Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Anal Chem ; 92(19): 13144-13154, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32902264

RESUMEN

The α-galactosyl epitope is a terminal N-glycan moiety of glycoproteins found in mammals except in humans, and thus, it is recognized as an antigen that provokes an immunogenic response in humans. Accordingly, it is necessary to analyze the α-galactosyl structure in biopharmaceuticals or organ transplants. Due to an identical glycan composition and molecular mass between α-galactosyl N-glycans and hybrid/high-mannose-type N-glycans, it is challenging to characterize α-galactosyl epitopes in N-glycoproteins using mass spectrometry. Here, we describe a method to identify α-galactosyl N-glycopeptides in mice glycoproteins using liquid chromatography with tandem mass spectrometry with higher-energy collisional dissociation (HCD). The first measure was an absence of [YHM] ion peaks in the HCD spectra, which was exclusively observed in hybrid and/or high-mannose-type N-glycopeptides. The second complementary criterion was the ratio of an m/z 528.19 (Hex2HexNAc1) ion to m/z 366.14 (Hex1HexNAc1) ion (Im/z528/Im/z366). The measure of [Im/z528/Im/z366 > 0.3] enabled a clear-cut determination of α-galactosyl N-glycopeptides with high accuracy. In Ggta1 knockout mice, we could not find any α-galactosyl N-glycoproteins identified in WT mice plasma. Using this method, we could screen for α-galactosyl N-glycoproteins from mice spleen, lungs, and plasma samples in a highly sensitive and specific manner. Conclusively, we suggest that this method will provide a robust analytical tool for determination of α-galactosyl epitopes in pharmaceuticals and complex biological samples.


Asunto(s)
Glicoproteínas/química , Trisacáridos/sangre , Animales , Cromatografía Liquida , Iones/química , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Programas Informáticos , Espectrometría de Masas en Tándem , Trisacáridos/metabolismo
2.
Nat Commun ; 9(1): 3651, 2018 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-30194297

RESUMEN

Genome editing has been harnessed through the development of CRISPR system, and the CRISPR from Prevotella and Francisella 1 (Cpf1) system has emerged as a promising alternative to CRISPR-Cas9 for use in various circumstances. Despite the inherent multiple advantages of Cpf1 over Cas9, the adoption of Cpf1 has been unsatisfactory because of target-dependent insufficient indel efficiencies. Here, we report an engineered CRISPR RNA (crRNA) for highly efficient genome editing by Cpf1, which includes a 20-base target-complementary sequence and a uridinylate-rich 3'-overhang. When the crRNA is transcriptionally produced, crRNA with a 20-base target-complementary sequence plus a U4AU4 3'-overhang is the optimal configuration. U-rich crRNA also maximizes the utility of the AsCpf1 mutants and multiplexing genome editing using mRNA as the source of multiple crRNAs. Furthermore, U-rich crRNA enables a highly safe and specific genome editing using Cpf1 in human cells, contributing to the enhancement of a genome-editing toolbox.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica/métodos , Francisella , Células HEK293 , Humanos , Prevotella
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA