Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Environ Monit Assess ; 196(2): 194, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38265534

RESUMEN

Interpretation of a fossil pollen data for the vegetation and climate reconstruction of any region needs a modern pollen-vegetation analogue for its calibration. We analyzed the surface sediments and moss polsters for the pollen and microcharcoal records to understand the modern pollen-vegetation relationship and human activities in the Baspa Valley, Kinnaur, Himachal Pradesh. Presently, valley is occupied by the arboreal and non-arboreal vegetation of temperate to subalpine habitats and land use activities. The recovered pollen assemblages showed variability in the dispersal behavior of pollen of taxa growing along the valley transect and also captured the signals of human activities over land use. The overall dominance of arboreal pollen in the recovered pollen assemblage corresponds with the dominant growth of conifers and broadleaf tree taxa and represents the valley vegetation at a regional scale. However, the profuse pollen production of a few arboreal taxa and long distance pollen transport from one vegetation zone to other by the strong upthermic valley winds could bias the pollen representation of in-situ vegetation. The high pollen frequency of non-arboreal taxa in the open meadows represents the near vicinity to their plant source. Human activities like fire burning and cultivation by the local population are evident by the recovery of microcharcoal particles and pollen of plants belonging to Cerealia Poaceae, Asteraceae, Amaranthaceae, Polygonaceae, Rosaceae, Juglandaceae, etc. The dataset taken as modern pollen-vegetation analogue is useful to assess past changes in the vegetation and land cover in relation to climate and human factors for future sustenance.


Asunto(s)
Ambiente , Monitoreo del Ambiente , Humanos , Himalayas , Polen , Clima
2.
Sci Total Environ ; 882: 163630, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37086989

RESUMEN

Global warming is likely to become one of the significant drivers of forest losses in the Hindu-Kush Himalaya (HKH) during the 21st century. Better understanding of how forest ecosystem will respond to global warming requires a precise knowledge of site and species specific responses to climate change. We applied dendrochronological technique to quantify and predict future growth trend of Himalayan cedar (Cedrus deodara), a tree of high commercial importance, and explored its spatial growth variability under two different climatic regimes from 17 deodar sites in the HKH. Of the two climate regimes, one is dominated by the monsoon rainfall and the other by the westerly disturbances. Analysis of tree ring width and climate (monthly temperature and precipitation) data reveals that the spring (March-May) temperature and precipitation affect the growth of deodar negatively and positively, respectively. We used Generalized Least Squares (GLS) regression model to forecast future growth of deodar by taking an ensemble of 40 General Circulation Models (GCMs) for emission scenarios RCP 4.5 and RCP 8.5. Predicted growth trends indicate the decline between 34 % and 38 % under RCP 4.5, and between 29 % and 32 % under RCP 8.5 scenarios, for the low and mid latitude sites. In contrast, a moderate increase in growth was observed in high latitude sites under the both climate scenarios. The study shows more drought stress to deodar trees growing in monsoon areas in mid-and low-latitude sites where less snow melt and low precipitation during the spring season are predicted to increase evapotranspiration. In comparison, in the higher latitude sites where there is a high snowfall due to western disturbances, the growth of deodar is predicted to increase. These findings may be used to take suitable migratory steps for the conservation of deodar in the HKH region.

3.
Sci Rep ; 7(1): 10305, 2017 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-28871188

RESUMEN

To date, there is a gap in the data about the state and mass balance of glaciers in the climate-sensitive subtropical regions during the Little Ice Age (LIA). Here, based on an unprecedented tree-ring sampling coverage, we present the longest reconstructed mass balance record for the Western Himalayan glaciers, dating to 1615. Our results confirm that the later phase of LIA was substantially briefer and weaker in the Himalaya than in the Arctic and subarctic regions. Furthermore, analysis of the time-series of the mass-balance against other time-series shows clear evidence of the existence of (i) a significant glacial decay and a significantly weaker magnitude of glaciation during the latter half of the LIA; (ii) a weak regional mass balance dependence on either the El Niño-Southern Oscillation (ENSO) or the Total Solar Irradiance (TSI) taken in isolation, but a considerable combined influence of both of them during the LIA; and (iii) in addition to anthropogenic climate change, the strong effect from the increased yearly concurrence of extremely high TSI with El Niño over the past five decades, resulting in severe glacial mass loss. The generated mass balance time-series can serve as a source of reliable reconstructed data to the scientific community.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA