Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 18(12)2018 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-30544879

RESUMEN

Schools are amongst the most densely occupied indoor areas and at the same time children and young adults are the most vulnerable group with respect to adverse health effects as a result of poor environmental conditions. Health, performance and well-being of pupils crucially depend on indoor environmental quality (IEQ) of which air quality and thermal comfort are central pillars. This makes the monitoring and control of environmental parameters in classes important. At the same time most school buildings do neither feature automated, intelligent heating, ventilation, and air conditioning (HVAC) systems nor suitable IEQ monitoring systems. In this contribution, we therefore investigate the capabilities of a novel wireless gas sensor network to determine carbon dioxide concentrations, along with temperature and humidity. The use of a photoacoustic detector enables the construction of long-term stable, miniaturized, LED-based non-dispersive infrared absorption spectrometers without the use of a reference channel. The data of the sensor nodes is transmitted via a Z-Wave protocol to a central gateway, which in turn sends the data to a web-based platform for online analysis. The results show that it is difficult to maintain adequate IEQ levels in class rooms even when ventilating frequently and that individual monitoring and control of rooms is necessary to combine energy savings and good IEQ.


Asunto(s)
Contaminación del Aire Interior , Monitoreo del Ambiente/instrumentación , Gases/aislamiento & purificación , Tecnología Inalámbrica/instrumentación , Niño , Gases/toxicidad , Humanos , Instituciones Académicas , Ventilación
2.
Sensors (Basel) ; 18(2)2018 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-29373524

RESUMEN

We present a gas sensitive thin-film transistor (TFT) based on an amorphous Indium-Gallium-Zinc-Oxide (a-IGZO) semiconductor as the sensing layer, which is fabricated on a free-standing flexible polyimide foil. The photo-induced sensor response to NO2 gas at room temperature and the cross-sensitivity to humidity are investigated. We combine the advantages of a transistor based sensor with flexible electronics technology to demonstrate the first flexible a-IGZO based gas sensitive TFT. Since flexible plastic substrates prohibit the use of high operating temperatures, the charge generation is promoted with the help of UV-light absorption, which ultimately triggers the reversible chemical reaction with the trace gas. Furthermore, the device fabrication process flow can be directly implemented in standard TFT technology, allowing for the parallel integration of the sensor and analog or logical circuits.

3.
Sensors (Basel) ; 17(1)2016 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-28036081

RESUMEN

This manuscript describes the design considerations, implementation, and laboratory validation of an odor sensing module whose purpose is to support people that suffer from incontinence. Because of the requirements expressed by the affected end-users the odor sensing unit is realized as a portable accessory that may be connected to any pre-existing smart device. We have opted for a low-cost, low-power consuming metal oxide based gas detection approach to highlight the viability of developing an inexpensive yet helpful odor recognition technology. The system consists of a hotplate employing, inkjet-printed p-type semiconducting layers of copper(II) oxide, and chromium titanium oxide. Both functional layers are characterized with respect to their gas-sensitive behavior towards humidity, ammonia, methylmercaptan, and dimethylsulfide and we demonstrate detection limits in the parts-per-billion range for the two latter gases. Employing a temperature variation scheme that reads out the layer's resistivity in a steady-state, we use each sensor chip as a virtual array. With this setup, we demonstrate the feasibility of detecting odors associated with incontinence.


Asunto(s)
Tecnología Inalámbrica/instrumentación , Amoníaco/química , Cobre/química , Diseño de Equipo , Odorantes/análisis , Titanio/química
4.
Eng Life Sci ; 19(10): 700-710, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32624963

RESUMEN

In future energy systems based on renewable energies, biogas plants can make a significant contribution to stabilizing the electricity grids. However, this requires load-flexible and demand-oriented electricity production by means of flexible feed management. However, these flexible feeding strategies using greatly oscillating, temporally varying high mass loads may lead to critical process failures of the anaerobic digestion process. Currently there is no online, high resolution gas quality measurement technique to detect and prevent biological process failures available. In this contribution, we present a miniaturized, low-cost biogas quality measurement system providing data with high precision and high temporal resolution to overcome this technology gap. To highlight the capabilities of the system we have installed it using a bypass to the main biogas duct after hydrogen sulfide removal at a full-scale research biogas plant. During a three-month field trial, the effect of flexible feeding on the biogas quality has been monitored. The results demonstrate long-term stability of the sensor solution and reveal the effects of changing feeding frequency and composition on gas quantity and quality, which cannot be detected with commercially available state-of-the-art sensing systems.

5.
Bioresour Technol ; 157: 284-92, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24566287

RESUMEN

Microbe-electrode-interactions are keys for microbial fuel cell technology. Nevertheless, standard measurement routines to analyze the interplay of microbial physiology and material characteristics have not been introduced yet. In this study, graphite anodes with varying surface properties were evaluated using pure cultures of Shewanella oneidensis and Geobacter sulfurreducens, as well as defined and undefined mixed cultures. The evaluation routine consisted of a galvanostatic period, a current sweep and an evaluation of population density. The results show that surface area correlates only to a certain extent with population density and anode performance. Furthermore, the study highlights a strain-specific microbe-electrode-interaction, which is affected by the introduction of another microorganism. Moreover, evidence is provided for the possibility of translating results from pure culture to undefined mixed species experiments. This is the first study on microbe-electrode-interaction that systematically integrates and compares electrochemical and biological data.


Asunto(s)
Fuentes de Energía Bioeléctrica/microbiología , Electricidad , Electrodos , Geobacter/crecimiento & desarrollo , Geobacter/metabolismo , Hibridación in Situ , Aguas del Alcantarillado/microbiología , Shewanella/crecimiento & desarrollo , Shewanella/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA