Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Rev Med Virol ; 34(2): e2526, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38446531

RESUMEN

miRNAs are single-stranded ncRNAs that act as regulators of different human body processes. Several miRNAs have been noted to control the human immune and inflammatory response during severe acute respiratory infection syndrome (SARS-CoV-2) infection. Similarly, many miRNAs were upregulated and downregulated during different respiratory virus infections. Here, an attempt has been made to capture the regulatory role of miRNAs in the human immune and inflammatory response during the infection of SARS-CoV-2 and other respiratory viruses. Firstly, the role of miRNAs has been depicted in the human immune and inflammatory response during the infection of SARS-CoV-2. In this direction, several significant points have been discussed about SARS-CoV-2 infection, such as the role of miRNAs in human innate immune response; miRNAs and its regulation of granulocytes; the role of miRNAs in macrophage activation and polarisation; miRNAs and neutrophil extracellular trap formation; miRNA-related inflammatory response; and miRNAs association in adaptive immunity. Secondly, the miRNAs landscape has been depicted during human respiratory virus infections such as human coronavirus, respiratory syncytial virus, influenza virus, rhinovirus, and human metapneumovirus. The article will provide more understanding of the miRNA-controlled mechanism of the immune and inflammatory response during COVID-19, which will help more therapeutics discoveries to fight against the future pandemic.


Asunto(s)
COVID-19 , MicroARNs , Humanos , MicroARNs/genética , SARS-CoV-2/genética , COVID-19/genética , Virus Sincitiales Respiratorios , Rhinovirus
2.
Drug Resist Updat ; 71: 101008, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37757651

RESUMEN

Since the origin of the wild strain of SARS-CoV-2, several variants have emerged, which were designated as VOC, VOI, and VUM from time to time. The Omicron variant is noted as the recent VOC. After the origin of the Omicron variant on November 2021, several subvariants of Omicron have originated subsequently, like BA.1/2, BA.2.75/2.75.2, BA.4/5, BF.7, BQ.1/1.1, XBB.1/1.5, etc. which are circulated throughout the globe. Scientists reported that antibody escape is a common phenomenon observed in all the previous VOCs, VOIs, including Omicron and its subvariants. The mutations in the NTD (N-terminal domain) and RBD (Receptor-binding domain) of the spike of these variants and subvariants are responsible for antibody escape. At the same time, it has been noted that spike RBD mutations have been increasing in the last few months. This review illustrates significant RBD mutations namely R346T, K417N/T, L452R, N460K E484A/K/Q, and N501Y found in the previous emerging SARS-CoV-2 variants, including Omicron and its subvariants in high frequency and their role in antibody evasion and immune evasion. The review also describes the different classes of nAb responsible for antibody escape in SARS-CoV-2 variants and the molecular perspective of the mutation in nAb escape. It will help the future researchers to develop efficient vaccines which can finally prevent the pandemic.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Mutación
3.
Mol Ther ; 29(2): 571-586, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33238136

RESUMEN

At present, the idea of genome modification has revolutionized the modern therapeutic research era. Genome modification studies have traveled a long way from gene modifications in primary cells to genetic modifications in animals. The targeted genetic modification may result in the modulation (i.e., either upregulation or downregulation) of the predefined gene expression. Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated nuclease 9 (Cas9) is a promising genome-editing tool that has therapeutic potential against incurable genetic disorders by modifying their DNA sequences. In comparison with other genome-editing techniques, CRISPR-Cas9 is simple, efficient, and very specific. This enabled CRISPR-Cas9 genome-editing technology to enter into clinical trials against cancer. Besides therapeutic potential, the CRISPR-Cas9 tool can also be applied to generate genetically inhibited animal models for drug discovery and development. This comprehensive review paper discusses the origin of CRISPR-Cas9 systems and their therapeutic potential against various genetic disorders, including cancer, allergy, immunological disorders, Duchenne muscular dystrophy, cardiovascular disorders, neurological disorders, liver-related disorders, cystic fibrosis, blood-related disorders, eye-related disorders, and viral infection. Finally, we discuss the different challenges, safety concerns, and strategies that can be applied to overcome the obstacles during CRISPR-Cas9-mediated therapeutic approaches.


Asunto(s)
Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Edición Génica , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/terapia , Terapia Genética , Animales , Proteína 9 Asociada a CRISPR/genética , Desarrollo de Medicamentos , Edición Génica/métodos , Terapia Genética/métodos , Humanos
4.
J Nanobiotechnology ; 20(1): 501, 2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36434667

RESUMEN

Recent efforts in designing nanomaterials to deliver potential therapeutics to the targeted site are overwhelming and palpable. Engineering nanomaterials to deliver biological molecules to exert desirable physiological changes, with minimized side effects and optimal dose, has revolutionized the next-generation therapy for several diseases. The rapid progress of nucleic acids as biopharmaceutics is going to alter the traditional pharmaceutics practices in modern medicine. However, enzymatic instability, large size, dense negative charge (hydrophilic for cell uptake), and unintentional adverse biological responses-such as prolongation of the blood coagulation and immune system activation-hamper the potential use of nucleic acids for therapeutic purposes. Moreover, the safe delivery of nucleic acids into the clinical setting is an uphill task, and several efforts are being put forward to deliver them to targeted cells. Advances in Metal-based NanoParticles (MNPs) are drawing attention due to the unique properties offered by them for drug delivery, such as large surface-area-to-volume ratio for surface modification, increased therapeutic index of drugs through site-specific delivery, increased stability, enhanced half-life of the drug in circulation, and efficient biodistribution to the desired targeted site. Here, the potential of nanoparticles delivery systems for the delivery of nucleic acids, specially MNPs, and their ability and advantages over other nano delivery systems are reviewed.


Asunto(s)
Nanopartículas del Metal , Ácidos Nucleicos , Distribución Tisular , Sistemas de Liberación de Medicamentos , Preparaciones Farmacéuticas
5.
Brain Behav Immun ; 96: 1-4, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34022371

RESUMEN

Recently, India is at risk due to the exponential rising of COVID-19 infection, which generated a second wave. This infection rise may affect the vaccination program in India, and it can also affect vaccine production. In this manuscript, we have discussed the psychosocial and political factors that have driven the current wave of India. We have also tried to depict the psychosocial and political obstacles that are impairing the vaccination program.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , India , SARS-CoV-2 , Vacunación
6.
Appl Microbiol Biotechnol ; 105(24): 9035-9045, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34755213

RESUMEN

The progression of the COVID-19 pandemic has generated numerous emerging variants of SARS-CoV-2 on a global scale. These variants have gained evolutionary advantages, comprising high virulence and serious infectivity due to multiple spike glycoprotein mutations. As a reason, variants are demonstrating significant abilities to escape the immune responses of the host. The D614G mutation in the S-glycoprotein of SARS-CoV-2 variants has shown the most efficient interaction with the ACE2 receptor of the cells. This explicit mutation at amino acid position 614 (aspartic acid-to-glycine substitution) is the prime cause of infection and re-infection. It changes the conformation of RBD and cleavage patterns S-glycoprotein with higher stability, replication fitness, and fusion efficiencies. Therefore, this review aims to provide several crucial pieces of information associated with the D614 mutational occurrence of SARS-CoV-2 variants and their infectivity patterns. This review will also effectively emphasize the mechanism of action of D614G mutant variants, immune escape, and partial vaccine escape of this virus. Furthermore, the viral characteristic changes leading to the current global pandemic condition have been highlighted. Here, we have tried to illustrate a novel direction for future researchers to develop effective therapeutic approaches and counterweight strategies to minimize the spread of COVID-19.Key points• D614G mutation arises within the S-glycoprotein of significant SARS-CoV-2 variants.• The D614G mutation affects infection, re-infection, cleavage patterns of S-glycoprotein, and replication fitness of SARS-CoV-2 variants.• The D614G mutation influences the immunity and partial vaccine escape.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Mutación , Pandemias , Glicoproteína de la Espiga del Coronavirus/genética
7.
J Cell Biochem ; 121(11): 4654-4666, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32100920

RESUMEN

Chronic lymphocytic leukemia (CLL), a severe problem all over the world and represents around 25% of all total leukemia cases, is generating the need for novel targets against CLL. Wnt signaling cascade regulates cell proliferation, differentiation, and cell death processes. Thus, any alteration of the Wnt signaling pathway protein cascade might develop into various types of cancers, either by upregulation or downregulation of the Wnt signaling pathway protein components. In addition, it is reported that activation of the Wnt signaling pathway is associated with the transcriptional activation of microRNAs (miRNAs) by binding to its promoter region, suggesting feedback regulation. Considering the protein regulatory functions of various miRNAs, they can be approached therapeutically as modulatory targets for protein components of the Wnt signaling pathway. In this article, we have discussed the potential role of miRNAs in the regulation of Wnt signaling pathway proteins related to the pathogenesis of CLL via crosstalk between miRNAs and Wnt signaling pathway proteins. This might provide a clear insight into the Wnt protein regulatory function of various miRNAs and provide a better understanding of developing advanced and promising therapeutic approaches against CLL.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica , Leucemia Linfocítica Crónica de Células B/patología , MicroARNs/genética , Vía de Señalización Wnt , Animales , Biomarcadores de Tumor/genética , Humanos , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/metabolismo
8.
J Med Virol ; 92(11): 2260-2262, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32462717

RESUMEN

COVID-19 leads to mortality of several patients and the cytokine storm is reportedly critical in the patients. To reduce the cytokine storm, we would like to propose the interleukin (IL) 6 receptor (IL-6R) antagonist therapy for the COVID-19 patients. Two humanized monoclonal antibodies are in clinical trial following IL-6R antagonist therapies namely tocilizumab and sarilumab. However, researchers and physicians should look for more IL-6R antagonists for the therapy of cytokine storm syndrome severe acute respiratory syndrome coronavirus 2 infected persons to enhance the therapeutic options for cytokine storm.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Síndrome de Liberación de Citoquinas/tratamiento farmacológico , Receptores de Interleucina-6/antagonistas & inhibidores , Anticuerpos Monoclonales Humanizados/uso terapéutico , Humanos
9.
J Med Virol ; 92(6): 618-631, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32108359

RESUMEN

Recently, a novel coronavirus (SARS-COV-2) emerged which is responsible for the recent outbreak in Wuhan, China. Genetically, it is closely related to SARS-CoV and MERS-CoV. The situation is getting worse and worse, therefore, there is an urgent need for designing a suitable peptide vaccine component against the SARS-COV-2. Here, we characterized spike glycoprotein to obtain immunogenic epitopes. Next, we chose 13 Major Histocompatibility Complex-(MHC) I and 3 MHC-II epitopes, having antigenic properties. These epitopes are usually linked to specific linkers to build vaccine components and molecularly dock on toll-like receptor-5 to get binding affinity. Therefore, to provide a fast immunogenic profile of these epitopes, we performed immunoinformatics analysis so that the rapid development of the vaccine might bring this disastrous situation to the end earlier.


Asunto(s)
Betacoronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Epítopos de Linfocito B/química , Epítopos de Linfocito T/química , Pandemias/prevención & control , Neumonía Viral/prevención & control , Glicoproteína de la Espiga del Coronavirus/química , Receptor Toll-Like 5/química , Vacunas Virales/química , Secuencia de Aminoácidos , Betacoronavirus/genética , Betacoronavirus/patogenicidad , Sitios de Unión , COVID-19 , Vacunas contra la COVID-19 , Biología Computacional/métodos , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/virología , Epítopos/química , Epítopos/genética , Epítopos/inmunología , Epítopos de Linfocito B/genética , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito T/genética , Epítopos de Linfocito T/inmunología , Antígenos de Histocompatibilidad Clase I/química , Antígenos de Histocompatibilidad Clase I/genética , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase II/química , Antígenos de Histocompatibilidad Clase II/genética , Antígenos de Histocompatibilidad Clase II/inmunología , Humanos , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Coronavirus del Síndrome Respiratorio de Oriente Medio/patogenicidad , Simulación del Acoplamiento Molecular , Neumonía Viral/inmunología , Neumonía Viral/virología , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Terciaria de Proteína , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/patogenicidad , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Receptor Toll-Like 5/genética , Receptor Toll-Like 5/inmunología , Vacunas de Subunidad , Vacunas Virales/inmunología
10.
Cell Biol Int ; 44(9): 1773-1780, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32379363

RESUMEN

The recent development of next-generation sequencing technologies has offered valuable insights into individual cells. This technology is centered on the characterization of single cells for epigenomics, genomics, and transcriptomics. Ever since the first report appeared in 2009, the single-cell RNA-sequencing saga started to explore deeper into the mechanics intrigued within a single cell. microRNA (miRNA) has been increasingly recognized as an essential molecule triggering an additional layer for gene regulation. Therefore, single-cell sequencing of miRNAs is crucial to explore the logical riddles surrounding the epigenomics, genomics, and transcriptomics of an individual cell. Scientists from the Vienna Biocenter Campus have lately performed single-cell sequencing of miRNAs in the fly, Drosophila, and nematode, Caenorhabditis elegans. In this review, we present the latest scientific explorations supported by all-inclusive data on this novel subject matter of next-generation sequencing.


Asunto(s)
MicroARNs/genética , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Animales , Biología Computacional/métodos , Epigenómica/métodos , Perfilación de la Expresión Génica/métodos , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/tendencias , Humanos , Análisis de Secuencia de ARN/tendencias
12.
Int Immunopharmacol ; 133: 112146, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38677090

RESUMEN

During the COVID-19 pandemic, one of the biggest challenges was the continuous evolution of SARS-CoV-2 through various mutations. This has resulted in the emergence of several variants and subvariants. The escape mutations are reported as significant mutations in several variants and subvariants responsible for immune, antibody, and nAb escape. It has been reported that FLip mutations (L455F and F456L) in the spike RBD are responsible for immune evasion and antibody escape. Recently, WHO has included a new SARS-CoV-2 VOI, JN.1 lineage, a descendent of BA.2.86. The variant is reported from more than 41 countries, including France, the USA, Canada, the UK, Singapore, Sweden, and India. It contains FLip mutations in the spike protein in RBD (L455F and F456L). The risk assessment of the variant by WHO shows it has increased transmission, immune escape, and antibody escape due to the mutations. The article illustrated that FLip mutations in RBD (L455F and F456L) are responsible for augmented transmission and immune and antibody escape.


Asunto(s)
COVID-19 , Evasión Inmune , Mutación , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , SARS-CoV-2/inmunología , SARS-CoV-2/genética , COVID-19/inmunología , COVID-19/genética , Evasión Inmune/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Anticuerpos Antivirales/inmunología
13.
Ann Biomed Eng ; 52(3): 451-454, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37428337

RESUMEN

Large language models or ChatGPT have recently gained extensive media coverage. At the same time, the use of ChatGPT has increased deistically. Biomedical researchers, engineers, and clinicians have shown significant interest and started using it due to its diverse applications, especially in the biomedical field. However, it has been found that ChatGPT sometimes provided incorrect or partly correct information. It is unable to give the most recent information. Therefore, we urgently advocate a domain-specific next-generation, ChatBot for biomedical engineering and research, providing error-free, more accurate, and updated information. The domain-specific ChatBot can perform diversified functions in biomedical engineering, such as performing innovation in biomedical engineering, designing a medical device, etc. The domain-specific artificial intelligence enabled device will revolutionize biomedical engineering and research if a biomedical domain-specific ChatBot is produced.


Asunto(s)
Inteligencia Artificial , Ingeniería Biomédica , Bioingeniería , Lenguaje , Programas Informáticos
14.
Mol Biotechnol ; 66(2): 163-178, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37244882

RESUMEN

Modern biological science is trying to solve the fundamental complex problems of molecular biology, which include protein folding, drug discovery, simulation of macromolecular structure, genome assembly, and many more. Currently, quantum computing (QC), a rapidly emerging technology exploiting quantum mechanical phenomena, has developed to address current significant physical, chemical, biological issues, and complex questions. The present review discusses quantum computing technology and its status in solving molecular biology problems, especially in the next-generation computational biology scenario. First, the article explained the basic concept of quantum computing, the functioning of quantum systems where information is stored as qubits, and data storage capacity using quantum gates. Second, the review discussed quantum computing components, such as quantum hardware, quantum processors, and quantum annealing. At the same time, article also discussed quantum algorithms, such as the grover search algorithm and discrete and factorization algorithms. Furthermore, the article discussed the different applications of quantum computing to understand the next-generation biological problems, such as simulation and modeling of biological macromolecules, computational biology problems, data analysis in bioinformatics, protein folding, molecular biology problems, modeling of gene regulatory networks, drug discovery and development, mechano-biology, and RNA folding. Finally, the article represented different probable prospects of quantum computing in molecular biology.


Asunto(s)
Metodologías Computacionales , Simulación de Dinámica Molecular , Teoría Cuántica , Pliegue de Proteína , Biología Computacional
15.
Ann Biomed Eng ; 52(2): 134-135, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37368124

RESUMEN

Recently, the interest in AI-guided ChatGPT has increased day-to-day, and different applications have been explored, including the medical field. The publication number is also increasing. At the same time, people are trying to get medical information from this Chartbot. However, researchers found that ChatGPT also provides partly correct or false information. Therefore, in this article, we urge the researchers to develop an AI-enabled, next-generation, advanced ChatGPT or large language models (LLMs) so that people can get accurate and error-free medical information.


Asunto(s)
Inteligencia Artificial , Lenguaje , Humanos
16.
J Infect Public Health ; 17(5): 748-766, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38518681

RESUMEN

BACKGROUND: Long COVID has appeared as a significant global health issue and is an extra burden to the healthcare system. It affects a considerable number of people throughout the globe. However, substantial research gaps have been noted in understanding the mechanism and genomic landscape during the long COVID infection. A study has aimed to identify the differentially expressed genes (DEGs) in long COVID patients to fill the gap. METHODS: We used the RNA-seq GEO dataset acquired through the GPL20301 Illumina HiSeq 4000 platform. The dataset contains 36 human samples derived from PBMC (Peripheral blood mononuclear cells). Thirty-six human samples contain 13 non-long COVID individuals' samples and 23 long COVID individuals' samples, considered the first direction analysis. Here, we performed two-direction analyses. In the second direction analysis, we divided the dataset gender-wise into four groups: the non-long COVID male group, the long COVID male group, the non-long COVID female group, and the long COVID female group. RESULTS: In the first analysis, we found no gene expression. In the second analysis, we identified 250 DEGs. During the DEG profile analysis of the non-long COVID male group and the long COVID male group, we found three upregulated genes: IGHG2, IGHG4, and MIR8071-2. Similarly, the analysis of the non-long COVID female group and the long COVID female group reveals eight top-ranking genes. It also indicates the gender biases of differentially expressed genes among long COVID individuals. We found several DEGs involved in PPI and co-expression network formation. Similarly, cluster enrichment and gene list enrichment analysis were performed, suggesting several genes are involved in different biological pathways or processes. CONCLUSIONS: This study will help better understand the gene expression landscape in long COVID. However, it might help the discovery and development of therapeutics for long COVID.


Asunto(s)
COVID-19 , Perfilación de la Expresión Génica , Humanos , Masculino , Femenino , Leucocitos Mononucleares , Síndrome Post Agudo de COVID-19 , COVID-19/genética , Expresión Génica , Sesgo
17.
J Genet Eng Biotechnol ; 22(1): 100347, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38494253

RESUMEN

Emergences of SARS-CoV-2 variants have made the pandemic more critical. Toll-like receptor 4 (TLR4) recognizes the molecular patterns of pathogens and activates the production of proinflammatory cytokines to restrain the infection. We have identified a molecular basis of interaction between the Spike and TLR4 of SARS-CoV-2 and its present and past VOCs (variant- of concern) through in silico analysis. The interaction of wild type Spike with TLR4 showed 15 number hydrogen bonds formation. Similarly, the Alpha variants' Spike with the TLR4 has illustrated that 14 hydrogen bonds participated in the interaction. However, the Delta Spike and TLR4 interaction interface showed that 17 hydrogen bonds were formed during the interaction. Furthermore, Omicron S-glycoprotein and TLR4 interaction interface was depicted (interaction score: -170.3), and 16 hydrogen bonds were found to have been formed in the interaction. Omicron S-glycoprotein shows stronger binding affinity with the TLR4 than wild type, Alpha, and Delta variants. Similarly, the Alpha Spike shows higher binding affinity with TLR4 than the wild type and Delta variant. Now, it is an open question of the molecular basis of the interaction of Spike and TLR4 and the activated downstream signaling events of TLR4 for SARS-CoV-2 and its variants.

18.
Int Immunopharmacol ; 132: 111930, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38537538

RESUMEN

Long COVID was reported as a multi-systemic condition after the infection of SARS-CoV-2, and more than 65 million people are suffering from this disease. It has been noted that around 10% of severe SARS-CoV-2 infected individuals are suffering from the enduring effects of long COVID. The symptoms of long COVID have also been noted in several mild or asymptomatic SARS-CoV-2 infected individuals. While limited reports on clinical trials investigating new therapeutics for long COVID exist, there is an abundance of scattered information available regarding these trials. This review explores the extensive literature search, and complete clinical trial database search to map the current status of long COVID clinical trials worldwide. The study listed about 110 long COVID clinical trials. In addition to conducting extensive long COVID clinical trials, we have comprehensively presented an overview of the condition, its symptoms, notable manifestations, associated clinical trials, the unique challenges it poses, and our recommendations for addressing long COVID.


Asunto(s)
COVID-19 , Ensayos Clínicos como Asunto , Síndrome Post Agudo de COVID-19 , SARS-CoV-2 , Humanos , COVID-19/terapia , Tratamiento Farmacológico de COVID-19
19.
J Microbiol ; 62(5): 337-354, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38777985

RESUMEN

Reverse zoonosis reveals the process of transmission of a pathogen through the human-animal interface and the spillback of the zoonotic pathogen. In this article, we methodically demonstrate various aspects of reverse zoonosis, with a comprehensive discussion of SARS-CoV-2 and MPXV reverse zoonosis. First, different components of reverse zoonosis, such as humans, different pathogens, and numerous animals (poultry, livestock, pets, wild animals, and zoo animals), have been demonstrated. Second, it explains the present status of reverse zoonosis with different pathogens during previous occurrences of various outbreaks, epidemics, and pandemics. Here, we present 25 examples from literature. Third, using several examples, we comprehensively illustrate the present status of the reverse zoonosis of SARS-CoV-2 and MPXV. Here, we have provided 17 examples of SARS-CoV-2 reverse zoonosis and two examples of MPXV reverse zoonosis. Fourth, we have described two significant aspects of reverse zoonosis: understanding the fundamental aspects of spillback and awareness. These two aspects are required to prevent reverse zoonosis from the current infection with two significant viruses. Finally, the One Health approach was discussed vividly, where we urge scientists from different areas to work collaboratively to solve the issue of reverse zoonosis.


Asunto(s)
COVID-19 , SARS-CoV-2 , Zoonosis , Animales , Humanos , COVID-19/transmisión , COVID-19/epidemiología , COVID-19/virología , Zoonosis/transmisión , Zoonosis/virología , Monkeypox virus/genética , Monkeypox virus/patogenicidad , Monkeypox virus/aislamiento & purificación , Animales Salvajes/virología , Salud Única , Mpox/transmisión , Mpox/epidemiología , Mpox/virología
20.
Oncol Lett ; 28(2): 378, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38939621

RESUMEN

Glioblastoma multiforme (GBM) is an aggressive brain cancer that occurs more frequently than other brain tumors. The present study aimed to reveal a novel mechanism of temozolomide resistance in GBM using bioinformatics and wet lab analyses, including meta-Z analysis, Kaplan-Meier survival analysis, protein-protein interaction (PPI) network establishment, cluster analysis of co-expressed gene networks, and hierarchical clustering of upregulated and downregulated genes. Next-generation sequencing and quantitative PCR analyses revealed downregulated [tyrosine kinase with immunoglobulin and epidermal growth factor homology domains 1 (TIE1), calcium voltage-gated channel auxiliary subunit α2Δ1 (CACNA2D1), calpain 6 (CAPN6) and a disintegrin and metalloproteinase with thrombospondin motifs 6 (ADAMTS6)] and upregulated [serum amyloid (SA)A1, SAA2, growth differentiation factor 15 (GDF15) and ubiquitin specific peptidase 26 (USP26)] genes. Different statistical models were developed for these genes using the Z-score for P-value conversion, and Kaplan-Meier plots were constructed using several patient cohorts with brain tumors. The highest number of nodes was observed in the PPI network was for ADAMTS6 and TIE1. The PPI network model for all genes contained 35 nodes and 241 edges. Immunohistochemical staining was performed using isocitrate dehydrogenase (IDH)-wild-type or IDH-mutant GBM samples from patients and a significant upregulation of TIE1 (P<0.001) and CAPN6 (P<0.05) protein expression was demonstrated in IDH-mutant GBM in comparison with IDH-wild-type GBM. Structural analysis revealed an IDH-mutant model demonstrating the mutant residues (R132, R140 and R172). The findings of the present study will help the future development of novel biomarkers and therapeutics for brain tumors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA