Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Mol Microbiol ; 84(1): 166-80, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22384976

RESUMEN

The antifungal plant defensin RsAFP2 isolated from radish interacts with fungal glucosylceramides and induces apoptosis in Candida albicans. To further unravel the mechanism of RsAFP2 antifungal action and tolerance mechanisms, we screened a library of 2868 heterozygous C. albicans deletion mutants and identified 30 RsAFP2-hypersensitive mutants. The most prominent group of RsAFP2 tolerance genes was involved in cell wall integrity and hyphal growth/septin ring formation. Consistent with these genetic data, we demonstrated that RsAFP2 interacts with the cell wall of C. albicans, which also contains glucosylceramides, and activates the cell wall integrity pathway. Moreover, we found that RsAFP2 induces mislocalization of septins and blocks the yeast-to-hypha transition in C. albicans. Increased ceramide levels have previously been shown to result in apoptosis and septin mislocalization. Therefore, ceramide levels in C. albicans membranes were analysed following RsAFP2 treatment and, as expected, increased accumulation of phytoC24-ceramides in membranes of RsAFP2-treated C. albicans cells was detected. This is the first report on the interaction of a plant defensin with glucosylceramides in the fungal cell wall, causing cell wall stress, and on the effects of a defensin on septin localization and ceramide accumulation.


Asunto(s)
Candida albicans/crecimiento & desarrollo , Pared Celular/metabolismo , Defensinas/metabolismo , Glucosilceramidas/metabolismo , Proteínas de Plantas/metabolismo , Septinas/metabolismo , Candida albicans/ultraestructura , Pared Celular/ultraestructura , Hifa/crecimiento & desarrollo , Microscopía Electrónica de Transmisión , Raphanus
2.
J Infect Dis ; 206(11): 1790-7, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22984120

RESUMEN

In this study, we demonstrated that in vitro Candida albicans biofilms grown in the presence of diclofenac showed increased susceptibility to caspofungin. These findings were further confirmed using a catheter-associated biofilm model in rats. C. albicans-inoculated catheters retrieved from rats that were treated with both diclofenac and caspofungin contained significantly fewer biofilm cells and showed no visible biofilms inside the catheter lumens, as documented by scanning electron microscopy, as compared to catheters retrieved from rats receiving only caspofungin or diclofenac. This report indicates that diclofenac could be useful in combination therapy with caspofungin to treat C. albicans biofilm-associated infections.


Asunto(s)
Biopelículas/efectos de los fármacos , Candida albicans/efectos de los fármacos , Diclofenaco/farmacología , Equinocandinas/farmacología , Animales , Antiinflamatorios no Esteroideos/administración & dosificación , Antiinflamatorios no Esteroideos/farmacología , Antifúngicos/administración & dosificación , Antifúngicos/farmacología , Candidiasis/tratamiento farmacológico , Candidiasis/microbiología , Caspofungina , Catéteres/microbiología , Diclofenaco/administración & dosificación , Farmacorresistencia Fúngica , Sinergismo Farmacológico , Equinocandinas/administración & dosificación , Lipopéptidos , Ratas
3.
Antimicrob Agents Chemother ; 56(5): 2290-4, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22354293

RESUMEN

Previous research has shown that 1% to 10% of sessile Candida albicans cells survive treatment with high doses of miconazole (a fungicidal imidazole). In the present study, we investigated the involvement of sphingolipid biosynthetic intermediates in this survival. We observed that the LCB4 gene, coding for the enzyme that catalyzes the phosphorylation of dihydrosphingosine and phytosphingosine, is important in governing the miconazole resistance of sessile Saccharomyces cerevisiae and C. albicans cells. The addition of 10 nM phytosphingosine-1-phosphate (PHS-1-P) drastically reduced the intracellular miconazole concentration and significantly increased the miconazole resistance of a hypersusceptible C. albicans heterozygous LCB4/lcb4 mutant, indicating a protective effect of PHS-1-P against miconazole-induced cell death in sessile cells. At this concentration of PHS-1-P, we did not observe any effect on the fluidity of the cytoplasmic membrane. The protective effect of PHS-1-P was not observed when the efflux pumps were inhibited or when tested in a mutant without functional efflux systems. Also, the addition of PHS-1-P during miconazole treatment increased the expression levels of genes coding for efflux pumps, leading to the hypothesis that PHS-1-P acts as a signaling molecule and enhances the efflux of miconazole in sessile C. albicans cells.


Asunto(s)
Antifúngicos/farmacología , Candida albicans/genética , Farmacorresistencia Fúngica/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Miconazol/farmacología , Esfingosina/análogos & derivados , Candida albicans/efectos de los fármacos , Candida albicans/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/genética , Membrana Celular/metabolismo , Farmacorresistencia Fúngica/efectos de los fármacos , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Mutación , Fosforilación , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal/genética , Esfingosina/metabolismo , Esfingosina/farmacología
4.
Antimicrob Agents Chemother ; 55(9): 4033-7, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21746956

RESUMEN

We investigated the cellular mechanisms responsible for the occurrence of miconazole-tolerant persisters in Candida albicans biofilms. Miconazole induced about 30% killing of sessile C. albicans cells at 75 µM. The fraction of miconazole-tolerant persisters, i.e., cells that can survive high doses of miconazole (0.6 to 2.4 mM), in these biofilms was 1 to 2%. Since miconazole induces reactive oxygen species (ROS) in sessile C. albicans cells, we focused on a role for superoxide dismutases (Sods) in persistence and found the expression of Sod-encoding genes in sessile C. albicans cells induced by miconazole compared to the expression levels in untreated sessile C. albicans cells. Moreover, addition of the superoxide dismutase inhibitor N,N'-diethyldithiocarbamate (DDC) to C. albicans biofilms resulted in an 18-fold reduction of the miconazole-tolerant persister fraction and in increased endogenous ROS levels in these cells. Treatment of biofilms of C. albicans clinical isolates with DDC resulted in an 18-fold to more than 200-fold reduction of their miconazole-tolerant persister fraction. To further confirm the important role for Sods in C. albicans biofilm persistence, we used a Δsod4 Δsod5 mutant lacking Sods 4 and 5. Biofilms of the Δsod4 Δsod5 mutant contained at least 3-fold less of the miconazole-tolerant persisters and had increased ROS levels compared to biofilms of the isogenic wild type (WT). In conclusion, the occurrence of miconazole-tolerant persisters in C. albicans biofilms is linked to the ROS-detoxifying activity of Sods. Moreover, Sod inhibitors can be used to potentiate the activity of miconazole against C. albicans biofilms.


Asunto(s)
Antifúngicos/farmacología , Biopelículas/efectos de los fármacos , Candida albicans/efectos de los fármacos , Candida albicans/enzimología , Proteínas Fúngicas/metabolismo , Miconazol/farmacología , Superóxido Dismutasa/metabolismo , Candida albicans/metabolismo , Ditiocarba/farmacología , Farmacorresistencia Fúngica/genética , Proteínas Fúngicas/antagonistas & inhibidores , Proteínas Fúngicas/genética , Pruebas de Sensibilidad Microbiana , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/antagonistas & inhibidores , Superóxido Dismutasa/genética
5.
J Biol Chem ; 284(47): 32680-5, 2009 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-19783660

RESUMEN

Azoles inhibit ergosterol biosynthesis, resulting in ergosterol depletion and accumulation of toxic 14alpha-methylated sterols in membranes of susceptible yeast. We demonstrated previously that miconazole induces actin cytoskeleton stabilization in Saccharomyces cerevisiae prior to induction of reactive oxygen species, pointing to an ancillary mode of action. Using a genome-wide agar-based screening, we demonstrate in this study that S. cerevisiae mutants affected in sphingolipid and ergosterol biosynthesis, namely ipt1, sur1, skn1, and erg3 deletion mutants, are miconazole-resistant, suggesting an involvement of membrane rafts in its mode of action. This is supported by the antagonizing effect of membrane raft-disturbing compounds on miconazole antifungal activity as well as on miconazole-induced actin cytoskeleton stabilization and reactive oxygen species accumulation. These antagonizing effects point to a primary role for membrane rafts in miconazole antifungal activity. We further show that this primary role of membrane rafts in miconazole action consists of mediating intracellular accumulation of miconazole in yeast cells.


Asunto(s)
Microdominios de Membrana/metabolismo , Miconazol/farmacocinética , Saccharomyces cerevisiae/metabolismo , Antifúngicos/farmacocinética , Farmacorresistencia Fúngica , Endocitosis , Ergosterol/metabolismo , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Genoma Fúngico , Microdominios de Membrana/efectos de los fármacos , Miconazol/farmacología , Inhibidores de Fosfodiesterasa/farmacología , Éteres Fosfolípidos/farmacología , Especies Reactivas de Oxígeno
6.
FEMS Yeast Res ; 10(7): 812-8, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20726898

RESUMEN

To unravel the working mechanism of the fungicidal piperazine-1-carboxamidine derivative BAR0329, we found that its intracellular accumulation in Saccharomyces cerevisiae is dependent on functional lipid rafts. Moreover, BAR0329 induced caspase-dependent apoptosis in yeast, in which the mitochondrial fission machinery consisting of Fis1 (Whi2), Dnm1 and Mdv1 is involved. Our data are consistent with a prosurvival function of Fis1 (Whi2) and a proapoptotic function of Dnm1 and Mdv1 during BAR0329-induced yeast cell death.


Asunto(s)
Antifúngicos/toxicidad , Apoptosis , Mitocondrias/efectos de los fármacos , Piperazinas/toxicidad , Saccharomyces cerevisiae/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , GTP Fosfohidrolasas/metabolismo , Microdominios de Membrana/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Oxid Med Cell Longev ; 2013: 704654, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24078861

RESUMEN

This study demonstrates a role for superoxide dismutases (Sods) in governing tolerance of Candida albicans biofilms to amphotericin B (AmB). Coincubation of C. albicans biofilms with AmB and the Sod inhibitors N,N'-diethyldithiocarbamate (DDC) or ammonium tetrathiomolybdate (ATM) resulted in reduced viable biofilm cells and increased intracellular reactive oxygen species levels as compared to incubation of biofilm cells with AmB, DDC, or ATM alone. Hence, Sod inhibitors can be used to potentiate the activity of AmB against C. albicans biofilms.


Asunto(s)
Anfotericina B/farmacología , Biopelículas/efectos de los fármacos , Superóxido Dismutasa/antagonistas & inhibidores , Ditiocarba/farmacología , Molibdeno/farmacología , Especies Reactivas de Oxígeno/metabolismo
8.
J Med Microbiol ; 61(Pt 6): 813-819, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22422573

RESUMEN

We investigated the molecular basis of the tolerance of Candida albicans biofilms to antifungals using the miconazole as a model compound, and translated the resulting data to other antifungals. Sessile cells of C. albicans Δefg1, lacking the transcription factor Efg1, showed increased susceptibility to miconazole, amphotericin B and caspofungin, whereas these sessile cells were equally resistant to fluconazole. The increased sensitivity to miconazole was, at least, partly due to an increased accumulation of miconazole in the cells as compared to wild-type or reintegrant Δefg1(EFG1) sessile cells. By using a rat biofilm model, we further confirmed the role of Efg1 in the tolerance of C. albicans biofilms to miconazole when grown in vivo.


Asunto(s)
Antifúngicos/farmacología , Biopelículas/efectos de los fármacos , Candida albicans/efectos de los fármacos , Candida albicans/fisiología , Proteínas de Unión al ADN/metabolismo , Farmacorresistencia Fúngica , Proteínas Fúngicas/metabolismo , Factores de Transcripción/metabolismo , Animales , Biopelículas/crecimiento & desarrollo , Candida albicans/crecimiento & desarrollo , Proteínas de Unión al ADN/genética , Proteínas Fúngicas/genética , Eliminación de Gen , Miconazol/farmacología , Pruebas de Sensibilidad Microbiana , Ratas , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA