Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanoscale ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39129530

RESUMEN

Bismuth produces different types of ordered superstructures on the InAs(100) surface, depending on the growth procedure and coverage. The (2 × 1) phase forms at completion of one Bi monolayer and consists of a uniformly oriented array of parallel lines of Bi dimers. Scanning tunneling and core level spectroscopies demonstrate its metallic character, in contrast with the semiconducting properties expected on the basis of the electron counting principle. The weak electronic coupling among neighboring lines gives rise to quasi one-dimensional Bi-derived bands with open contours at the Fermi level. Spin- and angle-resolved photoelectron spectroscopy reveals a giant Rashba splitting of these bands, in good agreement with ab initio electronic structure calculations. The very high density of the dimer lines, the metallic and quasi one-dimensional band dispersion and the Rashba-like spin texture make the Bi/InAs(100)-(2 × 1) phase an intriguing system, where novel transport regimes can be studied.

2.
ACS Nano ; 18(24): 15716-15728, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38847339

RESUMEN

Epitaxial graphene/ferromagnetic metal (Gr/FM) heterostructures deposited onto heavy metals have been proposed for the realization of spintronic devices because of their perpendicular magnetic anisotropy and sizable Dzyaloshinskii-Moriya interaction (DMI), allowing for both enhanced thermal stability and stabilization of chiral spin textures. However, establishing routes toward this goal requires the fundamental understanding of the microscopic origin of their unusual properties. Here, we elucidate the nature of the induced spin-orbit coupling (SOC) at Gr/Co interfaces on Ir. Through spin- and angle-resolved photoemission spectroscopy along with density functional theory, we show that the interaction of the heavy metals with the Gr layer via hybridization with the FM is the source of strong SOC in the Gr layer. Furthermore, our studies on ultrathin Co films underneath Gr reveal an energy splitting of ∼100 meV for in-plane and negligible for out-of-plane spin polarized Gr π-bands, consistent with a Rashba-SOC at the Gr/Co interface, which is either the fingerprint or the origin of the DMI. This mechanism vanishes at large Co thicknesses, where neither in-plane nor out-of-plane spin-orbit splitting is observed, indicating that Gr π-states are electronically decoupled from the heavy metal. The present findings are important for future applications of Gr-based heterostructures in spintronic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA