Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Transportation (Amst) ; 49(5): 1441-1463, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36193217

RESUMEN

We propose a framework to find optimal price-based policies to regulate markets characterized by oligopolistic competition and in which consumers make a discrete choice among a finite set of alternatives. The framework accommodates general discrete choice models available in the literature in order to capture heterogeneous consumer behavior. In our work, consumers are utility maximizers and are modeled according to random utility theory. Suppliers are modeled as profit maximizers, according to the traditional microeconomic treatment. Market competition is modeled as a non-cooperative game, for which an approximate equilibrium solution is sought. Finally, the regulator can affect the behavior of all other agents by giving subsidies or imposing taxes to consumers. In transport markets, economic instruments might target specific alternatives, to reduce externalities such as congestion or emissions, or specific segments of the population, to achieve social welfare objectives. In public policy, different agents have different individual or social objectives, possibly conflicting, which must be taken into account within a social welfare function. We present a mixed integer optimization model to find optimal policies subject to supplier profit maximization and consumer utility maximization constraints. Then, we propose a model-based heuristic approach based on the fixed-point iteration algorithm that finds an approximate equilibrium solution for the market. Numerical experiments on an intercity travel case study show how the regulator can optimize its decisions under different scenarios.

2.
Transportation (Amst) ; : 1-28, 2022 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-36267096

RESUMEN

This paper presents a novel activity-based demand model that combines an optimisation framework for continuous temporal scheduling decisions (i.e. activity timings and durations) with traditional discrete choice models for non-temporal choice dimensions (i.e. activity participation, number and type of tours, and destinations). The central idea of our approach is that individuals resolve temporal scheduling conflicts that arise from overlapping activities, e.g. needing to work and desiring to shop at the same time, in order to maximise their daily utility. Flexibility parameters capture behavioural preferences that penalise deviations from desired timings. This framework has three advantages over existing activity-based modelling approaches: (i) the time conflicts between different temporal scheduling decisions including the activity sequence are treated jointly; (ii) flexibility parameters follow a utility maximisation approach; and (iii) the framework can be used to estimate and simulate a city-scale case study in reasonable time. We introduce an estimation routine that allows flexibility parameters to be estimated using real-world observations as well as a simulation routine to efficiently resolve temporal conflicts using an optimisation model. The framework is applied to the full-time workers of a synthetic population for the city of Lausanne, Switzerland. We validate the model results against reported schedules. The results demonstrate the capabilities of our approach to reproduce empirical observations in a real-world case study.

3.
IEEE Trans Image Process ; 18(8): 1703-16, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19389695

RESUMEN

In recent years, works on geometric multidimensional signal representations have established a close relation with signal expansions on redundant dictionaries. For this purpose, matching pursuits (MP) have shown to be an interesting tool. Recently, most important limitations of MP have been underlined, and alternative algorithms like weighted-MP have been proposed. This work explores the use of weighted-MP as a new framework for motion-adaptive geometric video approximations. We study a novel algorithm to decompose video sequences in terms of few, salient video components that jointly represent the geometric and motion content of a scene. Experimental coding results on highly geometric content reflect how the proposed paradigm exploits spatio-temporal video geometry. Two-dimensional weighted-MP improves the representation compared to those based on 2-D MP. Furthermore, the extracted video components represent relevant visual structures with high saliency. In an example application, such components are effectively used as video descriptors for the joint audio-video analysis of multimedia sequences.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA