Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Rapid Commun Mass Spectrom ; 37(16): e9540, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37194121

RESUMEN

RATIONALE: Land-use changes, e.g., forestry drainage, modify the characteristics of peatland soil and affect the peatland carbon (C) balance. Peat soil nutrient status, related mainly to the original peatland type, also has an impact on the C balance after drainage, as observed earlier at the ecosystem scale for two forestry-drained sites in Southern Finland. Here the aim was to compare the soil CO2 fluxes from the two sites, nutrient-poor and nutirent-rich forestry-drained peatlands, and study the effect of plant photosynthates on the decomposition of peat C. Therefore, the respiration rates and priming effect (PE) of peat soils with variable nutrient status were examined in the laboratory. METHODS: Half of the samples were labelled with 13 C-glucose to study the effect of fresh C addition on the soil decomposition. The 13 CO2 -samples were analysed with isotope ratio mass spectrometry. A two-pool mixing model was applied to separate the soil- and sugar-derived respirations and to determine the PE. RESULTS: The nutrient-rich peat soil respired generally more than the nutrient-poor peat. A negative PE was observed in both peat soils, suggesting that the addition of fresh C did not increase the soil decomposition, but on the contrary decreased it. The negative PE was significantly more pronounced in nutrient-poor peat soil than in the nutrient-rich peat treatments, suggesting that the higher nutrient availability suppresses the negative PE. CONCLUSIONS: These results imply that microbes prefer utilizing fresh C instead of old C in the short term and that the peat decomposition is suppressed in the presence of fresh C inputs from vegetation at forestry-drained peatlands. These effects are even stronger in peat soils with less nutrients available. Ecosystem scale and soil process models could be improved with the help of these results.


Asunto(s)
Ecosistema , Agricultura Forestal , Frecuencia Respiratoria , Dióxido de Carbono/análisis , Suelo/química , Carbono/análisis , Nutrientes/análisis , Drenaje
2.
Environ Microbiol ; 2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-36054230

RESUMEN

Plastics have been produced for over a century, but definitive evidence of complete plastic biodegradation in different habitats, particularly freshwater ecosystems, is still missing. Using 13 C-labelled polyethylene microplastics (PE-MP) and stable isotope analysis of produced gas and microbial membrane lipids, we determined the biodegradation rate and fate of carbon in PE-MP in different freshwater types. The biodegradation rate in the humic-lake waters was much higher (0.45% ± 0.21% per year) than in the clear-lake waters (0.07% ± 0.06% per year) or the artificial freshwater medium (0.02% ± 0.02% per year). Complete biodegradation of PE-MP was calculated to last 100-200 years in humic-lake waters, 300-4000 years in clear-lake waters, and 2000-20,000 years in the artificial freshwater medium. The concentration of 18:1ω7, characteristic phospholipid fatty acid in Alpha- and Gammaproteobacteria, was a predictor of faster biodegradation of PE. Uncultured Acetobacteraceae and Comamonadaceae among Alpha- and Gammaproteobacteria, respectively, were major bacteria related to the biodegradation of PE-MP. Overall, it appears that microorganisms in humic lakes with naturally occurring refractory polymers are more adept at decomposing PE than those in other waters.

3.
Glob Chang Biol ; 28(2): 441-462, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34672044

RESUMEN

Mountain birch forests (Betula pubescens Ehrh. ssp. czerepanovii) at the subarctic treeline not only benefit from global warming, but are also increasingly affected by caterpillar outbreaks from foliage-feeding geometrid moths. Both of these factors have unknown consequences on soil organic carbon (SOC) stocks and biogeochemical cycles. We measured SOC stocks down to the bedrock under living trees and under two stages of dead trees (12 and 55 years since moth outbreak) and treeless tundra in northern Finland. We also measured in-situ soil respiration, potential SOC decomposability, biological (enzyme activities and microbial biomass), and chemical (N, mineral N, and pH) soil properties. SOC stocks were significantly higher under living trees (4.1 ± 2.1 kg m²) than in the treeless tundra (2.4 ± 0.6 kg m²), and remained at an elevated level even 12 (3.7 ± 1.7 kg m²) and 55 years (4.9 ± 3.0 kg m²) after tree death. Effects of tree status on SOC stocks decreased with increasing distance from the tree and with increasing depth, that is, a significant effect of tree status was found in the organic layer, but not in mineral soil. Soil under living trees was characterized by higher mineral N contents, microbial biomass, microbial activity, and soil respiration compared with the treeless tundra; soils under dead trees were intermediate between these two. The results suggest accelerated organic matter turnover under living trees but a positive net effect on SOC stocks. Slowed organic matter turnover and continuous supply of deadwood may explain why SOC stocks remained elevated under dead trees, despite the heavy decrease in aboveground C stocks. We conclude that the increased occurrence of moth damage with climate change would have minor effects on SOC stocks, but ultimately decrease ecosystem C stocks (49% within 55 years in this area), if the mountain birch forests will not be able to recover from the outbreaks.


Asunto(s)
Mariposas Nocturnas , Árboles , Animales , Betula , Carbono , Brotes de Enfermedades , Ecosistema , Suelo
4.
Glob Chang Biol ; 28(17): 5007-5026, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35722720

RESUMEN

The physical and chemical changes that accompany permafrost thaw directly influence the microbial communities that mediate the decomposition of formerly frozen organic matter, leading to uncertainty in permafrost-climate feedbacks. Although changes to microbial metabolism and community structure are documented following thaw, the generality of post-thaw assembly patterns across permafrost soils of the world remains uncertain, limiting our ability to predict biogeochemistry and microbial community responses to climate change. Based on our review of the Arctic microbiome, permafrost microbiology, and community ecology, we propose that Assembly Theory provides a framework to better understand thaw-mediated microbiome changes and the implications for community function and climate feedbacks. This framework posits that the prevalence of deterministic or stochastic processes indicates whether the community is well-suited to thrive in changing environmental conditions. We predict that on a short timescale and following high-disturbance thaw (e.g., thermokarst), stochasticity dominates post-thaw microbiome assembly, suggesting that functional predictions will be aided by detailed information about the microbiome. At a longer timescale and lower-intensity disturbance (e.g., active layer deepening), deterministic processes likely dominate, making environmental parameters sufficient for predicting function. We propose that the contribution of stochastic and deterministic processes to post-thaw microbiome assembly depends on the characteristics of the thaw disturbance, as well as characteristics of the microbial community, such as the ecological and phylogenetic breadth of functional guilds, their functional redundancy, and biotic interactions. These propagate across space and time, potentially providing a means for predicting the microbial forcing of greenhouse gas feedbacks to global climate change.


Asunto(s)
Microbiota , Hielos Perennes , Regiones Árticas , Retroalimentación , Hielos Perennes/química , Filogenia , Suelo/química
5.
Rapid Commun Mass Spectrom ; 36(13): e9296, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35289456

RESUMEN

RATIONALE: Information on the isotopic composition of nitrous oxide (N2 O) at natural abundance supports the identification of its source and sink processes. In recent years, a number of mass spectrometric and laser spectroscopic techniques have been developed and are increasingly used by the research community. Advances in this active research area, however, critically depend on the availability of suitable N2 O isotope Reference Materials (RMs). METHODS: Within the project Metrology for Stable Isotope Reference Standards (SIRS), seven pure N2 O isotope RMs have been developed and their 15 N/14 N, 18 O/16 O, 17 O/16 O ratios and 15 N site preference (SP) have been analysed by specialised laboratories against isotope reference materials. A particular focus was on the 15 N site-specific isotopic composition, as this measurand is both highly diagnostic for source appointment and challenging to analyse and link to existing scales. RESULTS: The established N2 O isotope RMs offer a wide spread in delta (δ) values: δ15 N: 0 to +104‰, δ18 O: +39 to +155‰, and δ15 NSP : -4 to +20‰. Conversion and uncertainty propagation of δ15 N and δ18 O to the Air-N2 and VSMOW scales, respectively, provides robust estimates for δ15 N(N2 O) and δ18 O(N2 O), with overall uncertainties of about 0.05‰ and 0.15‰, respectively. For δ15 NSP , an offset of >1.5‰ compared with earlier calibration approaches was detected, which should be revisited in the future. CONCLUSIONS: A set of seven N2 O isotope RMs anchored to the international isotope-ratio scales was developed that will promote the implementation of the recommended two-point calibration approach. Particularly, the availability of δ17 O data for N2 O RMs is expected to improve data quality/correction algorithms with respect to δ15 NSP and δ15 N analysis by mass spectrometry. We anticipate that the N2 O isotope RMs will enhance compatibility between laboratories and accelerate research progress in this emerging field.


Asunto(s)
Óxido Nitroso , Calibración , Espectrometría de Masas/métodos , Óxido Nitroso/análisis , Isótopos de Oxígeno/análisis , Estándares de Referencia
6.
Rapid Commun Mass Spectrom ; 36(22): e9370, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-35906712

RESUMEN

RATIONALE: Stable isotope approaches are increasingly applied to better understand the cycling of inorganic nitrogen (Ni ) forms, key limiting nutrients in terrestrial and aquatic ecosystems. A systematic comparison of the accuracy and precision of the most commonly used methods to analyze δ15 N in NO3 - and NH4 + and interlaboratory comparison tests to evaluate the comparability of isotope results between laboratories are, however, still lacking. METHODS: Here, we conducted an interlaboratory comparison involving 10 European laboratories to compare different methods and laboratory performance to measure δ15 N in NO3 - and NH4 + . The approaches tested were (a) microdiffusion (MD), (b) chemical conversion (CM), which transforms Ni to either N2 O (CM-N2 O) or N2 (CM-N2 ), and (c) the denitrifier (DN) methods. RESULTS: The study showed that standards in their single forms were reasonably replicated by the different methods and laboratories, with laboratories applying CM-N2 O performing superior for both NO3 - and NH4 + , followed by DN. Laboratories using MD significantly underestimated the "true" values due to incomplete recovery and also those using CM-N2 showed issues with isotope fractionation. Most methods and laboratories underestimated the at%15 N of Ni of labeled standards in their single forms, but relative errors were within maximal 6% deviation from the real value and therefore acceptable. The results showed further that MD is strongly biased by nonspecificity. The results of the environmental samples were generally highly variable, with standard deviations (SD) of up to ± 8.4‰ for NO3 - and ± 32.9‰ for NH4 + ; SDs within laboratories were found to be considerably lower (on average 3.1‰). The variability could not be connected to any single factor but next to errors due to blank contamination, isotope normalization, and fractionation, and also matrix effects and analytical errors have to be considered. CONCLUSIONS: The inconsistency among all methods and laboratories raises concern about reported δ15 N values particularly from environmental samples.


Asunto(s)
Ecosistema , Nitrógeno , Laboratorios , Isótopos de Nitrógeno/análisis
7.
Glob Chang Biol ; 27(22): 5818-5830, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34390614

RESUMEN

Ecosystem carbon (C) dynamics after permafrost thaw depends on more than just climate change since soil nutrient status may also impact ecosystem C balance. It has been advocated that nitrogen (N) release upon permafrost thaw could promote plant growth and thus offset soil C loss. However, compared with the widely accepted C-N interactions, little is known about the potential role of soil phosphorus (P) availability. We combined 3-year field observations along a thaw sequence (constituted by four thaw stages, i.e., non-collapse and 5, 14, and 22 years since collapse) with an in-situ fertilization experiment (included N and P additions at the level of 10 g N m-2  year-1 and 10 g P m-2  year-1 ) to evaluate ecosystem C-nutrient interactions upon permafrost thaw. We found that changes in soil P availability rather than N availability played an important role in regulating gross primary productivity and net ecosystem productivity along the thaw sequence. The fertilization experiment confirmed that P addition had stronger effects on plant growth than N addition in this permafrost ecosystem. These two lines of evidence highlight the crucial role of soil P availability in altering the trajectory of permafrost C cycle under climate warming.


Asunto(s)
Hielos Perennes , Carbono , Ecosistema , Nitrógeno , Fósforo
8.
Glob Chang Biol ; 27(17): 4040-4059, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33913236

RESUMEN

The regional variability in tundra and boreal carbon dioxide (CO2 ) fluxes can be high, complicating efforts to quantify sink-source patterns across the entire region. Statistical models are increasingly used to predict (i.e., upscale) CO2 fluxes across large spatial domains, but the reliability of different modeling techniques, each with different specifications and assumptions, has not been assessed in detail. Here, we compile eddy covariance and chamber measurements of annual and growing season CO2 fluxes of gross primary productivity (GPP), ecosystem respiration (ER), and net ecosystem exchange (NEE) during 1990-2015 from 148 terrestrial high-latitude (i.e., tundra and boreal) sites to analyze the spatial patterns and drivers of CO2 fluxes and test the accuracy and uncertainty of different statistical models. CO2 fluxes were upscaled at relatively high spatial resolution (1 km2 ) across the high-latitude region using five commonly used statistical models and their ensemble, that is, the median of all five models, using climatic, vegetation, and soil predictors. We found the performance of machine learning and ensemble predictions to outperform traditional regression methods. We also found the predictive performance of NEE-focused models to be low, relative to models predicting GPP and ER. Our data compilation and ensemble predictions showed that CO2 sink strength was larger in the boreal biome (observed and predicted average annual NEE -46 and -29 g C m-2  yr-1 , respectively) compared to tundra (average annual NEE +10 and -2 g C m-2  yr-1 ). This pattern was associated with large spatial variability, reflecting local heterogeneity in soil organic carbon stocks, climate, and vegetation productivity. The terrestrial ecosystem CO2 budget, estimated using the annual NEE ensemble prediction, suggests the high-latitude region was on average an annual CO2 sink during 1990-2015, although uncertainty remains high.


Asunto(s)
Dióxido de Carbono , Ecosistema , Carbono , Dióxido de Carbono/análisis , Reproducibilidad de los Resultados , Estaciones del Año , Suelo , Tundra , Incertidumbre
9.
Proc Natl Acad Sci U S A ; 114(24): 6238-6243, 2017 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-28559346

RESUMEN

Permafrost in the Arctic is thawing, exposing large carbon and nitrogen stocks for decomposition. Gaseous carbon release from Arctic soils due to permafrost thawing is known to be substantial, but growing evidence suggests that Arctic soils may also be relevant sources of nitrous oxide (N2O). Here we show that N2O emissions from subarctic peatlands increase as the permafrost thaws. In our study, the highest postthaw emissions occurred from bare peat surfaces, a typical landform in permafrost peatlands, where permafrost thaw caused a fivefold increase in emissions (0.56 ± 0.11 vs. 2.81 ± 0.6 mg N2O m-2 d-1). These emission rates match those from tropical forest soils, the world's largest natural terrestrial N2O source. The presence of vegetation, known to limit N2O emissions in tundra, did decrease (by ∼90%) but did not prevent thaw-induced N2O release, whereas waterlogged conditions suppressed the emissions. We show that regions with high probability for N2O emissions cover one-fourth of the Arctic. Our results imply that the Arctic N2O budget will depend strongly on moisture changes, and that a gradual deepening of the active layer will create a strong noncarbon climate change feedback.

10.
Glob Chang Biol ; 25(5): 1746-1764, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30681758

RESUMEN

Permafrost peatlands are biogeochemical hot spots in the Arctic as they store vast amounts of carbon. Permafrost thaw could release part of these long-term immobile carbon stocks as the greenhouse gases (GHGs) carbon dioxide (CO2 ) and methane (CH4 ) to the atmosphere, but how much, at which time-span and as which gaseous carbon species is still highly uncertain. Here we assess the effect of permafrost thaw on GHG dynamics under different moisture and vegetation scenarios in a permafrost peatland. A novel experimental approach using intact plant-soil systems (mesocosms) allowed us to simulate permafrost thaw under near-natural conditions. We monitored GHG flux dynamics via high-resolution flow-through gas measurements, combined with detailed monitoring of soil GHG concentration dynamics, yielding insights into GHG production and consumption potential of individual soil layers. Thawing the upper 10-15 cm of permafrost under dry conditions increased CO2 emissions to the atmosphere (without vegetation: 0.74 ± 0.49 vs. 0.84 ± 0.60 g CO2 -C m-2  day-1 ; with vegetation: 1.20 ± 0.50 vs. 1.32 ± 0.60 g CO2 -C m-2  day-1 , mean ± SD, pre- and post-thaw, respectively). Radiocarbon dating (14 C) of respired CO2 , supported by an independent curve-fitting approach, showed a clear contribution (9%-27%) of old carbon to this enhanced post-thaw CO2 flux. Elevated concentrations of CO2 , CH4 , and dissolved organic carbon at depth indicated not just pulse emissions during the thawing process, but sustained decomposition and GHG production from thawed permafrost. Oxidation of CH4 in the peat column, however, prevented CH4 release to the atmosphere. Importantly, we show here that, under dry conditions, peatlands strengthen the permafrost-carbon feedback by adding to the atmospheric CO2 burden post-thaw. However, as long as the water table remains low, our results reveal a strong CH4 sink capacity in these types of Arctic ecosystems pre- and post-thaw, with the potential to compensate part of the permafrost CO2 losses over longer timescales.


Asunto(s)
Ciclo del Carbono , Cambio Climático , Hielos Perennes , Regiones Árticas , Atmósfera/química , Dióxido de Carbono/análisis , Dióxido de Carbono/metabolismo , Gases de Efecto Invernadero/análisis , Gases de Efecto Invernadero/metabolismo , Metano/análisis , Metano/metabolismo , Oxidación-Reducción , Hielos Perennes/química , Plantas/metabolismo
11.
Environ Sci Technol ; 53(8): 4198-4205, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30916547

RESUMEN

Radiocarbon (14C) is potentially significant in terms of release from deep geological disposal of radioactive waste and incorporation into the biosphere. In this study we investigated the transfer of soil-derived C into two plant species by using a novel approach, where the uptake of soil-derived C into newly cultivated plants was studied on 8000-year leftover peat in order to distinguish between soil-derived and atmospheric C. Two-pool isotope mixing model was used to reveal the fraction of soil C in plants. Our results indicated that although the majority of plant C was obtained from atmosphere by photosynthesis, a significant portion (up to 3-5%) of C in plant roots was derived from old soil. We found that uptake of soil C into roots was more pronounced in ectomycorrhizal Scots pine than in endomycorrhizal reed canary grass, but nonetheless, both species showed soil-derived C uptake in their roots. Although plenty of soil-derived C was available in canopy air for reassimilation by photosynthesis, no trace of soil-derived C was detected in aboveground parts, possibly due to the open canopy. The results suggest that the potential for contamination with 14C is higher for roots than for leaves.


Asunto(s)
Residuos Radiactivos , Contaminantes Radiactivos del Suelo , Carbono , Raíces de Plantas , Plantas , Suelo
12.
Glob Chang Biol ; 24(11): 5188-5204, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30101501

RESUMEN

Across the Arctic, the net ecosystem carbon (C) balance of tundra ecosystems is highly uncertain due to substantial temporal variability of C fluxes and to landscape heterogeneity. We modeled both carbon dioxide (CO2 ) and methane (CH4 ) fluxes for the dominant land cover types in a ~100-km2 sub-Arctic tundra region in northeast European Russia for the period of 2006-2015 using process-based biogeochemical models. Modeled net annual CO2 fluxes ranged from -300 g C m-2  year-1 [net uptake] in a willow fen to 3 g C m-2  year-1 [net source] in dry lichen tundra. Modeled annual CH4 emissions ranged from -0.2 to 22.3 g C m-2  year-1 at a peat plateau site and a willow fen site, respectively. Interannual variability over the decade was relatively small (20%-25%) in comparison with variability among the land cover types (150%). Using high-resolution land cover classification, the region was a net sink of atmospheric CO2 across most land cover types but a net source of CH4 to the atmosphere due to high emissions from permafrost-free fens. Using a lower resolution for land cover classification resulted in a 20%-65% underestimation of regional CH4 flux relative to high-resolution classification and smaller (10%) overestimation of regional CO2 uptake due to the underestimation of wetland area by 60%. The relative fraction of uplands versus wetlands was key to determining the net regional C balance at this and other Arctic tundra sites because wetlands were hot spots for C cycling in Arctic tundra ecosystems.


Asunto(s)
Ciclo del Carbono , Tundra , Regiones Árticas , Carbono , Dióxido de Carbono/análisis , Ecosistema , Metano/análisis , Federación de Rusia , Suelo , Humedales
13.
Appl Environ Microbiol ; 83(4)2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-27913414

RESUMEN

Northern peatlands in general have high methane (CH4) emissions, but individual peatlands show considerable variation as CH4 sources. Particularly in nutrient-poor peatlands, CH4 production can be low and exceeded by carbon dioxide (CO2) production from unresolved anaerobic processes. To clarify the role anaerobic bacterial degraders play in this variation, we compared consumers of cellobiose-derived carbon in two fens differing in nutrient status and the ratio of CO2 to CH4 produced. After [13C]cellobiose amendment, the mesotrophic fen produced equal amounts of CH4 and CO2 The oligotrophic fen had lower CH4 production but produced 3 to 59 times more CO2 than CH4 RNA stable-isotope probing revealed that in the mesotrophic fen with higher CH4 production, cellobiose-derived carbon was mainly assimilated by various recognized fermenters of Firmicutes and by Proteobacteria The oligotrophic peat with excess CO2 production revealed a wider variety of cellobiose-C consumers, including Firmicutes and Proteobacteria, but also more unconventional degraders, such as Telmatobacter-related Acidobacteria and subphylum 3 of Verrucomicrobia Prominent and potentially fermentative Planctomycetes and Chloroflexi did not appear to process cellobiose-C. Our results show that anaerobic degradation resulting in different levels of CH4 production can involve distinct sets of bacterial degraders. By distinguishing cellobiose degraders from the total community, this study contributes to defining anaerobic bacteria that process cellulose-derived carbon in peat. Several of the identified degraders, particularly fermenters and potential Fe(III) or humic substance reducers in the oligotrophic peat, represent promising candidates for resolving the origin of excess CO2 production in peatlands. IMPORTANCE: Peatlands are major sources of the greenhouse gas methane (CH4), yet in many peatlands, CO2 production from unresolved anaerobic processes exceeds CH4 production. Anaerobic degradation produces the precursors of CH4 production but also represents competing processes. We show that anaerobic degradation leading to high or low CH4 production involved distinct sets of bacteria. Well-known fermenters dominated in a peatland with high CH4 production, while novel and unconventional degraders could be identified in a site where CO2 production greatly exceeds CH4 production. Our results help identify and assign functions to uncharacterized bacteria that promote or inhibit CH4 production and reveal bacteria potentially producing the excess CO2 in acidic peat. This study contributes to understanding the microbiological basis for different levels of CH4 emission from peatlands.


Asunto(s)
Acidobacteria/metabolismo , Bacterias Anaerobias/metabolismo , Dióxido de Carbono/metabolismo , Celobiosa/metabolismo , Firmicutes/metabolismo , Metano/metabolismo , Proteobacteria/metabolismo , Anaerobiosis/fisiología , Fermentación/fisiología , Microbiota/fisiología , Taiga , Humedales
14.
Glob Chang Biol ; 23(8): 3121-3138, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-27862698

RESUMEN

Rapidly rising temperatures in the Arctic might cause a greater release of greenhouse gases (GHGs) to the atmosphere. To study the effect of warming on GHG dynamics, we deployed open-top chambers in a subarctic tundra site in Northeast European Russia. We determined carbon dioxide (CO2 ), methane (CH4 ), and nitrous oxide (N2 O) fluxes as well as the concentration of those gases, inorganic nitrogen (N) and dissolved organic carbon (DOC) along the soil profile. Studied tundra surfaces ranged from mineral to organic soils and from vegetated to unvegetated areas. As a result of air warming, the seasonal GHG budget of the vegetated tundra surfaces shifted from a GHG sink of -300 to -198 g CO2 -eq m-2 to a source of 105 to 144 g CO2 -eq m-2 . At bare peat surfaces, we observed increased release of all three GHGs. While the positive warming response was dominated by CO2 , we provide here the first in situ evidence of increasing N2 O emissions from tundra soils with warming. Warming promoted N2 O release not only from bare peat, previously identified as a strong N2 O source, but also from the abundant, vegetated peat surfaces that do not emit N2 O under present climate. At these surfaces, elevated temperatures had an adverse effect on plant growth, resulting in lower plant N uptake and, consequently, better N availability for soil microbes. Although the warming was limited to the soil surface and did not alter thaw depth, it increased concentrations of DOC, CO2, and CH4 in the soil down to the permafrost table. This can be attributed to downward DOC leaching, fueling microbial activity at depth. Taken together, our results emphasize the tight linkages between plant and soil processes, and different soil layers, which need to be taken into account when predicting the climate change feedback of the Arctic.


Asunto(s)
Dióxido de Carbono , Cambio Climático , Óxido Nitroso , Tundra , Regiones Árticas , Gases , Metano , Federación de Rusia
16.
Nat Commun ; 13(1): 6074, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36241637

RESUMEN

Nitrogen regulates multiple aspects of the permafrost climate feedback, including plant growth, organic matter decomposition, and the production of the potent greenhouse gas nitrous oxide. Despite its importance, current estimates of permafrost nitrogen are highly uncertain. Here, we compiled a dataset of >2000 samples to quantify nitrogen stocks in the Yedoma domain, a region with organic-rich permafrost that contains ~25% of all permafrost carbon. We estimate that the Yedoma domain contains 41.2 gigatons of nitrogen down to ~20 metre for the deepest unit, which increases the previous estimate for the entire permafrost zone by ~46%. Approximately 90% of this nitrogen (37 gigatons) is stored in permafrost and therefore currently immobile and frozen. Here, we show that of this amount, ¾ is stored >3 metre depth, but if partially mobilised by thaw, this large nitrogen pool could have continental-scale consequences for soil and aquatic biogeochemistry and global-scale consequences for the permafrost feedback.


Asunto(s)
Gases de Efecto Invernadero , Hielos Perennes , Carbono/análisis , Nitrógeno/análisis , Óxido Nitroso , Hielos Perennes/química , Suelo/química
17.
J Environ Radioact ; 225: 106450, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33096276

RESUMEN

14C is known as one of the radionuclides that have potential to be released into the biosphere from radioactive waste repositories and taken up by organisms. In this study, we used a novel approach to investigate the proportion of soil organic carbon (SOC) in invertebrates and microbial biomass. The study was conducted on a peatland site after the end of peat extraction. There was a large difference in the isotopic abundance of 14C between the 8000-year-old peat and air. We used a two-pool isotope mixing model to reveal the fraction of soil-derived C in the organisms and in dissolved organic carbon in soil water. The contribution of soil-derived C was found to be highest in microbial biomass (61%) and earthworms (22%). Some contribution of soil-derived C was detected in fungus gnats (2%), but not in other insects or in spiders. These findings are important for developing evidence-based radioecological models based on correct understanding of the relative contributions of atmospheric C vs. SOC in organisms.


Asunto(s)
Monitoreo de Radiación , Residuos Radiactivos , Contaminantes Radiactivos del Suelo/análisis , Animales , Biota , Carbono/análisis , Suelo , Microbiología del Suelo
18.
Plant Signal Behav ; 15(3): 1728468, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32056488

RESUMEN

Numerous factors can affect the Biogenic Volatile Organic Compounds (BVOC) emitted by plants. One of these factors is the microbial communities living on leaf surfaces (phylloplane). Bacteria and fungi can use compounds produced and emitted by plants for their own metabolism. Thus, microorganism communities can modulate BVOC emissions and affect interactions between plants and other organisms. The aim of this study was to evaluate the role of microbial communities on BVOC emissions of Brassica nigra leaves. Therefore, we removed bacteria and/or fungi by using bactericide/fungicide treatments in a factorial design experiment with Brassica nigra grown in pots. BVOC emissions were sampled before and after the treatment application. Our results showed that four new compounds (cyclohexanone, cyclohexyl cyanide and two unknown compounds) were emitted after the removal of fungi, whereas no effect was detected in response to the bactericide treatment. This suggests that fungi inhibit or reduce the production of the above mentioned BVOCs from Brassica nigra leaves or use those compounds for their own metabolism. The origin and the roles of the novel compounds emitted requires further investigation.


Asunto(s)
Planta de la Mostaza/metabolismo , Hojas de la Planta/metabolismo , Compuestos Orgánicos Volátiles/metabolismo
20.
FEMS Microbiol Lett ; 366(5)2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30806656

RESUMEN

Although sediments of small boreal humic lakes are important carbon stores and greenhouse gas sources, the composition and structuring mechanisms of their microbial communities have remained understudied. We analyzed the vertical profiles of microbial biomass indicators (PLFAs, DNA and RNA) and the bacterial and archaeal community composition (sequencing of 16S rRNA gene amplicons and qPCR of mcrA) in sediment cores collected from a typical small boreal lake. While microbial biomass decreased with sediment depth, viable microbes (RNA and PLFA) were present all through the profiles. The vertical stratification patterns of the bacterial and archaeal communities resembled those in marine sediments with well-characterized groups (e.g. Methanomicrobia, Proteobacteria, Cyanobacteria, Bacteroidetes) dominating in the surface sediment and being replaced by poorly-known groups (e.g. Bathyarchaeota, Aminicenantes and Caldiserica) in the deeper layers. The results also suggested that, similar to marine systems, the deep bacterial and archaeal communities were predominantly assembled by selective survival of taxa able to persist in the low energy conditions. Methanotrophs were rare, further corroborating the role of these methanogen-rich sediments as important methane emitters. Based on their taxonomy, the deep-dwelling groups were putatively organo-heterotrophic, organo-autotrophic and/or acetogenic and thus may contribute to changes in the lake sediment carbon storage.


Asunto(s)
Archaea/clasificación , Bacterias/clasificación , Sedimentos Geológicos/microbiología , Lagos/microbiología , Archaea/genética , Archaea/aislamiento & purificación , Bacterias/genética , Bacterias/aislamiento & purificación , Biodiversidad , Biomasa , Enzimas de Restricción del ADN/genética , Sedimentos Geológicos/química , Sustancias Húmicas/análisis , Lagos/química , Microbiota/genética , ARN Ribosómico 16S/genética , Microbiología del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA