Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Blood ; 142(3): 290-305, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37192286

RESUMEN

Despite >80 years of clinical experience with coagulation factor VIII (FVIII) inhibitors, surprisingly little is known about the in vivo mechanism of this most serious complication of replacement therapy for hemophilia A. These neutralizing antidrug alloantibodies arise in ∼30% of patients. Inhibitor formation is T-cell dependent, but events leading up to helper T-cell activation have been elusive because of, in part, the complex anatomy and cellular makeup of the spleen. Here, we show that FVIII antigen presentation to CD4+ T cells critically depends on a select set of several anatomically distinct antigen-presenting cells, whereby marginal zone B cells and marginal zone and marginal metallophilic macrophages but not red pulp macrophages (RPMFs) participate in shuttling FVIII to the white pulp in which conventional dendritic cells (DCs) prime helper T cells, which then differentiate into follicular helper T (Tfh) cells. Toll-like receptor 9 stimulation accelerated Tfh cell responses and germinal center and inhibitor formation, whereas systemic administration of FVIII alone in hemophilia A mice increased frequencies of monocyte-derived and plasmacytoid DCs. Moreover, FVIII enhanced T-cell proliferation to another protein antigen (ovalbumin), and inflammatory signaling-deficient mice were less likely to develop inhibitors, indicating that FVIII may have intrinsic immunostimulatory properties. Ovalbumin, which, unlike FVIII, is absorbed into the RPMF compartment, fails to elicit T-cell proliferative and antibody responses when administered at the same dose as FVIII. Altogether, we propose that an antigen trafficking pattern that results in efficient in vivo delivery to DCs and inflammatory signaling, shape the immunogenicity of FVIII.


Asunto(s)
Linfocitos T CD4-Positivos , Factor VIII , Hemofilia A , Hemostáticos , Animales , Ratones , Células Dendríticas/metabolismo , Factor VIII/inmunología , Factor VIII/uso terapéutico , Hemofilia A/tratamiento farmacológico , Hemostáticos/inmunología , Hemostáticos/uso terapéutico , Ovalbúmina/inmunología
2.
Mol Ther ; 32(2): 325-339, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38053332

RESUMEN

Upon viral infection of the liver, CD8+ T cell responses may be triggered despite the immune suppressive properties that manifest in this organ. We sought to identify pathways that activate responses to a neoantigen expressed in hepatocytes, using adeno-associated viral (AAV) gene transfer. It was previously established that cooperation between plasmacytoid dendritic cells (pDCs), which sense AAV genomes by Toll-like receptor 9 (TLR9), and conventional DCs promotes cross-priming of capsid-specific CD8+ T cells. Surprisingly, we find local initiation of a CD8+ T cell response against antigen expressed in ∼20% of murine hepatocytes, independent of TLR9 or type I interferons and instead relying on IL-1 receptor 1-MyD88 signaling. Both IL-1α and IL-1ß contribute to this response, which can be blunted by IL-1 blockade. Upon AAV administration, IL-1-producing pDCs infiltrate the liver and co-cluster with XCR1+ DCs, CD8+ T cells, and Kupffer cells. Analogous events were observed following coagulation factor VIII gene transfer in hemophilia A mice. Therefore, pDCs have alternative means of promoting anti-viral T cell responses and participate in intrahepatic immune cell networks similar to those that form in lymphoid organs. Combined TLR9 and IL-1 blockade may broadly prevent CD8+ T responses against AAV capsid and transgene product.


Asunto(s)
Linfocitos T CD8-positivos , Factor 88 de Diferenciación Mieloide , Animales , Ratones , Proteínas de la Cápside , Células Dendríticas , Interleucina-1/metabolismo , Hígado/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo
3.
Cell Immunol ; 385: 104675, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36746071

RESUMEN

Active tolerance to ingested dietary antigens forms the basis for oral immunotherapy to food allergens or autoimmune self-antigens. Alternatively, oral administration of anti-CD3 monoclonal antibody can be effective in modulating systemic immune responses without T cell depletion. Here we assessed the efficacy of full length and the F(ab')2 fragment of oral anti-CD3 to prevent anti-drug antibody (ADA) formation to clotting factor VIII (FVIII) protein replacement therapy in hemophilia A mice. A short course of low dose oral anti-CD3 F(ab')2 reduced the production of neutralizing ADAs, and suppression was significantly enhanced when oral anti-CD3 was timed concurrently with FVIII administration. Tolerance was accompanied by the early induction of FoxP3+LAP-, FoxP3+LAP+, and FoxP3-LAP+ populations of CD4+ T cells in the spleen and mesenteric lymph nodes. FoxP3+LAP+ Tregs expressing CD69, CTLA-4, and PD1 persisted in spleens of treated mice, but did not produce IL-10. Finally, we attempted to combine the anti-CD3 approach with oral intake of FVIII antigen (using our previously established method of using lettuce plant cells transgenic for FVIII antigen fused to cholera toxin B (CTB) subunit, which suppresses ADAs in part through induction of IL-10 producing FoxP3-LAP+ Treg). However, combining these two approaches failed to improve suppression of ADAs. We conclude that oral anti-CD3 treatment is a promising approach to prevention of ADA formation in systemic protein replacement therapy, albeit via mechanisms distinct from and not synergistic with oral intake of bioencapsulated antigen.


Asunto(s)
Hemofilia A , Ratones , Animales , Hemofilia A/tratamiento farmacológico , Factor VIII , Interleucina-10/metabolismo , Formación de Anticuerpos , Anticuerpos Monoclonales , Factores de Transcripción Forkhead/metabolismo , Tolerancia Inmunológica , Linfocitos T Reguladores
4.
Mol Ther ; 30(12): 3552-3569, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-35821634

RESUMEN

Hepatic adeno-associated viral (AAV) gene transfer has the potential to cure the X-linked bleeding disorder hemophilia A. However, declining therapeutic coagulation factor VIII (FVIII) expression has plagued clinical trials. To assess the mechanistic underpinnings of this loss of FVIII expression, we developed a hemophilia A mouse model that shares key features observed in clinical trials. Following liver-directed AAV8 gene transfer in the presence of rapamycin, initial FVIII protein expression declines over time in the absence of antibody formation. Surprisingly, loss of FVIII protein production occurs despite persistence of transgene and mRNA, suggesting a translational shutdown rather than a loss of transduced hepatocytes. Some of the animals develop ER stress, which may be linked to hepatic inflammatory cytokine expression. FVIII protein expression is preserved by interleukin-15/interleukin-15 receptor blockade, which suppresses CD8+ T and natural killer cell responses. Interestingly, mice with initial FVIII levels >100% of normal had diminishing expression while still under immune suppression. Taken together, our findings of interanimal variability of the response, and the ability of the immune system to shut down transgene expression without utilizing cytolytic or antibody-mediated mechanisms, illustrate the challenges associated with FVIII gene transfer. Our protocols based upon cytokine blockade should help to maintain efficient FVIII expression.


Asunto(s)
Factor VIII , Interleucina-15 , Ratones , Animales , Factor VIII/genética , Interleucina-15/genética , Sirolimus/farmacología
5.
Cell Immunol ; 382: 104641, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36402002

RESUMEN

Protein based therapeutics have successfully improved the quality of life for patients of monogenic disorders like hemophilia, Pompe and Fabry disease. However, a significant proportion of patients develop immune responses towards intravenously infused therapeutic protein, which can complicate or neutralize treatment and compromise patient safety. Strategies aimed at circumventing immune responses following therapeutic protein infusion can greatly improve therapeutic efficacy. In recent years, antigen-based oral tolerance induction has shown promising results in the prevention and treatment of autoimmune diseases, food allergies and can prevent anti-drug antibody formation to protein replacement therapies. Oral tolerance exploits regulatory mechanisms that are initiated in the gut associated lymphoid tissue (GALT) to promote active suppression of orally ingested antigen. In this review, we outline general perceptions and current knowledge about the mechanisms of oral tolerance, including tissue specific sites of tolerance induction and the cells involved, with emphasis on antigen presenting cells and regulatory T cells. We define several factors, such as cytokines and metabolites that impact the stability and expansion potential of these immune modulatory cells. We highlight preclinical studies that have been performed to induce oral tolerance to therapeutic proteins or enzymes for single gene disorders, such as hemophilia or Pompe disease. These studies mainly utilize a transgenic plant-based system for oral delivery of antigen in conjugation with fusion protein technology that favors the prevention of antigen degradation in the stomach while enhancing uptake in the small intestine by antigen presenting cells and regulatory T cell induction, thereby promoting antigen specific systemic tolerance.


Asunto(s)
Hemofilia A , Humanos , Formación de Anticuerpos , Calidad de Vida , Terapia de Reemplazo Enzimático , Anticuerpos
6.
Mol Ther ; 29(9): 2660-2676, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-33940160

RESUMEN

Regulatory T cells (Tregs) control immune responses in autoimmune disease, transplantation, and enable antigen-specific tolerance induction in protein-replacement therapies. Tregs can exert a broad array of suppressive functions through their T cell receptor (TCR) in a tissue-directed and antigen-specific manner. This capacity can now be harnessed for tolerance induction by "redirecting" polyclonal Tregs to overcome low inherent precursor frequencies and simultaneously augment suppressive functions. With the use of hemophilia A as a model, we sought to engineer antigen-specific Tregs to suppress antibody formation against the soluble therapeutic protein factor (F)VIII in a major histocompatibility complex (MHC)-independent fashion. Surprisingly, high-affinity chimeric antigen receptor (CAR)-Treg engagement induced a robust effector phenotype that was distinct from the activation signature observed for endogenous thymic Tregs, which resulted in the loss of suppressive activity. Targeted mutations in the CD3ζ or CD28 signaling motifs or interleukin (IL)-10 overexpression were not sufficient to restore tolerance. In contrast, complexing TCR-based signaling with single-chain variable fragment (scFv) recognition to generate TCR fusion construct (TRuC)-Tregs delivered controlled antigen-specific signaling via engagement of the entire TCR complex, thereby directing functional suppression of the FVIII-specific antibody response. These data suggest that cellular therapies employing engineered receptor Tregs will require regulation of activation thresholds to maintain optimal suppressive function.


Asunto(s)
Factor VIII/inmunología , Hemofilia A/terapia , Mutación , Receptores Quiméricos de Antígenos/metabolismo , Linfocitos T Reguladores/inmunología , Inmunidad Adaptativa , Animales , Antígenos CD28/genética , Complejo CD3/genética , Modelos Animales de Enfermedad , Hemofilia A/genética , Hemofilia A/inmunología , Humanos , Interleucina-10/genética , Masculino , Ratones
7.
Cell Immunol ; 359: 104251, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33248367

RESUMEN

Oral antigen administration to induce regulatory T cells (Treg) takes advantage of regulatory mechanisms that the gastrointestinal tract utilizes to promote unresponsiveness against food antigens or commensal microorganisms. Recently, antigen-based oral immunotherapies (OITs) have shown efficacy as treatment for food allergy and autoimmune diseases. Similarly, OITs appear to prevent anti-drug antibody responses in replacement therapy for genetic diseases. Intestinal epithelial cells and microbiota possibly condition dendritic cells (DC) toward a tolerogenic phenotype that induces Treg via expression of several mediators, e.g. IL-10, transforming growth factor-ß, retinoic acid. Several factors, such as metabolites derived from microbiota or diet, impact the stability and expansion of these induced Treg, which include, but are not limited to, FoxP3+ Treg, LAP+ Treg, and/or Tr1 cells. Here, we review various orally induced Treg, their plasticity and cooperation between the Treg subsets, as well as underlying mechanisms controlling their induction and role in oral tolerance.


Asunto(s)
Tolerancia Inmunológica/inmunología , Inmunoterapia/métodos , Linfocitos T Reguladores/inmunología , Administración Oral , Alérgenos/inmunología , Animales , Células Dendríticas/inmunología , Hipersensibilidad a los Alimentos/inmunología , Factores de Transcripción Forkhead/metabolismo , Humanos , Factores Inmunológicos , Mucosa Intestinal/inmunología , Intestinos/inmunología , Péptidos/metabolismo , Precursores de Proteínas/metabolismo , Linfocitos T Reguladores/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
8.
Cell Immunol ; 356: 104193, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32823038

RESUMEN

Regulatory T cells (Tregs) maintain immune equilibrium by suppressing immune responses through various multistep contact dependent and independent mechanisms. Cellular therapy using polyclonal Tregs in transplantation and autoimmune diseases has shown promise in preclinical models and clinical trials. Although novel approaches have been developed to improve specificity and efficacy of antigen specific Treg based therapies, widespread application is currently restricted. To date, design-based approaches to improve the potency and persistence of engineered chimeric antigen receptor (CAR) Tregs are limited. Here, we describe currently available Treg based therapies, their advantages and limitations for implementation in clinical studies. We also examine various strategies for improving CAR T cell design that can potentially be applied to CAR Tregs, such as identifying co-stimulatory signalling domains that enhance suppressive ability, determining optimal scFv affinity/avidity, and co-expression of accessory molecules. Finally, we discuss the importance of tailoring CAR Treg design to suit the individual disease.


Asunto(s)
Inmunoterapia Adoptiva/métodos , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/trasplante , Animales , Antígenos , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Tratamiento Basado en Trasplante de Células y Tejidos/tendencias , Humanos , Inmunoterapia Adoptiva/tendencias , Receptores de Antígenos de Linfocitos T/inmunología , Receptores Quiméricos de Antígenos , Linfocitos T Reguladores/metabolismo
9.
Mol Ther ; 32(7): 2040-2041, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38889715
10.
Cell Immunol ; 342: 103682, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-28888664

RESUMEN

Adeno-associated viral (AAV) gene delivery to skeletal muscle is being explored for systemic delivery of therapeutic proteins. To better understand the signals that govern antibody formation against secreted transgene products in this approach, we administered an intramuscular dose of AAV1 vector expressing human coagulation factor IX (hFIX), which does not cause antibody formation against hFIX in C57BL/6 mice. Interestingly, co-administration of a TLR9 agonist (CpG-deoxyoligonucleotide, ODN) but not of lipopolysaccharide, caused a transient anti-hFIX response. ODN activated monocyte-derived dendritic cells and enhanced T follicular helper cell responses. While depletion of regulatory T cells (Tregs) also caused an antibody response, TLR9 activation combined with Treg depletion instead resulted in prolonged CD8+ T cell infiltration of transduced muscle. Thus, Tregs modulate the response to the TLR9 agonist. Further, Treg re-population eventually resolved humoral and cellular immune responses. Therefore, specific modes of TLR9 activation and Tregs orchestrate antibody formation in muscle gene transfer.


Asunto(s)
Dependovirus/genética , Factor IX/genética , Factor IX/inmunología , Técnicas de Transferencia de Gen , Linfocitos T Reguladores/inmunología , Receptor Toll-Like 9/fisiología , Animales , Formación de Anticuerpos , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Oligodesoxirribonucleótidos/farmacología , Transgenes
11.
Blood ; 129(24): 3184-3195, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28468798

RESUMEN

Adeno-associated virus (AAV) is a replication-deficient parvovirus that is extensively used as a gene therapy vector. CD8+ T-cell responses against the AAV capsid protein can, however, affect therapeutic efficacy. Little is known about the in vivo mechanism that leads to the crosspriming of CD8+ T cells against the input viral capsid antigen. In this study, we report that the Toll-like receptor 9 (TLR9)-MyD88 pattern-recognition receptor pathway is uniquely capable of initiating this response. By contrast, the absence of TLR2, STING, or the addition of TLR4 agonist has no effect. Surprisingly, both conventional dendritic cells (cDCs) and plasmacytoid DCs (pDCs) are required for the crosspriming of capsid-specific CD8+ T cells, whereas other antigen-presenting cells are not involved. TLR9 signaling is specifically essential in pDCs but not in cDCs, indicating that sensing of the viral genome by pDCs activates cDCs in trans to cross-present capsid antigen during CD8+ T-cell activation. Cross-presentation and crosspriming depend not only on TLR9, but also on interferon type I signaling, and both mechanisms can be inhibited by administering specific molecules to prevent induction of capsid-specific CD8+ T cells. Thus, these outcomes directly point to therapeutic interventions and demonstrate that innate immune blockade can eliminate unwanted immune responses in gene therapy.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Proteínas de la Cápside/inmunología , Células Dendríticas/inmunología , Dependovirus/inmunología , Activación de Linfocitos , Células Plasmáticas/inmunología , Animales , Proteínas de la Cápside/genética , Dependovirus/genética , Terapia Genética , Ratones , Ratones Noqueados , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/inmunología , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/inmunología
13.
Curr Opin Hematol ; 25(5): 365-372, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29994897

RESUMEN

PURPOSE OF REVIEW: Hemophilia is an X-linked blood coagulation genetic disorder, which can cause significant disability. Replacement therapy for coagulation factor VIII (hemophilia A) or factor IX (hemophilia B) may result in the development of high-affinity alloantibodies ('inhibitors') to the replacement therapy, thus making it ineffective. Therefore, there is interest in directing immunological responses towards tolerance to infused factors. RECENT FINDINGS: In this review, we will discuss latest advancements in the development of potentially less immunogenic replacement clotting factors, optimization of current tolerance induction protocols (ITI), preclinical and clinical data of pharmacological immune modulation, hepatic gene therapy, and the rapidly advancing field of cell therapies. We will also evaluate publications reporting data from preclinical studies on oral tolerance induction using chloroplast-transgenic (transplastomic) plants. SUMMARY: Until now, no clinical prophylactic immune modulatory protocol exists to prevent inhibitor formation to infused clotting factors. Recent innovative technologies provide hope for improved eradication and perhaps even prevention of inhibitors.


Asunto(s)
Desensibilización Inmunológica , Factor IX , Factor VIII , Hemofilia A , Hemofilia B , Tolerancia Inmunológica , Inhibidores de Factor de Coagulación Sanguínea/sangre , Inhibidores de Factor de Coagulación Sanguínea/inmunología , Factor IX/inmunología , Factor IX/metabolismo , Factor IX/uso terapéutico , Factor VIII/inmunología , Factor VIII/metabolismo , Factor VIII/uso terapéutico , Hemofilia A/sangre , Hemofilia A/inmunología , Hemofilia A/terapia , Hemofilia B/sangre , Hemofilia B/inmunología , Hemofilia B/terapia , Humanos , Isoanticuerpos/sangre , Isoanticuerpos/inmunología
14.
Plant Biotechnol J ; 16(6): 1148-1160, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29106782

RESUMEN

Inhibitor formation is a serious complication of factor VIII (FVIII) replacement therapy for the X-linked bleeding disorder haemophilia A and occurs in 20%-30% of patients. No prophylactic tolerance protocol currently exists. Although we reported oral tolerance induction using FVIII domains expressed in tobacco chloroplasts, significant challenges in clinical advancement include expression of the full-length CTB-FVIII sequence to cover the entire patient population, regardless of individual CD4+ T-cell epitope responses. Codon optimization of FVIII heavy chain (HC) and light chain (LC) increased expression 15- to 42-fold higher than the native human genes. Homoplasmic lettuce lines expressed CTB fusion proteins of FVIII-HC (99.3 kDa), LC (91.8 kDa), C2 (31 kDa) or single chain (SC, 178.2 kDa) up to 3622, 263, 3321 and 852 µg/g in lyophilized plant cells, when grown in a cGMP hydroponic facility (Fraunhofer). CTB-FVIII-SC is the largest foreign protein expressed in chloroplasts; despite a large pentamer size (891 kDa), assembly, folding and disulphide bonds were maintained upon lyophilization and long-term storage as revealed by GM1-ganglioside receptor binding assays. Repeated oral gavages (twice/week for 2 months) of CTB-FVIII-HC/CTB-FVIII-LC reduced inhibitor titres ~10-fold (average 44 BU/mL to 4.7 BU/mL) in haemophilia A mice. Most importantly, increase in the frequency of circulating LAP-expressing CD4+ CD25+ FoxP3+ Treg in tolerized mice could be used as an important cellular biomarker in human clinical trials for plant-based oral tolerance induction. In conclusion, this study reports the first clinical candidate for oral tolerance induction that is urgently needed to protect haemophilia A patients receiving FVIII injections.


Asunto(s)
Cloroplastos/metabolismo , Factor VIII/biosíntesis , Hemofilia A/tratamiento farmacológico , Tolerancia Inmunológica/efectos de los fármacos , Proteínas Recombinantes de Fusión/metabolismo , Animales , Cloroplastos/genética , Toxina del Cólera , Evaluación Preclínica de Medicamentos , Escherichia coli , Factor VIII/farmacología , Factor VIII/uso terapéutico , Lactuca , Ratones , Proteínas Recombinantes de Fusión/farmacología , Proteínas Recombinantes de Fusión/uso terapéutico
15.
Cell Immunol ; 386: 104695, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36898277
16.
Blood ; 125(19): 2937-47, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25833958

RESUMEN

CD4(+)CD25(+)FoxP3(+) regulatory T cells (Treg) are critical elements for maintaining immune tolerance, for instance to exogenous antigens that are introduced during therapeutic interventions such as cell/organ transplant or gene/protein replacement therapy. Coadministration of antigen with rapamycin simultaneously promotes deletion of conventional CD4(+) T cells and induction of Treg. Here, we report that the cytokine FMS-like receptor tyrosine kinase ligand (Flt3L) enhances the in vivo effect of rapamycin. This occurs via selective expansion of plasmacytoid dendritic cells (pDCs), which further augments the number of Treg. Whereas in conventional DCs, rapamycin effectively blocks mammalian target of rapamycin (mTOR) 1 signaling induced by Flt3L, increased mTOR1 activity renders pDCs more resistant to inhibition by rapamycin. Consequently, Flt3L and rapamycin synergistically promote induction of antigen-specific Treg via selective expansion of pDCs. This concept is supported by the finding that Treg induction is abrogated upon pDC depletion. The combination with pDCs and rapamycin is requisite for Flt3L/antigen-induced Treg induction because Flt3L/antigen by itself fails to induce Treg. As co-administering Flt3L, rapamycin, and antigen blocked CD8(+) T-cell and antibody responses in models of gene and protein therapy, we conclude that the differential effect of rapamycin on DC subsets can be exploited for improved tolerance induction.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Células Dendríticas/inmunología , Factores de Transcripción Forkhead/metabolismo , Subunidad alfa del Receptor de Interleucina-2/metabolismo , Proteínas de la Membrana/metabolismo , Sirolimus/farmacología , Linfocitos T Reguladores/inmunología , Animales , Antibióticos Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Western Blotting , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/metabolismo , Células Cultivadas , Citocinas , Células Dendríticas/efectos de los fármacos , Células Dendríticas/metabolismo , Sinergismo Farmacológico , Citometría de Flujo , Humanos , Tolerancia Inmunológica/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Fosforilación , Transducción de Señal , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
18.
Hum Gene Ther ; 35(13-14): 439-450, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38450566

RESUMEN

Adeno-associated virus (AAV) gene therapy is making rapid strides owing to its wide range of therapeutic applications. However, development of serious immune responses to the capsid antigen or the therapeutic transgene product hinders its full clinical impact. Immune suppressive (IS) drug treatments have been used in various clinical trials to prevent the deleterious effects of cytotoxic T cells to the viral vector or transgene, although there is no consensus on the best treatment regimen, dosage, or schedule. Regulatory T cells (Tregs) are crucial for maintaining tolerance against self or nonself antigens. Of importance, Tregs also play an important role in dampening immune responses to AAV gene therapy, including tolerance induction to the transgene product. Approaches to harness the tolerogenic effect of Tregs include the use of selective IS drugs that expand existing Tregs, and skew activated conventional T cells into antigen-specific peripherally induced Tregs. In addition, Tregs can be expanded ex vivo and delivered as cellular therapy. Furthermore, receptor engineering can be used to increase the potency and specificity of Tregs allowing for suppression at lower doses and reducing the risk of disrupting protective immunity. Because immune-mediated toxicities to AAV vectors are a concern in the clinic, strategies that can enhance or preserve Treg function should be considered to improve both the safety and efficacy of AAV gene therapy.


Asunto(s)
Dependovirus , Factores de Transcripción Forkhead , Terapia Genética , Vectores Genéticos , Linfocitos T Reguladores , Dependovirus/genética , Dependovirus/inmunología , Humanos , Linfocitos T Reguladores/inmunología , Terapia Genética/métodos , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción Forkhead/genética , Vectores Genéticos/administración & dosificación , Animales , Transgenes , Tolerancia Inmunológica
19.
Mol Ther Methods Clin Dev ; 32(1): 101216, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38440160

RESUMEN

Adeno-associated virus (AAV) vectors are used for correcting multiple genetic disorders. Although the goal is to achieve lifelong correction with a single vector administration, the ability to redose would enable the extension of therapy in cases in which initial gene transfer is insufficient to achieve a lasting cure, episomal vector forms are lost in growing organs of pediatric patients, or transgene expression is diminished over time. However, AAV typically induces potent and long-lasting neutralizing antibodies (NAbs) against capsid that prevents re-administration. To prevent NAb formation in hepatic AAV8 gene transfer, we developed a transient B cell-targeting protocol using a combination of monoclonal Ab therapy against CD20 (for B cell depletion) and BAFF (to slow B cell repopulation). Initiation of immunosuppression before (rather than at the time of) vector administration and prolonged anti-BAFF treatment prevented immune responses against the transgene product and abrogated prolonged IgM formation. As a result, vector re-administration after immune reconstitution was highly effective. Interestingly, re-administration before the immune system had fully recovered achieved further elevated levels of transgene expression. Finally, this immunosuppression protocol reduced Ig-mediated AAV uptake by immune cell types with implications to reduce the risk of immunotoxicities in human gene therapy with AAV.

20.
J Virol ; 86(23): 12708-16, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22973037

RESUMEN

Newcastle disease virus (NDV), an avian paramyxovirus, is inherently tumor selective and is currently being considered as a clinical oncolytic virus and vaccine vector. In this study, we analyzed the effect of complement on the neutralization of NDV purified from embryonated chicken eggs, a common source for virus production. Fresh normal human serum (NHS) neutralized NDV by multiple pathways of complement activation, independent of neutralizing antibodies. Neutralization was associated with C3 deposition and the activation of C2, C3, C4, and C5 components. Interestingly, NDV grown in mammalian cell lines was resistant to complement neutralization by NHS. To confirm whether the incorporation of regulators of complement activity (RCA) into the viral envelope afforded complement resistance, we grew NDV in CHO cells stably transfected with CD46 or HeLa cells, which strongly express CD46 and CD55. NDV grown in RCA-expressing cells was resistant to complement by incorporating CD46 and CD55 on virions. Mammalian CD46 and CD55 molecules on virions exhibited homologous restriction, since chicken sera devoid of neutralizing antibodies to NDV were able to effectively neutralize these virions. The incorporation of chicken RCA into NDV produced in embryonated eggs similarly provided species specificity toward chicken sera.


Asunto(s)
Antígenos CD55/genética , Proteínas del Sistema Complemento/inmunología , Proteína Cofactora de Membrana/genética , Virus de la Enfermedad de Newcastle/inmunología , Virión/genética , Animales , Células CHO , Embrión de Pollo , Chlorocebus aethiops , Proteínas del Sistema Complemento/metabolismo , Cricetinae , Cricetulus , Ensayo de Inmunoadsorción Enzimática , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Immunoblotting , Microscopía Electrónica de Transmisión , Pruebas de Neutralización , Virus de la Enfermedad de Newcastle/genética , Virus de la Enfermedad de Newcastle/metabolismo , Especificidad de la Especie , Ultracentrifugación , Células Vero , Virión/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA