Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Sensors (Basel) ; 21(2)2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33445599

RESUMEN

In this study, a novel approach was developed to quantify endocannabinoids (eCBs), and was based on the liquid biosensor BIONOTE. This device is composed of a probe that can be immersed in a solution, and an electronic interface that can record a current related to the oxy-reductive reactions occurring in the sample. The two most representative members of eCBs have been analysed in vitro by BIONOTE: anandamide (N-arachidonoylethanolamine, AEA) and 2-arachidonoylglycerol (2-AG). Bovine serum albumin was used to functionalize the probe and improve the sensibility of the whole analytical system. We show that BIONOTE is able to detect both AEA and 2-AG at concentrations in the low nanomolar range, and to discriminate between these eCBs and their moieties arachidonic acid, ethanolamine and glycerol. Notably, BIONOTE distinguished these five different molecules, and it was also able to quantify AEA in human plasma. Although this is just a proof-of-concept study, we suggest BIONOTE as a cheap and user-friendly prototype sensor for high throughput quantitation of eCB content in biological matrices, with an apparent diagnostic potential for tomorrow's medicine.


Asunto(s)
Técnicas Biosensibles/métodos , Endocannabinoides/análisis , Ácidos Araquidónicos/análisis , Ácidos Araquidónicos/sangre , Técnicas Biosensibles/instrumentación , Endocannabinoides/sangre , Glicéridos/análisis , Glicéridos/sangre , Humanos , Alcamidas Poliinsaturadas/análisis , Alcamidas Poliinsaturadas/sangre
2.
Int J Mol Sci ; 22(14)2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34299330

RESUMEN

The ability of endocannabinoid (eCB) to change functional microglial phenotype can be explored as a possible target for therapeutic intervention. Since the inhibition of fatty acid amide hydrolase (FAAH), the main catabolic enzyme of anandamide (AEA), may provide beneficial effects in mice model of Alzheimer's disease (AD)-like pathology, we aimed at determining whether the FAAH inhibitor URB597 might target microglia polarization and alter the cytoskeleton reorganization induced by the amyloid-ß peptide (Aß). The morphological evaluation showed that Aß treatment increased the surface area of BV-2 cells, which acquired a flat and polygonal morphology. URB597 treatment partially rescued the control phenotype of BV-2 cells when co-incubated with Aß. Moreover, URB597 reduced both the increase of Rho protein activation in Aß-treated BV-2 cells and the Aß-induced migration of BV-2 cells, while an increase of Cdc42 protein activation was observed in all samples. URB597 also increased the number of BV-2 cells involved in phagocytosis. URB597 treatment induced the polarization of microglial cells towards an anti-inflammatory phenotype, as demonstrated by the decreased expression of iNOS and pro-inflammatory cytokines along with the parallel increase of Arg-1 and anti-inflammatory cytokines. Taken together, these data suggest that FAAH inhibition promotes cytoskeleton reorganization, regulates phagocytosis and cell migration processes, thus driving microglial polarization towards an anti-inflammatory phenotype.


Asunto(s)
Amidohidrolasas/antagonistas & inhibidores , Benzamidas/farmacología , Carbamatos/farmacología , Microglía/efectos de los fármacos , Microglía/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Amidohidrolasas/metabolismo , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/farmacología , Animales , Ácidos Araquidónicos/metabolismo , Línea Celular , Movimiento Celular/fisiología , Polaridad Celular/fisiología , Citocinas/metabolismo , Citoesqueleto/metabolismo , Modelos Animales de Enfermedad , Endocannabinoides/metabolismo , Ratones , Microglía/patología , Alcamidas Poliinsaturadas/metabolismo
3.
Int J Eat Disord ; 52(11): 1251-1262, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31456239

RESUMEN

OBJECTIVE: Despite the growing knowledge on the functional relationship between an altered endocannabinoid (eCB) system and development of anorexia nervosa (AN), to date no studies have investigated the central eCB tone in the activity-based anorexia (ABA) model that reproduces key aspects of human AN. METHOD: We measured levels of two major eCBs, anandamide (AEA) and 2-arachidonoylglycerol (2-AG), those of two eCB-related lipids, oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), and the cannabinoid type-1 receptor (CB1R) density in the brain of female ABA rats, focusing on areas involved in homeostatic and rewarding-related regulation of feeding behavior (i.e., prefrontal cortex, nucleus accumbens, caudato putamen, amygdala, hippocampus and hypothalamus). Analysis was carried out also at the end of recovery from the ABA condition. RESULTS: At the end of the ABA induction phase, 2-AG was significantly decreased in ABA rats in different brain areas but not in the caudato putamen. No changes were detected in AEA levels in any region, whereas the levels of OEA and PEA were decreased exclusively in the hippocampus and hypothalamus. Furthermore, CB1R density was decreased in the dentate gyrus of hippocampus and in the lateral hypothalamus. After recovery, both 2-AG levels and CB1R density were partially normalized in some areas. In contrast, AEA levels became markedly reduced in all the analyzed areas. DISCUSSION: These data demonstrate an altered brain eCB tone in ABA rats, further supporting the involvement of an impaired eCB system in AN pathophysiology that may contribute to the maintenance of some symptomatic aspects of the disease.


Asunto(s)
Anorexia Nerviosa/inducido químicamente , Encéfalo/efectos de los fármacos , Endocannabinoides/efectos adversos , Animales , Femenino , Humanos , Ratas , Ratas Sprague-Dawley
4.
Int J Mol Sci ; 20(18)2019 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-31514437

RESUMEN

There is robust evidence indicating that enhancing the endocannabinoid (eCB) tone has therapeutic potential in several brain disorders. The inhibition of eCBs degradation by fatty acid amide hydrolase (FAAH) blockade, is the best-known option to increase N-acyl-ethanolamines-(NAEs)-mediated signaling. Here, we investigated the hypothesis that intranasal delivery is an effective route for different FAAH inhibitors, such as URB597 and PF-04457845. URB597 and PF-04457845 were subchronically administered in C57BL/6 male mice every other day for 20 days for overall 10 drug treatment, and compared for their ability to inhibit FAAH activity by the way of three different routes of administration: intranasal (i.n.), intraperitoneal (i.p.) and oral (p.o.). Lastly, we compared the efficacy of the three routes in terms of URB597-induced increase of NAEs levels in liver and in different brain areas. Results: We show that PF-04457845 potently inhibits FAAH regardless the route selected, and that URB597 was less effective in the brain after p.o. administration while reached similar effects by i.n. and i.p. routes. Intranasal URB597 delivery always increased NAEs levels in brain areas, whereas a parallel increase was not observed in the liver. By showing the efficacy of intranasal FAAH inhibition, we provide evidence that nose-to-brain delivery is a suitable alternative to enhance brain eCB tone for the treatment of neurodegenerative disorders and improve patients' compliance.


Asunto(s)
Amidohidrolasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Amidohidrolasas/metabolismo , Animales , Benzamidas/administración & dosificación , Benzamidas/farmacología , Carbamatos/administración & dosificación , Carbamatos/farmacología , Cerebelo/efectos de los fármacos , Cerebelo/metabolismo , Endocannabinoides/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones Endogámicos C57BL , Piridazinas/administración & dosificación , Piridazinas/farmacología , Urea/administración & dosificación , Urea/análogos & derivados , Urea/farmacología
5.
J Lipid Res ; 58(2): 301-316, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27903595

RESUMEN

Imbalanced dietary n-3 and n-6 PUFA content has been associated with a number of neurological conditions. Endocannabinoids are n-6 PUFA derivatives, whose brain concentrations are sensitive to modifications of fatty acid composition of the diet and play a central role in the regulation of mood and cognition. As such, the endocannabinoid system appears to be an ideal candidate for mediating the effects of dietary fatty acids on mood and cognition. Lifelong administration of isocaloric α-linolenic acid (ALA)-deficient and -enriched diets induced short-term memory deficits, whereas only dietary ALA enrichment altered emotional reactivity in adult male rats compared with animals fed a standard diet that was balanced in ALA/linoleic acid (LA) ratio. In the prefrontal cortex, both diets reduced 2-AG levels and increased MAG lipase expression, whereas only the enriched diet reduced AEA levels, simultaneously increasing FAAH expression. In the hippocampus, an ALA-enriched diet decreased AEA content and NAPE-PLD expression, and reduced 2-AG content while increasing MAG lipase expression. These findings highlight the importance of a diet balanced in fatty acid content for normal brain functions and to support a link between dietary ALA, the brain endocannabinoid system, and behavior, which indicates that dietary ALA intake is a sufficient condition for altering the endocannabinoid system in brain regions modulating mood and cognition.


Asunto(s)
Encéfalo/metabolismo , Cognición/fisiología , Emociones/fisiología , Endocannabinoides/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/patología , Cognición/efectos de los fármacos , Dieta , Grasas de la Dieta/administración & dosificación , Grasas de la Dieta/metabolismo , Emociones/efectos de los fármacos , Ácidos Grasos Omega-3/administración & dosificación , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Omega-6/administración & dosificación , Ácidos Grasos Omega-6/metabolismo , Humanos , Ácido Linoleico/administración & dosificación , Ácido Linoleico/metabolismo , Memoria a Corto Plazo/efectos de los fármacos , Memoria a Corto Plazo/fisiología , Ratas , Ácido alfa-Linolénico/administración & dosificación , Ácido alfa-Linolénico/metabolismo
6.
Pharmacol Res ; 111: 721-730, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27450295

RESUMEN

Based on its wide expression in immune cells, type-2 cannabinoid (CB2) receptors were traditionally thought to act as "peripheral receptors" with an almost exclusively immunomodulatory function. However, their recent identification in mammalian brain areas, as well as in distinct neuronal cells, has opened the way to a re-consideration of CB2 signaling in the context of brain pathophysiology, synaptic plasticity and neuroprotection. To date, accumulated evidence from several independent preclinical studies has offered new perspectives on the possible involvement of CB2 signaling in brain and spinal cord traumatic injury, as well as in the most relevant neurodegenerative disorders like Alzheimer's disease, Parkinson's disease and Huntington's chorea. Here, we will review available information on CB2 in these disease conditions, along with data that support also its therapeutic potential to treat them.


Asunto(s)
Encéfalo/metabolismo , Degeneración Nerviosa , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo , Receptor Cannabinoide CB2/metabolismo , Médula Espinal/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/patología , Encéfalo/fisiopatología , Agonistas de Receptores de Cannabinoides/uso terapéutico , Endocannabinoides/metabolismo , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/patología , Enfermedades Neurodegenerativas/fisiopatología , Neuronas/efectos de los fármacos , Neuronas/patología , Fármacos Neuroprotectores/uso terapéutico , Receptor Cannabinoide CB2/agonistas , Transducción de Señal , Médula Espinal/efectos de los fármacos , Médula Espinal/patología , Médula Espinal/fisiopatología
7.
Pharmacol Res ; 113(Pt A): 313-319, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27616551

RESUMEN

Monocytes are believed to be involved in the immunopathogenesis of multiple sclerosis (MS). The aim of this study was to investigate their role in MS and their immunomodulation by the endocannabinoid system (ECS), a novel target for the treatment of this disease. We compared the level of cytokine production from monocytes in healthy subjects and MS patients upon stimulation with viral or bacterial Toll-like receptors (TLR) and we evaluated the ECS immunomodulatory role in these cells. Here we show that MS monocytes produced more TNF-α, IL-12 and IL-6 following activation of TLR2/4 with LPS or of TLR5 with flagellin, as opposed to TLR7/8 stimulation with R848. Furthermore AEA, the main endocannabinoid, suppressed cytokine production and release from healthy monocytes upon stimulation with both bacterial and viral TLR receptors but not in cells from MS patients, where its immunosuppressive activity was TLR7/8-dependent. Altered expression levels of key ECS members in MS monocytes paralleled these data. Our data disclose a distinct immunomodulatory effect of AEA and an alteration of AEA-related members of the ECS in monocytes from MS patients that involves viral but not bacterial TLR. These findings not only may help to better understand the role of monocytes in MS immunopathogenesis but also could be of help to exploit new endocannabinoid-based drugs that target innate immune cells.


Asunto(s)
Ácidos Araquidónicos/uso terapéutico , Endocannabinoides/uso terapéutico , Lípidos/uso terapéutico , Monocitos/efectos de los fármacos , Esclerosis Múltiple/tratamiento farmacológico , Alcamidas Poliinsaturadas/uso terapéutico , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/metabolismo , Adulto , Endocannabinoides/metabolismo , Femenino , Humanos , Factores Inmunológicos/uso terapéutico , Inmunosupresores/uso terapéutico , Interleucina-12/metabolismo , Interleucina-6/metabolismo , Masculino , Monocitos/metabolismo , Esclerosis Múltiple/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo
8.
Animals (Basel) ; 14(20)2024 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-39457916

RESUMEN

A cutaneous mast cell tumor (cMCT) is among the most common tumors in dogs. Endocannabinoids (eCBs) belong to the endocannabinoid system (ECS), which involves also cannabinoid receptors and an enzymatic system of biosynthesis and degradation. In this study, plasma levels of N-arachidonoylethanolamine (AEA), 2-arachidonoylglycerol (2-AG), N-palmitoylethanolamine (PEA), and N-oleoylethanolamine (OEA) were evaluated in 17 dogs with MCTs of varying histological grades and clinical stages, as well as in a control group of 11 dogs. Dogs affected by cMCT had higher plasma levels of 2-AG (p = 0.0001) and lower levels of AEA (p = 0.0012) and PEA (p = 0.0075) compared to the control group, while no differences were observed at the OEA level between healthy and cMCT dogs (p = 0.9264). The ability of eCBs to help discriminate between healthy and cMCT dogs was interrogated through the area under the ROC curve (AUC). An accuracy of 0.98 (95% confidence interval [CI], 0.94-1.02) was found for 2-AG, of 0.85 (95% CI, 0.71-0.99) for AEA, and of 0.81% for PEA (95% CI, 0.64-0.69). Values > 52.75 pmol/mL for 2-AG showed 94% sensitivity and 90% specificity in distinguishing cMCT. This is the first study to demonstrate alterations in plasmatic levels of eCBs in dogs affected by MCTs, suggesting the significance of these biomarkers in the tumorigenic process and their potential use as biomarkers in the future.

9.
Mol Autism ; 15(1): 39, 2024 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-39300547

RESUMEN

BACKGROUND: Defective mitochondria and aberrant brain mitochondrial bioenergetics are consistent features in syndromic intellectual disability disorders, such as Rett syndrome (RTT), a rare neurologic disorder that severely affects mainly females carrying mutations in the X-linked MECP2 gene. A pool of CB1 cannabinoid receptors (CB1R), the primary receptor subtype of the endocannabinoid system in the brain, is located on brain mitochondrial membranes (mtCB1R), where it can locally regulate energy production, synaptic transmission and memory abilities through the inhibition of the intra-mitochondrial protein kinase A (mtPKA). In the present study, we asked whether an overactive mtCB1R-mtPKA signaling might underlie the brain mitochondrial alterations in RTT and whether its modulation by systemic administration of the CB1R inverse agonist rimonabant might improve bioenergetics and cognitive defects in mice modeling RTT. METHODS: Rimonabant (0.3 mg/kg/day, intraperitoneal injections) was administered daily to symptomatic female mice carrying a truncating mutation of the Mecp2 gene and its effects on brain mitochondria functionality, systemic oxidative status, and memory function were assessed. RESULTS: mtCB1R is overexpressed in the RTT mouse brain. Subchronic treatment with rimonabant normalizes mtCB1R expression in RTT mouse brains, boosts mtPKA signaling, and restores the defective brain mitochondrial bioenergetics, abnormal peripheral redox homeostasis, and impaired cognitive abilities in RTT mice. LIMITATIONS: The lack of selectivity of the rimonabant treatment towards mtCB1R does not allow us to exclude that the beneficial effects exerted by the treatment in the RTT mouse model may be ascribed more broadly to the modulation of CB1R activity and distribution among intracellular compartments, rather than to a selective effect on mtCB1R-mediated signaling. The low sample size of few experiments is a further limitation that has been addressed replicating the main findings under different experimental conditions. CONCLUSIONS: The present data identify mtCB1R overexpression as a novel molecular alteration in the RTT mouse brain that may underlie defective brain mitochondrial bioenergetics and cognitive dysfunction.


Asunto(s)
Encéfalo , Modelos Animales de Enfermedad , Metabolismo Energético , Mitocondrias , Receptor Cannabinoide CB1 , Síndrome de Rett , Rimonabant , Animales , Femenino , Ratones , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Proteína 2 de Unión a Metil-CpG/metabolismo , Proteína 2 de Unión a Metil-CpG/genética , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB1/antagonistas & inhibidores , Síndrome de Rett/metabolismo , Síndrome de Rett/tratamiento farmacológico , Síndrome de Rett/genética , Rimonabant/farmacología
10.
Methods Mol Biol ; 2576: 275-283, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36152195

RESUMEN

The endocannabinoid 2-arachidonoylglycerol (2-AG) exerts its physiological action by binding to and functionally activating type-1 (CB1) and type-2 (CB2) cannabinoid receptors. It is thought to be produced through the action of sn-1 selective diacylglycerol lipase (DAGL) that catalyzes 2-AG biosynthesis from sn-2-arachidonate-containing diacylglycerols. Different methodological approaches for measuring DAGL activity in biological samples are now available. Here, a highly sensitive radiometric assay to assess DAGL activity, by using 1-oleoyl[1-14C]-2-arachidonoylglycerol as the substrate, is reported. All the steps required to perform lipid extraction, fractionation by thin-layer chromatography (TLC), and quantification of radiolabeled [14C]-oleic acid via scintillation counting are described in detail.


Asunto(s)
Endocannabinoides , Lipoproteína Lipasa , Diglicéridos/metabolismo , Endocannabinoides/metabolismo , Lipoproteína Lipasa/metabolismo , Ácido Oléico , Receptores de Cannabinoides
11.
Bioorg Med Chem ; 20(1): 101-7, 2012 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-22172309

RESUMEN

Dipyrone is a common antipyretic drug and the most popular non-opioid analgesic in many countries. In spite of its long and widespread use, molecular details of its fate in the body are not fully known. We administered dipyrone orally to mice. Two unknown metabolites were found, viz. the arachidonoyl amides of the known major dipyrone metabolites, 4-methylaminoantipyrine (2) and 4-aminoantipyrine (3). They were identified by ESI-LC-MS/MS after extraction from the CNS, and comparison with reference substances prepared synthetically. The arachidonoyl amides were positively tested for cannabis receptor binding (CB(1) and CB(2)) and cyclooxygenase inhibition (COX-1 and COX-2 in tissues and as isolated enzymes), suggesting that the endogenous cannabinoid system may play a role in the effects of dipyrone against pain.


Asunto(s)
Dipirona/metabolismo , Administración Oral , Aminopiridinas/química , Ampirona/química , Animales , Sistema Nervioso Central/química , Cromatografía Líquida de Alta Presión/normas , Ciclooxigenasa 1/química , Ciclooxigenasa 1/metabolismo , Ciclooxigenasa 2/química , Ciclooxigenasa 2/metabolismo , Inhibidores de la Ciclooxigenasa/química , Inhibidores de la Ciclooxigenasa/farmacología , Dipirona/farmacología , Activación Enzimática/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/metabolismo , Estándares de Referencia , Espectrometría de Masa por Ionización de Electrospray/normas
12.
Proc Natl Acad Sci U S A ; 106(27): 11131-6, 2009 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-19541620

RESUMEN

The exact role of the endocannabinoid system (ECS) during spermatogenesis has not been clarified. We used purified germ cell fractions representative of all phases of spermatogenesis and primary cultures of spermatogonia. This approach allowed the precise quantification of the cannabinoid receptor ligands, anandamide and 2-arachidonoylglycerol, and of the expression at transcriptional and transductional levels of their metabolic enzymes and receptors. Our data indicate that male mouse germ cells possess an active and complete ECS, which is modulated during meiosis, and suggest the presence of an autocrine endocannabinoid signal during spermatogenesis. Mitotic cells possess higher levels of 2-arachidonoylglycerol, which decrease in spermatocytes and spermatids. Accordingly, spermatogonia express higher and lower levels of 2-arachidonoylglycerol biosynthetic and degrading enzymes, respectively, as compared to meiotic and postmeiotic cells. This endocannabinoid likely plays a pivotal role in promoting the meiotic progression of germ cells by activating CB(2) receptors. In fact, we found that the selective CB(2) receptor agonist, JWH133, induced the Erk 1/2 MAPK phosphorylation cascade in spermatogonia and their progression toward meiosis, because it increased the number of cells positive for SCP3, a marker of meiotic prophase, and the expression of early meiotic prophase genes.


Asunto(s)
Moduladores de Receptores de Cannabinoides/metabolismo , Endocannabinoides , Receptor Cannabinoide CB2/metabolismo , Espermatogénesis , Animales , Ácidos Araquidónicos/biosíntesis , Moduladores de Receptores de Cannabinoides/biosíntesis , Cannabinoides/farmacología , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Técnica del Anticuerpo Fluorescente , Glicéridos/biosíntesis , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Profase Meiótica I/efectos de los fármacos , Ratones , Alcamidas Poliinsaturadas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/agonistas , Espermatogénesis/efectos de los fármacos , Espermatogonias/citología , Espermatogonias/efectos de los fármacos , Espermatogonias/metabolismo , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo
13.
J Neurosci ; 30(7): 2710-5, 2010 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-20164355

RESUMEN

Endocannabinoids control hippocampal inhibitory synaptic transmission through activation of presynaptic CB(1) receptors. During depolarization-induced suppression of inhibition (DSI), endocannabinoids are synthesized upon postsynaptic depolarization. The endocannabinoid 2-arachidonoylglycerol (2-AG) may mediate hippocampal DSI. Currently, the best studied pathway for biosynthesis of 2-AG involves the enzyme diacylglycerol lipase (DAGL). However, whether DAGL is necessary for hippocampal DSI is controversial and was not systematically addressed. Here, we investigate DSI at unitary connections between CB(1) receptor-containing interneurons and pyramidal neurons in CA1. We found that the novel DAGL inhibitor OMDM-188, as well as the established inhibitor RHC-80267, did not affect DSI. As reported previously, effects of the DAGL inhibitor tetrahydrolipstatin depended on the application method: postsynaptic intracellular application left DSI intact, while incubation blocked DSI. We show that all DAGL inhibitors tested block slow self-inhibition in neocortical interneurons, which involves DAGL. We conclude that DAGL is not involved in DSI at unitary connections in hippocampus.


Asunto(s)
Potenciales Postsinápticos Inhibidores/fisiología , Lipoproteína Lipasa/metabolismo , Inhibición Neural/fisiología , Neuronas/fisiología , Animales , Animales Recién Nacidos , Benzoxazinas/farmacología , Ciclohexanonas/farmacología , Estimulación Eléctrica/métodos , Inhibidores Enzimáticos/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Antagonistas del GABA/farmacología , Proteínas Fluorescentes Verdes/genética , Hipocampo/citología , Técnicas In Vitro , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Lipoproteína Lipasa/antagonistas & inhibidores , Lisina/análogos & derivados , Lisina/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Morfolinas/farmacología , Naftalenos/farmacología , Neocórtex/citología , Inhibición Neural/efectos de los fármacos , Inhibición Neural/genética , Neuronas/efectos de los fármacos , Piridazinas/farmacología , Quinoxalinas/farmacología , Receptor Cannabinoide CB1/agonistas , Receptor Cannabinoide CB1/deficiencia , Valina/análogos & derivados , Valina/farmacología
14.
Life (Basel) ; 11(9)2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34575083

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disease that progresses from mild cognitive impairment to severe dementia over time. The main clinical hallmarks of the disease (e.g., beta-amyloid plaques and neurofibrillary tangles) begin during preclinical AD when cognitive deficits are not yet apparent. Hence, a more profound understanding of AD pathogenesis is needed to develop new therapeutic strategies. In this context, the endocannabinoid (eCB) system and the gut microbiome are increasingly emerging as important players in maintaining the general homeostasis and the health status of the host. However, their interaction has come to light just recently with gut microbiota regulating the eCB tone at both receptor and enzyme levels in intestinal and adipose tissues. Importantly, eCB system and gut microbiome, have been suggested to play a role in AD in both animal and human studies. Therefore, the microbiome gut-brain axis and the eCB system are potential common denominators in the AD physiopathology. Hence, the aim of this review is to provide a general overview on the role of both the eCB system and the microbiome gut-brain axis in AD and to suggest possible mechanisms that underlie the potential interplay of these two systems.

15.
Front Vet Sci ; 8: 655311, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34124221

RESUMEN

Chronic enteropathies (CEs) in dogs, according to the treatment response to consecutive trials, are classified as food-responsive (FRE), antibiotic-responsive (ARE), and immunosuppressive-responsive (IRE) enteropathy. In addition to this classification, dogs with loss of protein across the gut are grouped as protein-losing enteropathy (PLE). At present, the diagnosis of CEs is time-consuming, costly and sometimes invasive, also because non-invasive biomarkers with high sensitivity and specificity are not yet available. Therefore, this study aimed at assessing the levels of circulating endocannabinoids in plasma as potential diagnostic markers of canine CEs. Thirty-three dogs with primary chronic gastrointestinal signs presented to Veterinary Teaching Hospitals of Teramo and Bologna (Italy) were prospectively enrolled in the study, and 30 healthy dogs were included as a control group. Plasma levels of N-arachidonoylethanolamine (AEA), 2-arachidonoylglycerol (2-AG), N-palmitoylethanolamine (PEA), and N-oleoylethanolamine (OEA) were measured at the time of the first visit in dogs with different CEs, as well as in healthy subjects. Plasma levels of 2-AG (p = 0.001) and PEA (p = 0.008) were increased in canine CEs compared to healthy dogs. In particular, PEA levels were increased in the FRE group compared to healthy dogs (p = 0.04), while 2-AG was higher in IRE than in healthy dogs (p = 0.0001). Dogs affected by FRE also showed decreased 2-AG (p = 0.0001) and increased OEA levels (p = 0.0018) compared to IRE dogs. Moreover, dogs with PLE showed increased 2-AG (p = 0.033) and decreased AEA (p = 0.035), OEA (p = 0.016) and PEA (p = 0.023) levels, when compared to dogs affected by CEs without loss of proteins. The areas under ROC curves for circulating 2-AG (0.91; 95% confidence interval [CI], 0.79-1.03) and OEA (0.81; 95% CI, 0.65-0.97) showed a good accuracy in distinguishing the different forms of CEs under study (FRE, ARE and IRE), at the time of the first visit. The present study demonstrated that endocannabinoid signaling is altered in canine CEs, and that CE subtypes showed distinct profiles of 2-AG, PEA and OEA plasma levels, suggesting that these circulating bioactive lipids might have the potential to become candidate biomarkers for canine CEs.

16.
Biochim Biophys Acta ; 1791(1): 53-60, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19027877

RESUMEN

Although inhibitors of the enzymatic hydrolysis of the endocannabinoid 2-arachidonoylglycerol are available, they are either rather weak in vitro (IC(50)>30 microM) or their selectivity towards other proteins of the endocannabinoid system has not been tested. Here we describe the synthesis and activity in vitro and in vivo of a tetrahydrolipstatin analogue, OMDM169, as a potent inhibitor of 2-AG hydrolysis, capable of enhancing 2-AG levels and of exerting analgesic activity via indirect activation of cannabinoid receptors. OMDM169 exhibited 0.13 microM10 microM) at human CB(1) and CB(2) receptors. However, OMDM169 shared with tetrahydrolipstatin the capability of inhibiting the human pancreatic lipase (IC(50)=0.6 microM). OMDM169 inhibited fatty acid amide hydrolase and diacylglycerol lipase only at higher concentrations (IC(50)=3.0 and 2.8 microM, respectively), and, accordingly, it increased by approximately 1.6-fold the levels of 2-AG, but not anandamide, in intact ionomycin-stimulated N18TG2 neuroblastoma cells. Acute intraperitoneal (i.p.) administration of OMDM169 to mice inhibited the second phase of the formalin-induced nocifensive response with an IC(50) of approximately 2.5 mg/kg, and concomitantly elevated 2-AG, but not anandamide, levels in the ipsilateral paw of formalin-treated mice. The antinociceptive effect of OMDM169 was antagonized by antagonists of CB(1) and CB(2) receptors, AM251 and AM630, respectively (1 mg/kg, i.p.). OMDM69 might represent a template for the development of selective and even more potent inhibitors of 2-AG hydrolysis.


Asunto(s)
Analgésicos/síntesis química , Analgésicos/farmacología , Ácidos Araquidónicos/antagonistas & inhibidores , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Formamidas/síntesis química , Formamidas/farmacología , Glicéridos/antagonistas & inhibidores , Propiolactona/análogos & derivados , Animales , Ácidos Araquidónicos/metabolismo , Células COS , Chlorocebus aethiops , Endocannabinoides , Glicéridos/metabolismo , Humanos , Hidrólisis/efectos de los fármacos , Concentración 50 Inhibidora , Lipoproteína Lipasa/metabolismo , Ratones , Monoacilglicerol Lipasas/metabolismo , Propiolactona/síntesis química , Propiolactona/farmacología , Ratas
17.
Biol Reprod ; 82(2): 451-8, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19812302

RESUMEN

During transit through the epididymis, spermatozoa are normally kept immotile and do not attain the ability to become motile until they reach the caudal epididymis. This study was undertaken to determine whether endocannabinoids play a role in the epididymis and in particular in suppressing the ability of spermatozoa to become motile. We show that the levels of the endocannabinoid 2-arachidonoylglycerol (2-AG) are high in mouse spermatozoa isolated from the caput (head) of the epididymis, where these cells do not move (or possess sluggish and irregular motility) and decrease dramatically in spermatozoa isolated from the cauda (tail). The subsequent gradient regulates, via autocrine communication, the activity of cannabinoid receptor CNR1 (previously known as CB1) present on the sperm cell membrane and induces caudal spermatozoa to acquire the potential to become motile ("start-up"). Accordingly, the genetic or pharmacological inactivation of CNR1 increases number of motile spermatozoa in caput. Also, blockers of endocannabinoid cellular uptake inhibit the potential to move of spermatozoa and destroy the 2-AG gradient throughout the epididymis. This gradient-regulated mechanism may encourage further research for future therapies related to male infertility.


Asunto(s)
Ácidos Araquidónicos/análisis , Epidídimo/química , Epidídimo/citología , Glicéridos/análisis , Receptor Cannabinoide CB1/fisiología , Motilidad Espermática/fisiología , Espermatozoides/fisiología , Animales , Ácidos Araquidónicos/fisiología , Moduladores de Receptores de Cannabinoides/análisis , Moduladores de Receptores de Cannabinoides/antagonistas & inhibidores , Endocannabinoides , Glicéridos/fisiología , Masculino , Ratones , Ratones Noqueados , Receptor Cannabinoide CB1/deficiencia , Canales Catiónicos TRPV/fisiología
18.
Bioorg Med Chem Lett ; 20(3): 1210-3, 2010 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-20022504

RESUMEN

N-Acylethanolamines, including N-palmitoyl-ethanolamine (PEA), are hydrolyzed to the corresponding fatty acids and ethanolamine by fatty acid amide hydrolase (FAAH). Recently, N-acylethanolamine-hydrolyzing acid amidase (NAAA) was identified as being able to specifically hydrolyze PEA. In order to find selective and effective inhibitors of this enzyme, we synthesized and screened several amides, retroamides, esters, retroesters and carbamates of palmitic acid (1-21) and esters with C15 and C17 alkyl chains (22-27). Cyclopentylhexadecanoate (13) exhibited the highest inhibitory activity on NAAA (IC(50)=10.0 microM), without inhibiting FAAH up to 50 microM. Compound 13 may become a useful template to design new NAAA inhibitors.


Asunto(s)
Amidohidrolasas/antagonistas & inhibidores , Ácidos Palmíticos/síntesis química , Amidas , Amidohidrolasas/metabolismo , Línea Celular , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos/métodos , Endocannabinoides , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Etanolaminas , Humanos , Hidrólisis , Ácidos Palmíticos/metabolismo , Ácidos Palmíticos/farmacología , Relación Estructura-Actividad
19.
Nat Rev Neurol ; 16(1): 9-29, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31831863

RESUMEN

Anecdotal evidence that cannabis preparations have medical benefits together with the discovery of the psychotropic plant cannabinoid Δ9-tetrahydrocannabinol (THC) initiated efforts to develop cannabinoid-based therapeutics. These efforts have been marked by disappointment, especially in relation to the unwanted central effects that result from activation of cannabinoid receptor 1 (CB1), which have limited the therapeutic use of drugs that activate or inactivate this receptor. The discovery of CB2 and of endogenous cannabinoid receptor ligands (endocannabinoids) raised new possibilities for safe targeting of this endocannabinoid system. However, clinical success has been limited, complicated by the discovery of an expanded endocannabinoid system - known as the endocannabinoidome - that includes several mediators that are biochemically related to the endocannabinoids, and their receptors and metabolic enzymes. The approvals of nabiximols, a mixture of THC and the non-psychotropic cannabinoid cannabidiol, for the treatment of spasticity and neuropathic pain in multiple sclerosis, and of purified botanical cannabidiol for the treatment of otherwise untreatable forms of paediatric epilepsy, have brought the therapeutic use of cannabinoids and endocannabinoids in neurological diseases into the limelight. In this Review, we provide an overview of the endocannabinoid system and the endocannabinoidome before discussing their involvement in and clinical relevance to a variety of neurological disorders, including Parkinson disease, Alzheimer disease, Huntington disease, multiple sclerosis, amyotrophic lateral sclerosis, traumatic brain injury, stroke, epilepsy and glioblastoma.


Asunto(s)
Cannabinoides/metabolismo , Endocannabinoides/metabolismo , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Enfermedades del Sistema Nervioso/metabolismo , Analgésicos/metabolismo , Analgésicos/uso terapéutico , Animales , Cannabidiol/metabolismo , Cannabidiol/uso terapéutico , Cannabinoides/uso terapéutico , Dronabinol/metabolismo , Dronabinol/uso terapéutico , Combinación de Medicamentos , Endocannabinoides/uso terapéutico , Humanos , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/metabolismo
20.
Biomolecules ; 10(12)2020 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-33371219

RESUMEN

Although the primordial concept of lipids is associated with the role they play as key components of the cell membrane, growing research in the field of bioactive lipids and lipidomic technologies proves the prominent role of these molecules in other biological functions [...].


Asunto(s)
Biomarcadores/metabolismo , Metabolismo de los Lípidos , Lípidos/química , Transducción de Señal , Artritis/metabolismo , Enfermedades Cardiovasculares/metabolismo , Comunicación Celular , Humanos , Microbiota , Enfermedades Neurodegenerativas/metabolismo , Obesidad/metabolismo , Pronóstico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA