Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
J Environ Manage ; 351: 119771, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38071920

RESUMEN

Antibiotic resistome could be loaded by bioaerosols and escape from wastewater or sludge to atmosphere environments. However, until recently, their profile, mobility, bacterial hosts, and risks in submicron bioaerosols (PM1.0) remain unclear. Here, metagenomic sequencing and assembly were employed to conduct an investigation of antibiotic resistome associated with PM1.0 within and around a full-scale wastewater treatment plant (WWTP). More subtypes of antibiotic resistant genes (ARGs) with higher total abundance were found along the upwind-downwind-WWTP transect. ARGs in WWTP-PM1.0 were mainly mediated by plasmids and transposases were the most prevalent mobile genetic elements (MGEs) co-occurring with ARGs. A contig-based analysis indicated that very small proportions (15.32%-19.74%) of ARGs in WWTP-PM1.0 were flanked by MGEs. Proteobacteria was the most dominant host of ARGs. A total of 28 kinds of potential pathogens, such as Pseudomonas aeruginosa and Escherichia coli, carried multiple ARG types. Compared to upwind, WWTP and corresponding downwind were characterized by higher PM1.0 resistome risk. This study emphasizes the vital role of WWTPs in discharging PM1.0-loaded ARGs and antibiotic resistant pathogens to air, and indicates the need for active safeguard procedures, such as that employees wear masks and work clothes, covering the main emission sites, and collecting and destroying of bioaerosols.


Asunto(s)
Antibacterianos , Purificación del Agua , Humanos , Antibacterianos/farmacología , Genes Bacterianos , Bacterias/genética , Aguas Residuales
2.
J Environ Manage ; 370: 122440, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39299103

RESUMEN

As industrial and agricultural production depends on water supply, it is crucial for economic development. The available freshwater reserves on Earth are insufficient to meet humanity's growing demands. This study establishes a three-stage anoxic/oxic (A/O)-moving bed biofilm reactor (MBBR) system. The study evaluated the wastewater purification capacity of the system in summer and winter, examined the system's removal efficiency of 10 pharmaceuticals and personal care products (PPCPs) from the water, and analyzed the composition of microbial communities. Results indicate that the system effectively removes pollutants and PPCPs, with the aerobic tanks in the first two A/O stages playing a significant role in PPCP removal. The system is effective in removing four kinds of pollutants: AMP, IBU, CLR, and CAF, and the removal efficiency of CAF is up to 99.2%. Seasonal variations significantly affect the removal of PPCPs and bacterial growth, leading to changes in bacterial species. At the genus level, 41 bacterial types presented different effects in response to temperature changes, with Trichoderma and c_OM190_unclassified being the most affected. This study provides essential theoretical support for reducing pollutant levels and improving water recycling and economic efficiency.

3.
Environ Res ; 220: 115241, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36621547

RESUMEN

Large volumes of iron-containing sludge (Fe-Sludge) would be generated with the application of iron salts in drinking water treatment plants, which must be disposed appropriately. One of the common disposal solutions for Fe-Sludge is through direct disposal into the municipal sewer system, whereby it would be mixed with domestic wastewater and treated in the wastewater treatment plant. To better understand the properties of Fe-Sludge and the effect of dosing Fe-Sludge to the real domestic wastewater (WW) on the wastewater characteristics, a serial batch tests were conducted on a local wastewater reclamation plant (WRP). It was found that the impact of dosing Fe-Sludge at a Fe/P ratio of 5 did not vary with the types of WW, i.e., filtered or non-filtered by the 5 mm screen. In addition, the soluble organic, phosphate and total soluble iron concentrations mostly decreased with the dosing of Fe-Sludge within the dosage range of 0-5 (Fe/P ratio). In contrast, the suspended solid (SS) and volatile suspended solid (VSS) concentrations increased with the dosage of Fe-Sludge within the dosage range of 0-5 (Fe/P ratio). Furthermore, the pH condition of the domestic wastewater affected the phosphate removal efficiency by Fe-Sludge and influenced the total soluble iron concentration and iron species distribution. These findings will provide fundamental support for the further study of the effect of Fe-Sludge on the biological treatment performance and membrane filtration performance of the membrane bioreactor (MBR) system.


Asunto(s)
Aguas del Alcantarillado , Aguas Residuales , Hierro/química , Eliminación de Residuos Líquidos , Fosfatos/química , Reactores Biológicos , Concentración de Iones de Hidrógeno
4.
Bioprocess Biosyst Eng ; 46(5): 621-633, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36988685

RESUMEN

Ammonia oxidation carried out by ammonia-oxidizing microorganisms (AOMs) is a central step in the global nitrogen cycle. Aerobic AOMs comprise conventional ammonia-oxidizing bacteria (AOB), novel ammonia-oxidizing archaea (AOA), which could exist in complex and extreme conditions, and complete ammonia oxidizers (comammox), which directly oxidize ammonia to nitrate within a single cell. Anaerobic AOMs mainly comprise anaerobic ammonia-oxidizing bacteria (AnAOB), which can transform NH4+-N and NO2--N into N2 under anaerobic conditions. In this review, the unique metabolic characteristics, microbial community of AOMs and the influencing factors are discussed. Process applications of nitrification/denitrification, nitritation/denitrification, nitritation/anammox and partial denitrification/anammox in wastewater treatment systems are emphasized. The future development of nitrogen removal processes using AOMs is expected, enrichment of comammox facilitates the complete nitrification performance, inhibiting the activity of comammox and NOB could achieve stable nitritation, and additionally, AnAOB conducting the anammox process in municipal wastewater is a promising development direction.


Asunto(s)
Microbiota , Aguas Residuales , Amoníaco/metabolismo , Oxidación-Reducción , Bacterias/metabolismo , Archaea/metabolismo , Nitrificación , Nitrógeno/metabolismo , Reactores Biológicos/microbiología
5.
J Environ Manage ; 341: 118007, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37148763

RESUMEN

Integrated microbial electrolysis with anaerobic digestion is proved to be an effective way to improve methanogenesis efficiency of waste activated sludge (WAS). WAS requires pretreatment for efficient improvement of acidification or methanogenesis efficiency, but excessive acidification may inhibit the methanogenesis. In order to balance these two stages, a method for efficient WAS hydrolysis and methanogenesis has been proposed in this study by high-alkaline pretreatment integrated with microbial electrolysis system. The effects of pretreatment methods and voltage on the normal temperature digestion of WAS have also been further investigated with emphasis on the effects of voltage and substrate metabolism. The results show that compared to low-alkaline pretreatment (pH = 10), high-alkaline pretreatment (pH > 14) can double the SCOD release and promote the VFAs accumulation to 5657 ± 392 mg COD/L, but inhibit the methanogenesis process. Microbial electrolysis can alleviate this inhibition effectively through the rapid consumption of VFAs and speeding up of the methanogenesis process. The optimal methane yield of the integrated system is 120.4 ± 8.4 mL/g VSS at the voltage of 0.5 V. Enzyme activities, high-throughput and gene function prediction analysis reveal that the cathode and anode maintain the activity of methanogens under high substrate concentrations. Voltage positively responded to improved methane yield from 0.3 to 0.8 V, but higher than 1.1 V is found to be unfavorable for cathodic methanogenesis and results in additional power loss. These findings provide a perspective idea for rapid and maximum biogas recovery from WAS.


Asunto(s)
Álcalis , Aguas del Alcantarillado , Anaerobiosis , Reactores Biológicos , Electrólisis , Metano , Digestión
6.
Water Sci Technol ; 87(8): 2005-2019, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37119169

RESUMEN

Owing to the low ratio of chemical oxygen demand to total nitrogen (SCOD/TN), effective removal of nutrient pollutants from black water is difficult. In this study, to enhance nitrogen and phosphorus removal from such wastewater, a series of operational modification strategies was investigated and applied to a plant-scale semi-centralized system used for black water treatment. The results showed that 21 mg Fe3+/L was the optimal dosage for the chemical-enhanced pretreatment process, achieving average removal efficiencies of 51.1 and 74.1% for organics and phosphorus, respectively, with a slight enhancement in nitrogen removal by 2.3%. However, nitrogen and phosphorus removal could be further enhanced to 88 and 96%, by the addition of carbon sources in the post-anoxic zone of the reversed anaerobic-anoxic-aerobic process. Contrastingly, neither the addition of carbon sources in the pre-anoxic zone nor the prolongation of the time for pre-denitrification could significantly improve the nitrogen and phosphorus removal efficiencies. Furthermore, reducing the aeration intensity promoted simultaneous nitrification and denitrification in aerobic reactors, thereby making it a potential energy-saving method for system operation.


Asunto(s)
Fósforo , Purificación del Agua , Eliminación de Residuos Líquidos/métodos , Desnitrificación , Nitrógeno , Reactores Biológicos , Nitrificación , Purificación del Agua/métodos , Carbono , Aguas del Alcantarillado
7.
Environ Sci Technol ; 55(15): 10684-10694, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34259503

RESUMEN

As an attractive alternative to the Haber-Bosch process, an electrochemical process for nitrate (NO3-) reduction to ammonia (NH3) has made great strides in the development of advanced electrocatalysts to suppress the unavoidable H2 evolution reaction (HER) and side production of N2. However, isochronous NH3 separation and recovery from the mother liquor, especially wastewaters, are awfully neglected in state-of-the-art electrochemical systems. Here, we designed electrochemical three-phase interfaces constructed by a CoP cathode and a flat-sheet gas membrane to achieve NO3- reduction to ammonia and simultaneous NH3 recovery in the form of (NH4)2SO4 from wastewaters. The partial current density for ammonia yield and its recovery rate were 37.3 mA cm-2 and 306 g NH3-N m-2 day-1, respectively, accompanying 100% NO3- removal and 99.7% NH3 extraction. By favoring the originally unfavored side reaction HER, it served as the driving force for NH3 separation from the wastewater through gas stripping and membrane separation at the three-phase interfaces. Unexpectedly, the timely NH3 separation could also promote the reduction of NO3- to ammonia due to the release of much more active sites. From these, we envision that the present electrochemical process can be routinely employed as an effective strategy to address energy and environmental issues with NH3 recovery from NO3- wastewater.


Asunto(s)
Amoníaco , Nitratos , Amoníaco/análisis , Electrones , Óxidos de Nitrógeno , Aguas Residuales
8.
Water Sci Technol ; 82(2): 303-314, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32941172

RESUMEN

The first full-scale semi-centralized wastewater treatment and resource recovery system based on source separation was implemented from 2014. To assess the operation performance, operating costs and resolve the problems faced in this system, the latest operation data from April 2017 to September 2018 was investigated. The results show that greywater and blackwater modules exhibited good removal performance for organics and nutrients, although misconnection between pipelines existed and influent loading rates fluctuated. The effluent could meet reuse standards. The biogas production rates of raw sludge could reach 7.27-10.9 m3 gas·per cubic raw sludge. The specific cost of treated water was higher than in a conventional treatment system. Power consumption made a major contribution to the total cost with a proportion of 55.3-94.2%. After optimizing and considering the comprehensive efficiencies, the costs would be affordable. The dewatered sludge of the anaerobic digestion module has been applied to agricultural and landscaping soil. It is suggested that organics in blackwater could be recovered as volatile fatty acids with high-efficiency anaerobic fermentation and used as an external carbon source for short-cut biological nitrogen removal. In conclusion, the semi-centralized system will be a feasible and sustainable alternative for conventional treatment systems in future.


Asunto(s)
Reactores Biológicos , Aguas Residuales , Ácidos Grasos Volátiles , Nitrógeno , Aguas del Alcantarillado , Eliminación de Residuos Líquidos
10.
Archaea ; 2018: 8429145, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30302054

RESUMEN

An increase in the number of publications in recent years indicates that besides ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA) may play an important role in nitrogen removal from wastewater, gaining wide attention in the wastewater engineering field. This paper reviews the current knowledge on AOA and AOB involved in wastewater treatment systems and summarises the environmental factors affecting AOA and AOB. Current findings reveal that AOA have stronger environmental adaptability compared with AOB under extreme environmental conditions (such as low temperature and low oxygen level). However, there is still little information on the cooperation and competition relationship between AOA and AOB, and other microbes related to nitrogen removal, which needs further exploration. Furthermore, future studies are proposed to develop novel nitrogen removal processes dominated by AOA by parameter optimization.


Asunto(s)
Amoníaco/metabolismo , Archaea/metabolismo , Bacterias/metabolismo , Interacciones Microbianas , Nitrógeno/metabolismo , Aguas Residuales/microbiología , Archaea/crecimiento & desarrollo , Bacterias/crecimiento & desarrollo , Oxidación-Reducción , Purificación del Agua/métodos
11.
J Environ Manage ; 218: 340-347, 2018 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-29698916

RESUMEN

Microbial community diversity determines the function of each chamber of multi-stage moving bed biofilm reactor (MBBR) systems. How the microbial community data can be further used to serve wastewater treatment process modelling and optimization has been rarely studied. In this study, a MBBR system was set up to investigate the microbial community diversity of biofilm in each functional chamber. The compositions of microbial community of biofilm from different chambers of MBBR were quantified by high-throughput sequencing. Significantly higher proportion of autotrophs were found in the second aerobic chamber (15.4%), while 4.3% autotrophs were found in the first aerobic chamber. Autotrophs in anoxic chamber were negligible. Moreover, ratios of active heterotrophic biomass and autotrophic biomass (XH/XA) were obtained by performing respiration tests. By setting heterotroph/autotroph ratios obtained from sequencing analysis equal to XH/XA, a novel approach for kinetic model parameters estimation was developed. This work not only investigated microbial community of MBBR system, but also it provided an approach to make further use of molecular microbiology analysis results.


Asunto(s)
Biopelículas , Reactores Biológicos , Biomasa , Cinética , Aguas Residuales
12.
Water Sci Technol ; 77(5-6): 1689-1697, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29595171

RESUMEN

Settleability of activated sludge is one of the most common problems that restricts the efficiency of activated sludge system. Obvious seasonal variation of settleability was found in the activated sludge system of a full scale wastewater treatment plant (WWTP) during 2 years of observation. Principal component analysis (PCA) was applied to study the correlation between diluted sludge volume index (DSVI), operational and environmental factors. As a result, temperature and mixed liquid suspended solids (MLSS) were found as the most significant variables relating with DSVI variation. Multivariate regression, partial least squares regression and support vector machine regression were applied to develop early warning models for DSVI prediction. The multivariate regression model was proved as a simple and easy-to-interpret early warning tool to be applied in practice. Based on the ratio of volatile substances in biomass, the original cause of seasonal variation of settleability was further discussed by referring the storage-biodegradation mechanism. Moreover, the results of this work also suggested that modern statistical techniques were important to investigate complicated engineering problems. This study provided insights of seasonal variation of activated sludge settleability by systematic investigation of long-term data of a full scale WWTP.


Asunto(s)
Estaciones del Año , Aguas del Alcantarillado/química , Aguas Residuales/química , Biodegradación Ambiental , Biomasa , Reactores Biológicos , Clima , Factores de Tiempo , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua
13.
Bioresour Technol ; 393: 130174, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38072081

RESUMEN

As dosing additives benefit for aerobic granular sludge (AGS) cultivation, effects of different concentrations (0, 10, 50 and 100 mg/L) of magnetic nanoparticles (Fe3O4 NPs) on aerobic granulation, contaminant removal and potential microbial community evolution related to acyl-homoserine lactones (AHLs) mediated bacterial communication were investigated with municipal wastewater. Results showed that the required time to achieve granulation ratio > 70 % was reduced by 60, 90 and 30 days in phase II with addition of 10, 50, 100 mg/L Fe3O4 NPs, respectively. 50 mg/L Fe3O4 NPs can improve contaminant removal efficiency. The promotion of relative abundance of AHLs-producing and AHLs-producing/quenching populations and AHLs-related functional genes accompanied with faster granulation. Iron-cycling-related bacteria were closely related with AHLs-related bacteria during AGS formation. Co-occurrence network analyses showed that AHLs-mediated communication may play an important role in coordinating microbial community composition and functional bacteria participating in nitrogen and polyphosphate metabolisms during aerobic granulation process.


Asunto(s)
Nanopartículas de Magnetita , Microbiota , Acil-Butirolactonas/metabolismo , Bacterias/metabolismo , Reactores Biológicos/microbiología , Percepción de Quorum , Aguas del Alcantarillado/microbiología
14.
Environ Pollut ; 343: 123169, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38128715

RESUMEN

The antibiotic-resistant pollution in size-segregated bioaerosols from wastewater treatment plants (WWTPs) is of increasing concern due to its public health risks, but an elaborate review is still lacking. This work overviewed the profile, mobility, pathogenic hosts, source, and risks of antibiotic resistance genes (ARGs) in size-segregated bioaerosols from WWTPs. The dominant ARG type in size-segregated bioaerosols from WWTPs was multidrug resistance genes. Treatment units that equipped with mechanical facilities and aeration devices, such as grilles, grit chambers, biochemical reaction tanks, and sludge treatment units, were the primary sources of bioaerosol antibiotic resistome in WWTPs. Higher enrichment of antibiotic resistome in particulate matter with an aerodynamic diameter of <2.5 µm, was found along the upwind-downwind-WWTPs gradient. Only a small portion of ARGs in inhalable bioaerosols from WWTPs were flanked by mobile genetic elements. The pathogens with multiple drug resistance had been found in size-segregated bioaerosols from WWTPs. Different ARGs or antibiotic resistant bacteria have different aerosolization potential associated with bioaerosols from various treatment processes. The validation of pathogenic antibiotic resistance bacteria, deeper investigation of ARG mobility, emission mechanism of antibiotic resistome, and development of treatment technologies, should be systematically considered in future.


Asunto(s)
Antibacterianos , Purificación del Agua , Antibacterianos/farmacología , Aguas Residuales , Farmacorresistencia Microbiana/genética , Aguas del Alcantarillado/microbiología , Bacterias , Genes Bacterianos
15.
Bioresour Technol ; 395: 130385, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38281549

RESUMEN

A two-sludge anaerobic/anoxic/oxic + nitrification system with simultaneous nitrogen and phosphorus removal was studied for enhanced low-strength wastewater treatment. After 158 days of operation, excellent NH4+-N, chemical oxygen demand (COD) and PO43--P removal (99.0 %, 90.0 % and 92.0 %, respectively) were attained under a low carbon/nitrogen ratio of 5, resulting in effluent NH4+-N, COD and PO43--P concentrations of 0.3, 30.0 and 0.5 mg/L, respectively. The results demonstrate that the anaerobic/anoxic/oxic sequencing batch reactor (A2-SBR) and nitrification sequencing batch reactor (N-SBR) had favorable denitrifying phosphorus removal and nitrification performance, respectively. High-throughput sequencing results indicate that the phosphate-accumulating organisms Dechloromonas (1.1 %) and Tetrasphaera (1.2 %) were enriched in the A2-SBR, while the ammonia-oxidizing bacteria Nitrosomonas (7.8 %) and the nitrite-oxidizing bacteria Nitrospira (18.1 %) showed excellent accumulation in the N-SBR. Further analysis via functional prediction revealed that denitrification is the primary pathway of nitrogen metabolism throughout the system. Overall, the system achieved low carbon and high efficiency nutrient removal.


Asunto(s)
Nitrificación , Aguas Residuales , Eliminación de Residuos Líquidos/métodos , Desnitrificación , Anaerobiosis , Fósforo/metabolismo , Carbono/metabolismo , Reactores Biológicos/microbiología , Aguas del Alcantarillado/microbiología , Nutrientes , Bacterias/metabolismo , Nitrógeno/metabolismo
16.
Water Res ; 267: 122552, 2024 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-39362131

RESUMEN

Bioaerosol contamination was considered as a potential health threat in sludge dewatering systems (SDSs), while emission and risk of airborne antibiotic resistome remain largely unclear. Herein, seasonal investigations of fine particulate matter (PM2.5) were conducted using metagenomics-based methods within and around different SDSs, together with an analysis of sewage sludge. Featured with evident seasonality, antibiotic resistance genes (ARGs) in SDS-PM2.5 also possessed greater accumulation, transfer, and pathogen accessibility than those in ambient air PM2.5. Mobile ARGs in SDS-PM2.5 mainly encoded resistance to tetracycline, and most were flanked by integrase. Some pathogenic antibiotic resistant bacteria (PARB), including Enterobacter asburiae, Escherichia coli, Enterococcus faecium, and Staphylococcus aureus, also carried mobile genetic elements in SDS-PM2.5. Dewatering behavior actuated > 50.56% of ARG subtypes and > 42.86% of PARB in sewage sludge to aerosolize into air. Relative humidity, temperature, and PM2.5 concentration collectively drove the evolution of bacterial community and indirectly promoted the antibiotic resistance of SDS-PM2.5. SDS-PM2.5 posed more serious resistome risks than sewage sludge and ambient air PM2.5, and the highest levels were discovered in winter. These findings underline the role of dewatering behavior in facilitating resistome's aerosolization, and the need to mitigate this potential air pollution.

17.
Sci Total Environ ; 954: 176471, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39322072

RESUMEN

Aerobic granular sludge (AGS) exhibits excellent resistance to adverse environment due to its unique layered structure. However, the mechanism about how salinity fluctuations in municipal wastewater impact AGS formation and its physicochemical properties has not been thoroughly revealed. In this study, AGS was cultivated under additional 0 % salinity (R1), additional 1.5 % constant salinity (R2), and additional 0-1.5 % fluctuant salinity (R3), respectively. The results indicate that increased salinity can enhance extracellular polymeric substances (EPS) production and improve sludge settleability, thereby facilitate AGS formation. However, the AGS experienced frequent environmental conversion between dehydration and swell due to salinity fluctuations, resulting in higher content of loosely-bond EPS and low settleability, which delayed the maturation of AGS for over 14 days. Additional salinity significantly inhibited the nitrification process, but the formation of AGS promoted the recovery of ammonia oxidation activity and facilitated the construction of short-range nitrification denitrification processes, resulting in over 16.0 % higher total nitrogen removal efficiency than R1. The microbial community analysis revealed that Thauera played an important role in the granulation process under salinity stress, due to its salt tolerance and EPS secretion abilities. As expected, the formation of AGS enhanced the salt resistance of microorganisms, allowing for the enrichment of functional bacteria, such as Flavobacterium and Candidatus_Competibacter. Generally, microorganisms required extended adaptation periods to cope with salinity fluctuations. Nevertheless, the resulting AGS proved stable and efficient wastewater treatment performance.

18.
Bioresour Technol ; 397: 130458, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38373506

RESUMEN

The feasibility of self-cultivating anammox granules for enhancing wastewater nitrogen removal was investigated in a nitrification-denitrification flocculent sludge system. Desirable nitrogen removal efficiency of 84 ± 4 % was obtained for the influent carbon to nitrogen ratio of 1-1.3 (NH4+-N: 150-200 mg N/L) via alternate anaerobic/oxic/anoxic mode. Meanwhile, some red granular sludge was formed in the system. The abundance and activity of anaerobic ammonia oxidation bacteria (AnAOB) increased from 'not detected' in seed sludge to 0.57 % and 29.4 ± 0.7 mg N/(g mixed liquor volatile suspended solids·h) in granules, respectively, suggesting successful cultivation of anammox granules. Furthermore, some denitrifying bacteria with capability of partial denitrification were enriched, such as Candidatus Competibacter (2.45 %) and Thauera (5.75 %), which could cooperate with AnAOB, facilitating AnAOB enrichment. Anammox was dominant in nitrogen removal with the contribution to nitrogen removed above 68.8 ± 0.3 %. The strategy of self-cultivating anammox granules could promote the application of anammox.


Asunto(s)
Aguas del Alcantarillado , Aguas Residuales , Aguas del Alcantarillado/microbiología , Nitrificación , Desnitrificación , Oxidación Anaeróbica del Amoníaco , Nitrógeno , Reactores Biológicos/microbiología , Oxidación-Reducción , Anaerobiosis , Bacterias
19.
Water Res ; 261: 122039, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39024800

RESUMEN

Membrane fouling has always been a critical constraint in the operation of the reverse osmosis (RO) process, and chemical cleaning is essential for mitigating membrane fouling and ensuring smooth operation of the membrane system. This paper presents an optimized chemical cleaning method for the efficient cleaning of RO membranes in full-scale applications. Compared to the regular cleaning method (cleaning with 0.1 % NaOH + 1 % ethylenediaminetetraacetic acid + 0.025 % sodium dodecyl benzene sulfonate followed by 0.2 % HCl), the optimized cleaning method improves the cleaning efficiency by adding sodium chloride to the alkaline cleaning solution and citric acid to the acid cleaning solution. Notably, the membrane flux recovery rate with the optimized cleaning method is 45.74 %, and it improves the cleaning efficiency by 1.65 times compared to the regular cleaning method. Additionally, the optimized cleaning method removes 30.46 % of total foulants (organic and inorganic), which is 2.11 times higher than the regular cleaning method. The removal of inorganic ions such as Fe, Ca, and Mg is significantly improved with the optimized cleaning method. For organic matter removal, the optimized cleaning method effectively removes more polysaccharides, proteins, and microbial metabolites by disrupting the complex structures of organic matter. Furthermore, it also changes the microbial community structure on the RO membrane surface by eliminating microorganisms that cannot withstand strong acids, bases, and high salt environments. However, Mycobacterium can adapt to these harsh conditions, showing a relative abundance of up to 84.13 % after cleaning. Overall, our results provide a new chemical cleaning method for RO membranes in full-scale applications. This method effectively removes membrane foulants and enhances the understanding of the removal characteristics of foulants on RO membrane surfaces by chemical cleaning.


Asunto(s)
Membranas Artificiales , Ósmosis , Aguas Residuales , Purificación del Agua , Aguas Residuales/química , Purificación del Agua/métodos , Eliminación de Residuos Líquidos/métodos
20.
Microorganisms ; 12(6)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38930504

RESUMEN

This study extensively analyzed the bacterial information of biofilms and activated sludge in oxic reactors of full-scale moving bed biofilm reactor-integrated fixed-film activated sludge (MBBR-IFAS) systems. The bacterial communities of biofilms and activated sludge differed statistically (R = 0.624, p < 0.01). The denitrifying genera Ignavibacterium, Phaeodactylibacter, Terrimonas, and Arcobacter were more abundant in activated sludge (p < 0.05), while comammox Nitrospira was more abundant in biofilms (p < 0.05), with an average relative abundance of 8.13%. Nitrospira and Nitrosomonas had weak co-occurrence relationships with other genera in the MBBR-IFAS systems. Potential function analysis revealed no differences in pathways at levels 1 and 2 based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) between biofilms and activated sludge. However, in terms of pathways at level 3, biofilms had more potential in 26 pathways, including various organic biodegradation and membrane and signal transportation pathways. In comparison, activated sludge had more potential in only five pathways, including glycan biosynthesis and metabolism. With respect to nitrogen metabolism, biofilms had greater potential for nitrification (ammonia oxidation) (M00528), and complete nitrification (comammox) (M00804) concretely accounted for methane/ammonia monooxygenase (K10944, K10945, and K10946) and hydroxylamine dehydrogenase (K10535). This study provides a theoretical basis for MBBR-IFAS systems from the perspective of microorganisms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA