC-QTOF, and NMR techniques, which led to the identification of twenty constituents, with isolation of (E)-2-(2',4'-hexadiynylidene)-1,6-dioxaspiro [4.5]dec-3-ene (D6). The D6 was evaluated inâ vitro for neuroinflammation and acetylcholinesterase inhibitory potential. It showed inhibition of neuroinflammation in a concentration-dependent manner with significant inhibition of pro-inflammatory cytokines (TNF-α and IL-6) in LPS-stimulated BV2 microglial cells. D6 did not have any significant effect on the viability of the cells at the therapeutic concentrations. D6 also has shown acetylcholinesterase inhibitory potential (51.90±1.19 %) at the concentration of log 106 â nM. The results showed that D6 has a potential role in the resolution of neuroinflammation, and its acetylcholinesterase inhibitory potential directs further investigation of its role in the management of Alzheimer's disease-related pathogenesis.
Asunto(s)
Artemisia , Furanos , Aceites Volátiles , Compuestos de Espiro , Acetilcolinesterasa , Éter , Poliinos , Enfermedades Neuroinflamatorias , Aceites Volátiles/química , Artemisia/químicaRESUMEN
The topical application of essential oils is considered an effective treatment for skin diseases. Cymbopogon distans (Nees ex Steud.) Wats (Poaceae) is a promising aromatic grass widespread in the Himalayan temperate zone. Therefore, using in-vitro and in-vivo bioassays, we examined the chemical and pharmacological characteristics of essential oil hydro-distilled from C. distans coded as CDA-01, specifically concerning skin inflammation. Characterization using GC-FID and GC-MS provided a chemical fingerprint for CDA-01, enabling the identification of 54 compounds; amongst them, citral (34.3%), geranyl acetate (21.2%), and geraniol (16.4%) were the most abundant. To examine the anti-inflammatory potential, CDA-01 treatment on LPS-stimulated macrophage cells in addition to 12-O-tetradecanoylphorbol-13-acetate (TPA) generated cutaneous inflammatory reaction in the mouse ear was assessed through quantification of the inflammatory markers. Consequently, CDA-01 demonstrated protection against inflammation caused by LPS by lowering the pro-inflammatory cytokines (IL-6 and TNF-α) level in HaCaT cells with negligible cytotoxicity. Consistent with the in-vitro findings, CDA-01 treatment reduced pro-inflammatory mediators (TNF-, IL-6, and NO) and lipid peroxidation in an in-vivo investigation. Subcutaneous inflammation in TPA-treated mice ears was similarly decreased, as evidenced by the histological and morphological studies. As a result of our findings, it is possible that CDA-01 could be an effective treatment for skin inflammation disorders.
Asunto(s)
Cymbopogon , Dermatitis , Aceites Volátiles , Animales , Ratones , Monoterpenos/farmacología , Interleucina-6 , Lipopolisacáridos , Inflamación/tratamiento farmacológico , Aceites Volátiles/farmacologíaRESUMEN
Exploring unconventional protein sources can be an alternative strategy to meet the deficiency. The seeds of Chirabilva (Holoptelea integrifolia Roxb., Family- Ulmaceae) are eaten raw by the ethnic communities of Southeast Asian countries. The present study assessed the chemical, nutritional, and biological potential of the seeds (HIS) and pericarp (HISP) of H. integrifolia. The seeds contain mainly fixed and very few essential oils. The fixed oil of HIS is composed primarily of unsaturated oleic (47%) and saturated palmitic (37%) acids. The HIS are exceptional due to a high content of lipid (50%), protein (24%), carbohydrates (19%), fiber (4%), and anti-nutritional components within permissible limits. The high content (in mg/Kg) of phosphorus (6000), magnesium (422), Calcium (279), and essential nutrients (Ni, Co, Zn, Fe, Cu, Mn, and Cr) in the range of (0.04-6.69) were observed. The moderate anti-oxidant potential of HISP was evident in single electron transfer in-vitro assays. Moreover, HISP extract and HIS solvent-extracted fixed oil showed anti-inflammatory action in lipopolysaccharide-induced HaCaT cells by significantly attenuating pro-inflammatory cytokines (TNF-α) without causing cytotoxicity. Results support de-oiled HIS cake as an alternative source of a high-protein diet and its oil with anti-inflammatory attributes for topical applications.
RESUMEN
Braylin (10b) is a 8,8-dimethyl chromenocoumarin present in the plants of the family Rutaceae and Meliaceae and possesses vasorelaxing and anti-inflammatory activities. In this study, six 6-alkoxy (10b, 15-19), and twelve 6-hydroxy-alkyl amine (20a-20l) derivatives of braylin (11 and 12) were synthesized to delineate its structural requirement for vasorelaxing activity. The synthesized compounds were evaluated for vasorelaxation response in preconstricted intact rat Main Mesenteric Artery (MMA). The compounds showed l-type VDCC channel blockade depended and endothelium-independent vasorelaxation within the range of Emax < 50.00-96.70 % at 30 µM. Amongst all, 6-alkoxy derivatives were more active than 6-hydroxy-alkyl amine derivatives. The structural refinements about braylin showed that deletion of its methoxy group or homologation beyond ethoxy group presented deleterious effect on vasorelaxation response of braylin. Interestingly, substituting the ethoxy group in 10b presented the best activity and selectivity towards l-type VDCC channel blockade, a specific target cardiovascular function.
Asunto(s)
Canales de Calcio Tipo L , Vasodilatación , Animales , Ratas , Alcoholes , Aminas/farmacología , Canales de Calcio Tipo L/farmacologíaRESUMEN
Cinnamomum species have applications in the pharmaceutical and fragrance industry for wide biological and pharmaceutical activities. The present study investigates the chemical composition of the essential oils extracted from two species of Cinnamomum namely C. tamala and C. camphora. Chemical analysis showed E-cinnamyl acetate (56.14 %), E-cinnamaldehyde (20.15 %), and linalool (11.77 %) contributed as the major compounds of the 95.22 % of C. tamala leaves essential oil found rich in phenylpropanoids (76.96 %). C. camphora essential oil accounting for 93.57 % of the total oil composition was rich in 1,8-cineole (55.84 %), sabinene (14.37 %), and α-terpineol (10.49 %) making the oil abundant in oxygenated monoterpenes (70.63 %). Furthermore, the acetylcholinesterase inhibitory activity for both the essential oils was carried out using Ellman's colorimetric method. The acetylcholinesterase inhibitory potential at highest studied concentration of 1â mg/mL was observed to be 46.12±1.52 % for C. tamala and 53.61±2.66 % for C. camphora compared to the standard drug physostigmine (97.53±0.63 %) at 100â ng/ml. These multiple natural aromatic and fragrant characteristics with distinct chemical compositions offered by Cinnamon species provide varied benefits in the development of formulations that could be advantageous for the flavor and fragrance industry.
Asunto(s)
Cinnamomum camphora , Cinnamomum , Aceites Volátiles , Cinnamomum camphora/química , Cinnamomum/química , Acetilcolinesterasa , Aceites Volátiles/química , Preparaciones Farmacéuticas , Hojas de la Planta/químicaRESUMEN
Rutin (3, 3', 4' 5 and 7-pentahydroxyflavone-3-rhamnoglucoside) is a flavonoid glycoside, found in many edible plants such as buckwheat and berries. Severe malaria is an inflammatory response triggered by oxidative stress that results in multi-organ pathologies and a high mortality rate in children and pregnant women worldwide. Rutin is recommended as a food supplement for the treatment of various diseases due to its anti-oxidative and anti-inflammatory properties, which prompted us to investigate its ameliorative effects in severe malaria pathogenesis against oxidative stress and inflammatory response using in vitro and in vivo bioassays. Rutin was examined in this work for its anti-plasmodial activity against chloroquine-sensitive and resistant Plasmodium falciparum strains, as well as its anti-oxidative and anti-inflammatory activity against LPS-stimulated macrophage cells. The in vitro data were subsequently verified in mice fed orally with rutin alone or in combination with chloroquine in Plasmodium berghei-induced malaria pathogenesis. The anti-plasmodial and anti-inflammatory properties of rutin were demonstrated in in vitro results. Apart from its anti-inflammatory and anti-oxidant effects in malaria pathogenesis, in vivo efficacy studies indicated that oral treatment with rutin reduced parasitaemia, increased mean survival time, and restored haemoglobin and glucose levels in mice at lower dose. Interestingly, both rutin and chloroquine demonstrated synergy in in vitro and in vivo experiments. The findings of the present study thus highlighted the suitability of rutin for further study in the management of drug resistant malaria in combination with standard anti-malarial drugs.
Asunto(s)
Antimaláricos , Malaria , Animales , Antimaláricos/farmacología , Cloroquina/farmacología , Cloroquina/uso terapéutico , Femenino , Humanos , Malaria/tratamiento farmacológico , Ratones , Plasmodium berghei , Embarazo , Rutina/farmacologíaRESUMEN
Cymbopogon martini variety sofia, commonly known as ginger-grass, is an important aromatic crop used by the perfumery, medicinal and cosmetic industries worldwide. This study explores the chemical and possible pharmacological profile of hydro-distilled essential oil of C. martini variety sofia against skin inflammation. The essential oil extracted by the hydrodistillation process was analyzed by gas chromatography (GC), gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance spectroscopy (NMR) to identify its constituents, and was coded as CMA-01 for further in vitro and in vivo pharmacological study related to skin inflammation. The chemical fingerprint revealed that CMA-01 oil has (E)-p-mentha-2,8-dien-1-ol (21.0%), (E)-p-mentha-1(7),8-dien-2-ol (18.1%), (Z)-p-mentha-1(7),8-dien-2-ol (17.4%), (Z)-p-mentha-2,8-dien-1-ol (9.0%), limonene (7.7%), and (E)-carveol (5.7%) as major components. The pre-treatment of CMA-01 showed significant inhibition of pro-inflammatory markers in activated HaCat cells without cytotoxic effect. The in vivo study revealed the ameliorative impact of CMA-01 against skin inflammation induced by TPA in mouse ears as evidenced by a reduction of ear edema, pro-inflammatory mediators (IL-6, TNF-α), oxidative stress markers (malondialdehyde and nitric-oxide) and histological changes in ear tissues without any skin irritation response on rabbit skin. These findings suggest the suitability of CMA-01 as a valuable therapeutic candidate for the treatment of skin inflammation.
Asunto(s)
Cymbopogon , Dermatitis , Aceites Volátiles , Animales , Cymbopogon/química , Cromatografía de Gases y Espectrometría de Masas , Inflamación/tratamiento farmacológico , Ratones , Aceites Volátiles/farmacología , ConejosRESUMEN
Artemisia pallens Wall. ex DC., popularly known as davana, has gained considerable attention because of its unique fragrance, high economic value, and pharmacological properties. The compositional complexity of davana essential oil (DO) has been a challenge for quality control. In this study, the chemical profile of DO was developed using polarity-based fractionation and a combination of gas chromatographic (GC-FID), hyphenated chromatographic (GC/MS), and spectroscopic (Fourier-Transform Infra-Red, 1D, 2D-Nuclear Magnetic Resonance) techniques. The analysis led to the identification of ninety-nine compounds. Major components of the DO were cis-davanone (D3, 53.0 %), bicyclogermacrene (6.9 %), trans-ethyl cinnamate (4.9 %), davana ether isomer (3.4 %), spathulenol (2.8 %), cis-hydroxy davanone (2.4 %), and trans-davanone (2.1 %). The study led to identifying several co-eluting novel minor components, which could help determine the authenticity of DO. The rigorous column-chromatography led to the isolation of five compounds. Among these, bicyclogermacrene, trans-ethyl cinnamate, and spathulenol were isolated and characterized by spectroscopic methods for the first time from DO. Pharmacological profile revealed that the treatment of DO and D3 inhibited the production of pro-inflammatory cytokines (TNF-α, IL-6) induced by lipopolysaccharide (LPS) in primary macrophages without any cytotoxic effect after administration of their effective concentrations. The result of this study indicates the suitability of DO and D3 for further investigation for the treatment of chronic skin inflammatory conditions.
Asunto(s)
Artemisia/química , Citocinas/antagonistas & inhibidores , Macrófagos/efectos de los fármacos , Aceites Volátiles/farmacología , Sesquiterpenos/farmacología , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Citocinas/metabolismo , Femenino , Lipopolisacáridos/antagonistas & inhibidores , Lipopolisacáridos/farmacología , Macrófagos/metabolismo , Ratones , Aceites Volátiles/química , Aceites Volátiles/aislamiento & purificación , Sesquiterpenos/química , Sesquiterpenos/aislamiento & purificaciónRESUMEN
A mild, convenient and transition metal free methodology for oxidative ipso nitration of diversely functionalized organoboronic acids, including heteroaryl- and alkylboronic acids, has been developed at ambient temperature using a combination of [bis-(trifluoroacetoxy)]iodobenzene (PIFA) - N-bromosuccinimide (NBS) and sodium nitrite as the nitro source. It is anticipated that the reaction proceeds through in situ generation of NO2 and O-centred organoboronic acid radicals followed by the formation of an O-N bond via combination of the said radicals. Finally transfer of the NO2 group to the aryl moiety occurs through 1,3-aryl migration to provide the nitroarenes.
Asunto(s)
Ácidos Borónicos/química , Yodobencenos/química , Nitrobencenos/síntesis química , Ácido Trifluoroacético/química , Bromosuccinimida/química , Estructura Molecular , Nitrobencenos/química , Oxidación-Reducción , Nitrito de Sodio/química , TemperaturaAsunto(s)
Duodenitis/etiología , Vasculitis por IgA/complicaciones , Enfermedades Renales/etiología , Riñón/fisiopatología , Biopsia , Duodenitis/diagnóstico , Duodenoscopía , Técnica del Anticuerpo Fluorescente , Glucocorticoides/uso terapéutico , Humanos , Vasculitis por IgA/diagnóstico , Vasculitis por IgA/tratamiento farmacológico , Enfermedades Renales/diagnóstico , Enfermedades Renales/fisiopatología , Masculino , Metilprednisolona/uso terapéutico , Persona de Mediana Edad , Prednisona/uso terapéutico , Factores de Tiempo , Tomografía Computarizada por Rayos X , Resultado del TratamientoRESUMEN
An Eosin Y-catalyzed visible light-promoted 1,4-peroxidation-sulfonylation of enynones was achieved to give tetrasubstituted allenes. The photoredox catalysis of Eosin Y allowed the concomitant formation of peroxy and sulfonyl radicals, where the preferential peroxy radical addition to the alkene moiety of enynones resulted in the subsequent α-keto radical-sulfonyl radical cross couplings. The developed photoredox catalysis of Eosin Y demonstrates a regioselective 1,4-diradical addition strategy, opening up a new possibility of diradical functionalization of conjugate systems.
RESUMEN
Eugenol(1), a terpenoid found in Ocimum, has various biological activities. The present study aims at extraction, isolation of the plant secondary metabolite eugenol (1), it's derivatisation and structure identification as bioactive molecules. Synthesis and antiplasmodial activity (in-vitro and in-vivo), of a series of fourteen novel eugenol-based 1,2,3-triazole derivatives was done in the present study. Derivatives 5a-5n showed good antimalarial activity against the strain Plasmodium falciparum NF54. Derivative 5 m, IC50 at 2.85 µM was found to be several times better than its precursor 1 (106.82 µM) whereas the derivative 5n showed three fold better activity than compound 1, in vitro. The structure-activity relationship of the synthesised compounds indicated that the presence of triazole ring in eugenol analogues is responsible for their good activity. Compound 5m, was further evaluated for in-vivo antimalarial activity which showed about 79% parasitemia suppression. It is the first report on antimalarial activity of triazole eugenol derivatives.
RESUMEN
BACKGROUND: Malaria, characterised by inflammation and multi-organ complications, needs novel chemotherapeutics due to the rise of drug-resistant malaria parasites, which is a serious health issue. Naringin (NGN), a flavanone glycoside (naringenin 7-O-neohesperidose), has a broad spectrum of pharmacological activities but its effect against malaria, alone and in combination, was not deeply investigated. PURPOSE: To assess the pharmacological efficacy of NGN alone and in combination with chloroquine (CQ) against a Plasmodium strain resistant to CQ and to elucidate its potential mode of action. METHODS: The anti-inflammatory potential of NGN was assessed in mouse microglial cells stimulated with hemozoin by analyzing inflammatory cytokines production. The anti-plasmodial potential of NGN was subsequently tested alone and in combination with CQ against the K1 strain of Plasmodium using the fixed ratio combination method. Further, we evaluated NGN's antimalarial efficacy against the CQ-resistant Plasmodium yoelii nigeriensis N67 strain (P. yoelii), both alone and in combination with CQ, by measuring parasitemia and survival rates. To comprehend the impact of NGN on malaria-induced inflammation in mice, we measured pro-inflammatory cytokines elevated by activated NF-кB signalling. These findings were supported by mRNA and immunohistochemical analyses of malaria-infected mice's liver and brain tissues. RESULTS: Our study demonstrated that NGN displayed anti-plasmodial activity, which was further augmented when combined with CQ. At 50 µM, NGN significantly reduced the elevation of pro-inflammatory cytokines in synthetic hemozoin-stimulated microglial cells. Compared to P. yoelii-infected mice, NGN (12.5 mg kg-1) significantly reduced parasitemia in mice, resulting in a survival period of up to 13 days. Survival improved by up to 20 days when NGN and CQ were given in combination. NGN, as revealed by immunohistochemical examination of brain and liver tissues, interfered with the NF-кB pathway, potentially reducing the elevation of pro-inflammatory cytokines (TNF-α, IL-1ß, IL-18, IFN-γ, and IL-6). This was supported by the overexpression of inflammation-regulatory genes (TGFß, Nrf2, HO-1, and iNOS) and the downregulation of inflammation-stimulating genes (NF-κB, NLRP3, and caspase-1). Histopathological analysis demonstrated the potential of NGN to restore liver and brain tissues to normal. The substantial decrease in the expression and production of ICAM-1 protein in the brain tissue implies the beneficial effects of NGN, pointing towards its potential for mitigating brain pathology. CONCLUSION: The findings of this study revealed NGN as a promising drug-like candidate for the management of CQ-resistant parasite-induced malaria pathogenesis for adjunctive therapy in combination with standard antimalarial drugs through its modulation of the NF-κB-mediated inflammation.
Asunto(s)
Antimaláricos , Cloroquina , Flavanonas , Malaria , Plasmodium yoelii , Animales , Flavanonas/farmacología , Cloroquina/farmacología , Antimaláricos/farmacología , Ratones , Malaria/tratamiento farmacológico , Plasmodium yoelii/efectos de los fármacos , Citocinas/metabolismo , Resistencia a Medicamentos , FN-kappa B/metabolismo , Antiinflamatorios/farmacología , Microglía/efectos de los fármacos , Inflamación/tratamiento farmacológico , Femenino , Quimioterapia CombinadaRESUMEN
Cymbopogon distans (Nees ex Steud.) Will. Watson (Poaceae) is a promising aromatic plant distributed in the Himalayas. In this study, five acyclic monoterpenoids, namely geranyl acetate (RS1), neral (RS2), geranial (RS3), citral (RS4) and geraniol (RS5) were isolated from the essential oil of C. distans. The isolated compounds were tested for in-vitro neuroinflammation inhibitory potential in LPS-stimulated BV2 microglial cells. RS1-RS4 exhibited significant neuroinflammation inhibition without any cytotoxic effect at the dose of 10 µM. RS4, the most active anti-neuroinflammatory compound (TNF-α 31.48 ± 1.00%; IL-6 24.02 ± 0.63%; IL-1ß 42.15 ± 1.76%) was also able to inhibit acetylcholinesterase (AChE) in a dose-dependent manner. The results showed that RS4 (an isomeric mixture of neral and geranial) has the potential to inhibit neuroinflammation and AChE, which are the biomarkers of neurodegenerative disorders.
RESUMEN
Different addition modes of sulfinic acids were developed for the chemodivergent sulfonylation of enynones, where the ionic sulfonylation to an alkyne moiety of enynones was effected through a salt-controlled syn-addition pathway. The radical sulfonylation of an alkene moiety also provided the stereodefined sulfonylated alkenes. A one-pot tandem sequence of the Ti(Oi-Pr)4-catalyzed α-vinyl aldol condensation of (E)-ß-chlorovinyl ketones followed by the chemodivergent sulfonylations was also explored, allowing for ready access to highly substituted dienes and enynes.
RESUMEN
Importance: The Colonoscopy Versus Fecal Immunochemical Test in Reducing Mortality From Colorectal Cancer (CONFIRM) randomized clinical trial sought to recruit 50â¯000 adults into a study comparing colorectal cancer (CRC) mortality outcomes after randomization to either an annual fecal immunochemical test (FIT) or colonoscopy. Objective: To (1) describe study participant characteristics and (2) examine who declined participation because of a preference for colonoscopy or stool testing (ie, fecal occult blood test [FOBT]/FIT) and assess that preference's association with geographic and temporal factors. Design, Setting, and Participants: This cross-sectional study within CONFIRM, which completed enrollment through 46 Department of Veterans Affairs medical centers between May 22, 2012, and December 1, 2017, with follow-up planned through 2028, comprised veterans aged 50 to 75 years with an average CRC risk and due for screening. Data were analyzed between March 7 and December 5, 2022. Exposure: Case report forms were used to capture enrolled participant data and reasons for declining participation among otherwise eligible individuals. Main Outcomes and Measures: Descriptive statistics were used to characterize the cohort overall and by intervention. Among individuals declining participation, logistic regression was used to compare preference for FOBT/FIT or colonoscopy by recruitment region and year. Results: A total of 50â¯126 participants were recruited (mean [SD] age, 59.1 [6.9] years; 46â¯618 [93.0%] male and 3508 [7.0%] female). The cohort was racially and ethnically diverse, with 748 (1.5%) identifying as Asian, 12â¯021 (24.0%) as Black, 415 (0.8%) as Native American or Alaska Native, 34â¯629 (69.1%) as White, and 1877 (3.7%) as other race, including multiracial; and 5734 (11.4%) as having Hispanic ethnicity. Of the 11â¯109 eligible individuals who declined participation (18.0%), 4824 (43.4%) declined due to a stated preference for a specific screening test, with FOBT/FIT being the most preferred method (2820 [58.5%]) vs colonoscopy (1958 [40.6%]; P < .001) or other screening tests (46 [1.0%] P < .001). Preference for FOBT/FIT was strongest in the West (963 of 1472 [65.4%]) and modest elsewhere, ranging from 199 of 371 (53.6%) in the Northeast to 884 of 1543 (57.3%) in the Midwest (P = .001). Adjusting for region, the preference for FOBT/FIT increased by 19% per recruitment year (odds ratio, 1.19; 95% CI, 1.14-1.25). Conclusions and Relevance: In this cross-sectional analysis of veterans choosing nonenrollment in the CONFIRM study, those who declined participation more often preferred FOBT or FIT over colonoscopy. This preference increased over time and was strongest in the western US and may provide insight into trends in CRC screening preferences.
Asunto(s)
Detección Precoz del Cáncer , Neoplasias , Adulto , Humanos , Femenino , Masculino , Persona de Mediana Edad , Sangre Oculta , Estudios Transversales , ColonoscopíaRESUMEN
A traceless arylsulfinate mediator strategy has been developed to switch the reaction course of ß-chlorovinyl ketones with N-hydroxyamine. The soft α-vinyl enolization of (E)-ß-chlorovinyl ketones was conducted in the presence of sodium arylsulfinate to give transient alkenyl sulfones that in turn reacted with NH2OH to give novel access to N-hydroxypyrroles. The mechanistic studies revealed the initial formation of oxazine intermediates that rearranged to thermodynamically stable aromatic products, N-hydroxypyrroles, under microwave-assisted heating conditions.
Asunto(s)
CetonasRESUMEN
The fission yeast Schizosaccharomycespombe serves as a good genetic model organism for the molecular dissection of the microtubule (MT) cytoskeleton. However, analysis of the number and distribution of individual MTs throughout the cell cycle, particularly during mitosis, in living cells is still lacking, making quantitative modelling imprecise. We use quantitative fluorescent imaging and analysis to measure the changes in tubulin concentration and MT number and distribution throughout the cell cycle at a single MT resolution in living cells. In the wild-type cell, both mother and daughter spindle pole body (SPB) nucleate a maximum of 23 ± 6 MTs at the onset of mitosis, which decreases to a minimum of 4 ± 1 MTs at spindle break down. Interphase MT bundles, astral MT bundles, and the post anaphase array (PAA) microtubules are composed primarily of 1 ± 1 individual MT along their lengths. We measure the cellular concentration of αß-tubulin subunits to be ~5 µM throughout the cell cycle, of which one-third is in polymer form during interphase and one-quarter is in polymer form during mitosis. This analysis provides a definitive characterization of αß-tubulin concentration and MT number and distribution in fission yeast and establishes a foundation for future quantitative comparison of mutants defective in MTs.