Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 618(7966): 842-848, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37258671

RESUMEN

Nonsense mutations are the underlying cause of approximately 11% of all inherited genetic diseases1. Nonsense mutations convert a sense codon that is decoded by tRNA into a premature termination codon (PTC), resulting in an abrupt termination of translation. One strategy to suppress nonsense mutations is to use natural tRNAs with altered anticodons to base-pair to the newly emerged PTC and promote translation2-7. However, tRNA-based gene therapy has not yielded an optimal combination of clinical efficacy and safety and there is presently no treatment for individuals with nonsense mutations. Here we introduce a strategy based on altering native tRNAs into  efficient suppressor tRNAs (sup-tRNAs) by individually fine-tuning their sequence to the physico-chemical properties of the amino acid that they carry. Intravenous and intratracheal lipid nanoparticle (LNP) administration of sup-tRNA in mice restored the production of functional proteins with nonsense mutations. LNP-sup-tRNA formulations caused no discernible readthrough at endogenous native stop codons, as determined by ribosome profiling. At clinically important PTCs in the cystic fibrosis transmembrane conductance regulator gene (CFTR), the sup-tRNAs re-established expression and function in cell systems and patient-derived nasal epithelia and restored airway volume homeostasis. These results provide a framework for the development of tRNA-based therapies with a high molecular safety profile and high efficacy in targeted PTC suppression.


Asunto(s)
Codón sin Sentido , Regulador de Conductancia de Transmembrana de Fibrosis Quística , ARN de Transferencia , Animales , Ratones , Aminoácidos/genética , Codón sin Sentido/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , ARN de Transferencia/administración & dosificación , ARN de Transferencia/genética , ARN de Transferencia/uso terapéutico , Emparejamiento Base , Anticodón/genética , Biosíntesis de Proteínas , Mucosa Nasal/metabolismo , Perfilado de Ribosomas
2.
Nature ; 621(7980): 857-867, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37730992

RESUMEN

Speciation leads to adaptive changes in organ cellular physiology and creates challenges for studying rare cell-type functions that diverge between humans and mice. Rare cystic fibrosis transmembrane conductance regulator (CFTR)-rich pulmonary ionocytes exist throughout the cartilaginous airways of humans1,2, but limited presence and divergent biology in the proximal trachea of mice has prevented the use of traditional transgenic models to elucidate ionocyte functions in the airway. Here we describe the creation and use of conditional genetic ferret models to dissect pulmonary ionocyte biology and function by enabling ionocyte lineage tracing (FOXI1-CreERT2::ROSA-TG), ionocyte ablation (FOXI1-KO) and ionocyte-specific deletion of CFTR (FOXI1-CreERT2::CFTRL/L). By comparing these models with cystic fibrosis ferrets3,4, we demonstrate that ionocytes control airway surface liquid absorption, secretion, pH and mucus viscosity-leading to reduced airway surface liquid volume and impaired mucociliary clearance in cystic fibrosis, FOXI1-KO and FOXI1-CreERT2::CFTRL/L ferrets. These processes are regulated by CFTR-dependent ionocyte transport of Cl- and HCO3-. Single-cell transcriptomics and in vivo lineage tracing revealed three subtypes of pulmonary ionocytes and a FOXI1-lineage common rare cell progenitor for ionocytes, tuft cells and neuroendocrine cells during airway development. Thus, rare pulmonary ionocytes perform critical CFTR-dependent functions in the proximal airway that are hallmark features of cystic fibrosis airway disease. These studies provide a road map for using conditional genetics in the first non-rodent mammal to address gene function, cell biology and disease processes that have greater evolutionary conservation between humans and ferrets.


Asunto(s)
Fibrosis Quística , Modelos Animales de Enfermedad , Hurones , Pulmón , Transgenes , Animales , Humanos , Animales Modificados Genéticamente , Linaje de la Célula , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Fibrosis Quística/patología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Hurones/genética , Hurones/fisiología , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Pulmón/citología , Pulmón/metabolismo , Pulmón/patología , Tráquea/citología , Transgenes/genética
3.
Artículo en Inglés | MEDLINE | ID: mdl-38860289

RESUMEN

The mucociliary transport apparatus is critical for maintaining lung health via the coordinated movement of cilia to clear mucus and particulates. A metachronal wave propagates across the epithelium when cilia on adjacent multiciliated cells beat slightly out of phase along the proximal-distal axis of the airways in alignment with anatomically directed mucociliary clearance. We hypothesized that metachrony optimizes mucociliary transport (MCT) and that disruptions of calcium signaling would abolish metachrony and decrease MCT. We imaged bronchi from human explants and ferret tracheae using micro-Optical Coherence Tomography (µOCT) to evaluate airway surface liquid depth (ASL), periciliary liquid depth (PCL), cilia beat frequency (CBF), MCT, and metachrony in situ. We developed statistical models that included covariates of MCT. Ferret tracheae were treated with BAPTA-AM (chelator of intracellular Ca2+), lanthanum chloride (nonpermeable Ca2+channel competitive antagonist), and repaglinide (inhibitor of calaxin) to test calcium-dependence of metachrony. We demonstrated metachrony contributes to mucociliary transport of human and ferret airways. MCT was augmented in regions of metachrony compared to non-metachronous regions by 48.1%, P=0.0009 or 47.5%, P<0.0020 in humans and ferrets, respectively. PCL and metachrony were independent contributors to MCT rate in humans; ASL, CBF, and metachrony contribute to ferret MCT rates. Metachrony can be disrupted by interference with calcium signaling including intracellular, mechanosensitive channels, and calaxin. Our results support that the presence of metachrony augments MCT in a calcium-dependent mechanism.

4.
Nature ; 560(7718): 319-324, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30069044

RESUMEN

The airways of the lung are the primary sites of disease in asthma and cystic fibrosis. Here we study the cellular composition and hierarchy of the mouse tracheal epithelium by single-cell RNA-sequencing (scRNA-seq) and in vivo lineage tracing. We identify a rare cell type, the Foxi1+ pulmonary ionocyte; functional variations in club cells based on their location; a distinct cell type in high turnover squamous epithelial structures that we term 'hillocks'; and disease-relevant subsets of tuft and goblet cells. We developed 'pulse-seq', combining scRNA-seq and lineage tracing, to show that tuft, neuroendocrine and ionocyte cells are continually and directly replenished by basal progenitor cells. Ionocytes are the major source of transcripts of the cystic fibrosis transmembrane conductance regulator in both mouse (Cftr) and human (CFTR). Knockout of Foxi1 in mouse ionocytes causes loss of Cftr expression and disrupts airway fluid and mucus physiology, phenotypes that are characteristic of cystic fibrosis. By associating cell-type-specific expression programs with key disease genes, we establish a new cellular narrative for airways disease.


Asunto(s)
Diferenciación Celular/genética , Linaje de la Célula/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/genética , Células Epiteliales/metabolismo , Animales , Asma/genética , Células Epiteliales/citología , Femenino , Factores de Transcripción Forkhead/deficiencia , Factores de Transcripción Forkhead/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Células Caliciformes/citología , Células Caliciformes/metabolismo , Humanos , Pulmón/citología , Masculino , Ratones , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Tráquea/citología
5.
Infect Immun ; 90(11): e0023722, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36165627

RESUMEN

Cystic fibrosis (CF) disease is characterized by lifelong infections with pathogens such as Staphylococcus aureus, leading to eventual respiratory failure. Small colony variants (SCVs) of S. aureus have been linked to worse clinical outcomes for people with CF. Current studies of SCV pathology in vivo are limited, and it remains unclear whether SCVs directly impact patient outcomes or are a result of late-stage CF disease. To investigate this, we generated a stable menadione-auxotrophic SCV strain by serially passaging a CF isolate of S. aureus with tobramycin, an aminoglycoside antibiotic commonly administered for coinfecting Pseudomonas aeruginosa. This SCV was tobramycin resistant and showed increased tolerance to the anti-staphylococcal combination therapy sulfamethoxazole-trimethoprim. To better understand the dynamics of SCV infections in vivo, we infected CF rats with this strain compared with its normal colony variant (NCV). Analysis of bacterial burden at 3 days postinfection indicated that NCVs and SCVs persisted equally well in the lungs, but SCV infections ultimately led to increased weight loss and neutrophilic inflammation. Additionally, cellular and histopathological analyses showed that in CF rats, SCV infections yielded a lower macrophage response. Overall, these findings indicate that SCV infections may directly contribute to lung disease progression in people with CF.


Asunto(s)
Fibrosis Quística , Infecciones Estafilocócicas , Ratas , Animales , Staphylococcus aureus/fisiología , Fibrosis Quística/microbiología , Tobramicina/farmacología , Tobramicina/uso terapéutico , Infecciones Estafilocócicas/microbiología , Antibacterianos/efectos adversos , Pulmón/microbiología , Inflamación
6.
Thorax ; 77(8): 812-820, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34697091

RESUMEN

INTRODUCTION: Inhaled gene therapy of muco-obstructive lung diseases requires a strategy to achieve therapeutically relevant gene transfer to airway epithelium covered by particularly dehydrated and condensed mucus gel layer. Here, we introduce a synthetic DNA-loaded mucus-penetrating particle (DNA-MPP) capable of providing safe, widespread and robust transgene expression in in vivo and in vitro models of muco-obstructive lung diseases. METHODS: We investigated the ability of DNA-MPP to mediate reporter and/or therapeutic transgene expression in lung airways of a transgenic mouse model of muco-obstructive lung diseases (ie, Scnn1b-Tg) and in air-liquid interface cultures of primary human bronchial epithelial cells harvested from an individual with cystic fibrosis. A plasmid designed to silence epithelial sodium channel (ENaC) hyperactivity, which causes airway surface dehydration and mucus stasis, was intratracheally administered via DNA-MPP to evaluate therapeutic effects in vivo with or without pretreatment with hypertonic saline, a clinically used mucus-rehydrating agent. RESULTS: DNA-MPP exhibited marked greater reporter transgene expression compared with a mucus-impermeable formulation in in vivo and in vitro models of muco-obstructive lung diseases. DNA-MPP carrying ENaC-silencing plasmids provided efficient downregulation of ENaC and reduction of mucus burden in the lungs of Scnn1b-Tg mice, and synergistic impacts on both gene transfer efficacy and therapeutic effects were achieved when DNA-MPP was adjuvanted with hypertonic saline. DISCUSSION: DNA-MPP constitutes one of the rare gene delivery systems providing therapeutically meaningful gene transfer efficacy in highly relevant in vivo and in vitro models of muco-obstructive lung diseases due to its unique ability to efficiently penetrate airway mucus.


Asunto(s)
Enfermedades Pulmonares Obstructivas , Nanopartículas , Animales , ADN , Terapia Genética , Humanos , Pulmón/metabolismo , Enfermedades Pulmonares Obstructivas/terapia , Ratones , Moco/metabolismo
7.
Microbiology (Reading) ; 168(1)2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35077346

RESUMEN

Pseudomonas aeruginosa is a common opportunistic pathogen that can cause chronic infections in multiple disease states, including respiratory infections in patients with cystic fibrosis (CF) and non-CF bronchiectasis. Like many opportunists, P. aeruginosa forms multicellular biofilm communities that are widely thought to be an important determinant of bacterial persistence and resistance to antimicrobials and host immune effectors during chronic/recurrent infections. Poly (acetyl, arginyl) glucosamine (PAAG) is a glycopolymer that has antimicrobial activity against a broad range of bacterial species, and also has mucolytic activity, which can normalize the rheological properties of cystic fibrosis mucus. In this study, we sought to evaluate the effect of PAAG on P. aeruginosa bacteria within biofilms in vitro, and in the context of experimental pulmonary infection in a rodent infection model. PAAG treatment caused significant bactericidal activity against P. aeruginosa biofilms, and a reduction in the total biomass of preformed P. aeruginosa biofilms on abiotic surfaces, as well as on the surface of immortalized cystic fibrosis human bronchial epithelial cells. Studies of membrane integrity indicated that PAAG causes changes to P. aeruginosa cell morphology and dysregulates membrane polarity. PAAG treatment reduced infection and consequent tissue inflammation in experimental P. aeruginosa rat infections. Based on these findings we conclude that PAAG represents a novel means to combat P. aeruginosa infection, and may warrant further evaluation as a therapeutic.


Asunto(s)
Fibrosis Quística , Infecciones por Pseudomonas , Animales , Antibacterianos/farmacología , Biopelículas , Fibrosis Quística/microbiología , Glucosamina/farmacología , Glucosamina/uso terapéutico , Humanos , Pulmón/microbiología , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/fisiología , Ratas
8.
Eur Respir J ; 2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35115338

RESUMEN

Cystic fibrosis (CF) airway disease is characterised by chronic Pseudomonas aeruginosa infection. Successful eradication strategies have been hampered by a poor understanding of the mechanisms underlying conversion to chronicity. The CFTR-knockout (KO) rat harbors a progressive defect in mucociliary transport and viscosity. KO rats were infected before and after the appearance of the mucus defect, using a clinical, mucoid-isolate of P. aeruginosa embedded in agarose beads. Young KO rats that were exposed to bacteria before the development of mucociliary transport defects resolved the infection and subsequent tissue damage. However, older KO rats that were infected in the presence of hyperviscous and static mucus were unable to eradicate bacteria, but instead had bacterial persistence through 28 days post-infection that was accompanied by airway mucus occlusion and lingering inflammation. Normal rats responded to infection with increased mucociliary transport to supernormal rates, which reduced the severity of a second bacterial exposure. We therefore conclude that the aberrant mucus present in the CF airway permits persistence of P. aeruginosa in the lung.

9.
Am J Physiol Lung Cell Mol Physiol ; 320(6): L1093-L1100, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33825507

RESUMEN

Animal models have been highly informative for understanding the pathogenesis and progression of cystic fibrosis (CF) lung disease. In particular, the CF rat models recently developed have addressed mechanistic causes of the airway mucus defect characteristic of CF, and how these may change when cystic fibrosis transmembrane conductance regulator (CFTR) activity is restored using new modulator therapies. We hypothesized that inflammatory changes to the airway would develop spontaneously and progressively, and that these changes would be resolved with modulator therapy. To test this, we used a humanized-CFTR rat expressing the G551D variant that responds to the CFTR modulator ivacaftor. Markers typically found in the CF lung were assessed, including neutrophil influx, small airway histopathology, and inflammatory cytokine concentration. Young hG551D rats did not express inflammatory cytokines at baseline but did upregulate these in response to inflammatory trigger. As the hG551D rats aged, histopathology worsened, accompanied by neutrophil influx into the airway and increasing concentrations of TNF-α, IL-1α, and IL-6 in the airways. Ivacaftor administration reduced concentrations of these cytokines when administered to the rats at baseline but was less effective in the rats that had also received inflammatory stimulus. Therefore, we conclude that administration of ivacaftor resulted in an incomplete resolution of inflammation when rats received an external trigger, suggesting that CFTR activation may not be enough to resolve inflammation in the lungs of patients with CF.


Asunto(s)
Aminofenoles/farmacología , Fibrosis Quística/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Transporte Iónico/efectos de los fármacos , Quinolonas/farmacología , Animales , Regulador de Conductancia de Transmembrana de Fibrosis Quística/efectos de los fármacos , Pulmón/efectos de los fármacos , Terapia Molecular Dirigida/métodos , Depuración Mucociliar/efectos de los fármacos , Ratas Transgénicas
10.
J Immunol ; 203(4): 1021-1030, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31263039

RESUMEN

Azithromycin is effective at controlling exaggerated inflammation and slowing the long-term decline of lung function in patients with cystic fibrosis. We previously demonstrated that the drug shifts macrophage polarization toward an alternative, anti-inflammatory phenotype. In this study we investigated the immunomodulatory mechanism of azithromycin through its alteration of signaling via the NF-κB and STAT1 pathways. J774 murine macrophages were plated, polarized (with IFN-γ, IL-4/-13, or with azithromycin plus IFN-γ) and stimulated with LPS. The effect of azithromycin on NF-κB and STAT1 signaling mediators was assessed by Western blot, homogeneous time-resolved fluorescence assay, nuclear translocation assay, and immunofluorescence. The drug's effect on gene and protein expression of arginase was evaluated as a marker of alternative macrophage activation. Azithromycin blocked NF-κB activation by decreasing p65 nuclear translocation, although blunting the degradation of IκBα was due, at least in part, to a decrease in IKKß kinase activity. A direct correlation was observed between increasing azithromycin concentrations and increased IKKß protein expression. Moreover, incubation with the IKKß inhibitor IKK16 decreased arginase expression and activity in azithromycin-treated cells but not in cells treated with IL-4 and IL-13. Importantly, azithromycin treatment also decreased STAT1 phosphorylation in a concentration-dependent manner, an effect that was reversed with IKK16 treatment. We conclude that azithromycin anti-inflammatory mechanisms involve inhibition of the STAT1 and NF-κB signaling pathways through the drug's effect on p65 nuclear translocation and IKKß.


Asunto(s)
Azitromicina/farmacología , Activación de Macrófagos/efectos de los fármacos , Macrófagos/efectos de los fármacos , FN-kappa B/metabolismo , Factor de Transcripción STAT1/metabolismo , Animales , Antiinflamatorios/farmacología , Células Cultivadas , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología
11.
Am J Respir Crit Care Med ; 202(9): 1271-1282, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32584141

RESUMEN

Rationale: Animal models have been highly informative for understanding the characteristics, onset, and progression of cystic fibrosis (CF) lung disease. In particular, the CFTR-/- rat has revealed insights into the airway mucus defect characteristic of CF but does not replicate a human-relevant CFTR (cystic fibrosis transmembrane conductance regulator) variant.Objectives: We hypothesized that a rat expressing a humanized version of CFTR and harboring the ivacaftor-sensitive variant G551D could be used to test the impact of CFTR modulators on pathophysiologic development and correction.Methods: In this study, we describe a humanized-CFTR rat expressing the G551D variant obtained by zinc finger nuclease editing of a human complementary DNA superexon, spanning exon 2-27, with a 5' insertion site into the rat gene just beyond intron 1. This targeted insertion takes advantage of the endogenous rat promoter, resulting in appropriate expression compared with wild-type animals.Measurements and Main Results: The bioelectric phenotype of the epithelia recapitulates the expected absence of CFTR activity, which was restored with ivacaftor. Large airway defects, including depleted airway surface liquid and periciliary layers, delayed mucus transport rates, and increased mucus viscosity, were normalized after the administration of ivacaftor.Conclusions: This model is useful to understand the mechanisms of disease and the extent of pathology reversal with CFTR modulators.


Asunto(s)
Aminofenoles/uso terapéutico , Agonistas de los Canales de Cloruro/uso terapéutico , Regulador de Conductancia de Transmembrana de Fibrosis Quística/efectos de los fármacos , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Moco/efectos de los fármacos , Quinolonas/uso terapéutico , Animales , Humanos , Modelos Animales , Ratas
12.
Am J Respir Cell Mol Biol ; 63(3): 362-373, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32374624

RESUMEN

Defective airway mucus clearance is a defining characteristic of cystic fibrosis lung disease, and improvements to current mucolytic strategies are needed. Novel approaches targeting a range of contributing mechanisms are in various stages of preclinical and clinical development. ARINA-1 is a new nebulized product comprised of ascorbic acid, glutathione, and bicarbonate. Using microoptical coherence tomography, we tested the effect of ARINA-1 on central features of mucociliary clearance in F508del/F508del primary human bronchial epithelial cells to assess its potential as a mucoactive therapy in cystic fibrosis. We found that ARINA-1 significantly augmented mucociliary transport rates, both alone and with CFTR (cystic fibrosis transmembrane conductance regulator) modulator therapy, whereas airway hydration and ciliary beating were largely unchanged compared with PBS vehicle control. Analysis of mucus reflectivity and particle-tracking microrheology indicated that ARINA-1 restores mucus clearance by principally reducing mucus layer viscosity. The combination of bicarbonate and glutathione elicited increases in mucociliary transport rate comparable to those seen with ARINA-1, indicating the importance of this interaction to the impact of ARINA-1 on mucus transport; this effect was not recapitulated with bicarbonate alone or bicarbonate combined with ascorbic acid. Assessment of CFTR chloride transport revealed an increase in CFTR-mediated chloride secretion in response to ARINA-1 in CFBE41o- cells expressing wild-type CFTR, driven by CFTR activity stimulation by ascorbate. This response was absent in CFBE41o- F508del cells treated with VX-809 and primary human bronchial epithelial cells, implicating CFTR-independent mechanisms for the effect of ARINA-1 on cystic fibrosis mucus. Together, these studies indicate that ARINA-1 is a novel potential therapy for the treatment of impaired mucus clearance in cystic fibrosis.


Asunto(s)
Ácido Ascórbico/farmacología , Bicarbonatos/farmacología , Fibrosis Quística/tratamiento farmacológico , Glutatión/farmacología , Transporte Iónico/efectos de los fármacos , Depuración Mucociliar/efectos de los fármacos , Células Cultivadas , Células Epiteliales/efectos de los fármacos , Humanos
13.
Eur Respir J ; 55(1)2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31672759

RESUMEN

The mechanisms by which cigarette smoking impairs airway mucus clearance are not well understood. We recently established a ferret model of cigarette smoke-induced chronic obstructive pulmonary disease (COPD) exhibiting chronic bronchitis. We investigated the effects of cigarette smoke on mucociliary transport (MCT).Adult ferrets were exposed to cigarette smoke for 6 months, with in vivo mucociliary clearance measured by technetium-labelled DTPA retention. Excised tracheae were imaged with micro-optical coherence tomography. Mucus changes in primary human airway epithelial cells and ex vivo ferret airways were assessed by histology and particle tracking microrheology. Linear mixed models for repeated measures identified key determinants of MCT.Compared to air controls, cigarette smoke-exposed ferrets exhibited mucus hypersecretion, delayed mucociliary clearance (-89.0%, p<0.01) and impaired tracheal MCT (-29.4%, p<0.05). Cholinergic stimulus augmented airway surface liquid (ASL) depth (5.8±0.3 to 7.3±0.6 µm, p<0.0001) and restored MCT (6.8±0.8 to 12.9±1.2 mm·min-1, p<0.0001). Mixed model analysis controlling for covariates indicated smoking exposure, mucus hydration (ASL) and ciliary beat frequency were important predictors of MCT. Ferret mucus was hyperviscous following smoke exposure in vivo or in vitro, and contributed to diminished MCT. Primary cells from smokers with and without COPD recapitulated these findings, which persisted despite the absence of continued smoke exposure.Cigarette smoke impairs MCT by inducing airway dehydration and increased mucus viscosity, and can be partially abrogated by cholinergic secretion of fluid secretion. These data elucidate the detrimental effects of cigarette smoke exposure on mucus clearance and suggest additional avenues for therapeutic intervention.


Asunto(s)
Deshidratación , Enfermedad Pulmonar Obstructiva Crónica , Adulto , Humanos , Depuración Mucociliar , Moco , Fumar/efectos adversos , Viscosidad
14.
PLoS Genet ; 12(7): e1006220, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27472056

RESUMEN

Ciliopathies are genetic disorders arising from dysfunction of microtubule-based cellular appendages called cilia. Different cilia types possess distinct stereotypic microtubule doublet arrangements with non-motile or 'primary' cilia having a 9+0 and motile cilia have a 9+2 array of microtubule doublets. Primary cilia are critical sensory and signaling centers needed for normal mammalian development. Defects in their structure/function result in a spectrum of clinical and developmental pathologies including abnormal neural tube and limb patterning. Altered patterning phenotypes in the limb and neural tube are due to perturbations in the hedgehog (Hh) signaling pathway. Motile cilia are important in fluid movement and defects in motility result in chronic respiratory infections, altered left-right asymmetry, and infertility. These features are the hallmarks of Primary Ciliary Dyskinesia (PCD, OMIM 244400). While mutations in several genes are associated with PCD in patients and animal models, the genetic lesion in many cases is unknown. We assessed the in vivo functions of Growth Arrest Specific 8 (GAS8). GAS8 shares strong sequence similarity with the Chlamydomonas Nexin-Dynein Regulatory Complex (NDRC) protein 4 (DRC4) where it is needed for proper flagella motility. In mammalian cells, the GAS8 protein localizes not only to the microtubule axoneme of motile cilia, but also to the base of non-motile cilia. Gas8 was recently implicated in the Hh signaling pathway as a regulator of Smoothened trafficking into the cilium. Here, we generate the first mouse with a Gas8 mutation and show that it causes severe PCD phenotypes; however, there were no overt Hh pathway phenotypes. In addition, we identified two human patients with missense variants in Gas8. Rescue experiments in Chlamydomonas revealed a subtle defect in swim velocity compared to controls. Further experiments using CRISPR/Cas9 homology driven repair (HDR) to generate one of these human missense variants in mice demonstrated that this allele is likely pathogenic.


Asunto(s)
Tipificación del Cuerpo/genética , Cilios/genética , Síndrome de Kartagener/genética , Proteínas/genética , Animales , Movimiento Celular/genética , Chlamydomonas/genética , Cilios/patología , Proteínas del Citoesqueleto , Citoesqueleto/genética , Modelos Animales de Enfermedad , Extremidades/crecimiento & desarrollo , Extremidades/patología , Predisposición Genética a la Enfermedad , Humanos , Síndrome de Kartagener/patología , Ratones , Microtúbulos/genética , Mutación , Tubo Neural/crecimiento & desarrollo , Tubo Neural/patología , Transducción de Señal/genética
17.
Opt Lett ; 42(4): 867-870, 2017 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-28198885

RESUMEN

We report the design and fabrication of a flexible, longitudinally scanning high-resolution micro-optical coherence tomography (µOCT) endobronchial probe, optimized for micro-anatomical imaging in airways. The 2.4 mm diameter and flexibility of the probe allows it to be inserted into the instrument channel of a standard bronchoscope, enabling real-time video guidance of probe placement. To generate a depth-of-focus enhancing annular beam, we utilized a new fabrication method, whereby a hollow glass ferrule was angle-polished and gold-coated to produce an elongated annular reflector. We present validation data that verifies the preservation of linear scanning, despite the use of flexible materials. When utilized on excised, cultured mouse trachea, the probe acquired images of comparable quality to those obtained by a benchtop µOCT system.


Asunto(s)
Bronquios/citología , Bronquios/diagnóstico por imagen , Fenómenos Mecánicos , Relación Señal-Ruido , Tomografía de Coherencia Óptica/instrumentación , Animales , Cilios/metabolismo , Diseño de Equipo , Ratones , Tráquea/citología , Tráquea/diagnóstico por imagen
18.
Prenat Diagn ; 37(12): 1181-1190, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28981983

RESUMEN

Gene therapy provides a mutation-independent approach to treat or even cure CF airway disease. To develop a clinical candidate for CF gene therapy, a thorough examination of preclinical efficacy in relevant cell and animal models is a prerequisite. For a long time, the CF field was struggling with a lack of appropriate animal models for CF airway pathology. Since 2008, many different and complementary animal models have been generated that develop hallmarks of CF airway disease, including the CF pig, ferret, and rat. With this, a new era has arisen that allows investigating the efficacy of gene therapy beyond molecular and electrophysiological end-points. Successful gene therapy most likely requires an appropriate time window. CF lung pathology progresses with age and therefore an early treatment would be beneficial to prevent irreversible damage. In that regard, newborn screening programs and prenatal diagnosis already provide a basis to facilitate future preventive gene-based treatment. If successful, gene therapy for CF airway disease would markedly reduce the treatment burden and improve life quality and life expectancy of CF patients.


Asunto(s)
Fibrosis Quística/terapia , Terapia Genética , Animales , Modelos Animales de Enfermedad , Edición Génica , Técnicas de Transferencia de Gen , Humanos
19.
Biophys J ; 111(5): 1053-63, 2016 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-27602733

RESUMEN

Clinical manifestations of cystic fibrosis (CF) result from an increase in the viscosity of the mucus secreted by epithelial cells that line the airways. Particle-tracking microrheology (PTM) is a widely accepted means of determining the viscoelastic properties of CF mucus, providing an improved understanding of this disease as well as an avenue to assess the efficacies of pharmacologic therapies aimed at decreasing mucus viscosity. Among its advantages, PTM allows the measurement of small volumes, which was recently utilized for an in situ study of CF mucus formed by airway cell cultures. Typically, particle tracks are obtained from fluorescence microscopy video images, although this limits one's ability to distinguish particles by depth in a heterogeneous environment. Here, by performing PTM with high-resolution micro-optical coherence tomography (µOCT), we were able to characterize the viscoelastic properties of mucus, which enables simultaneous measurement of rheology with mucociliary transport parameters that we previously determined using µOCT. We obtained an accurate characterization of dextran solutions and observed a statistically significant difference in the viscosities of mucus secreted by normal and CF human airway cell cultures. We further characterized the effects of noise and imaging parameters on the sensitivity of µOCT-PTM by performing theoretical and numerical analyses, which show that our system can accurately quantify viscosities over the range that is characteristic of CF mucus. As a sensitive rheometry technique that requires very small fluid quantities, µOCT-PTM could also be generally applied to interrogate the viscosity of biological media such as blood or the vitreous humor of the eye in situ.


Asunto(s)
Técnicas Analíticas Microfluídicas/métodos , Tomografía de Coherencia Óptica/métodos , Bronquios/metabolismo , Células Cultivadas , Simulación por Computador , Fibrosis Quística/diagnóstico , Fibrosis Quística/metabolismo , Dextranos/química , Células Epiteliales/metabolismo , Humanos , Microfluídica/métodos , Modelos Teóricos , Moco/química , Viscosidad , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA