Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proteins ; 88(8): 973-985, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31742764

RESUMEN

Critical Assessment of PRediction of Interactions (CAPRI) rounds 37 through 45 introduced larger complexes, new macromolecules, and multistage assemblies. For these rounds, we used and expanded docking methods in Rosetta to model 23 target complexes. We successfully predicted 14 target complexes and recognized and refined near-native models generated by other groups for two further targets. Notably, for targets T110 and T136, we achieved the closest prediction of any CAPRI participant. We created several innovative approaches during these rounds. Since round 39 (target 122), we have used the new RosettaDock 4.0, which has a revamped coarse-grained energy function and the ability to perform conformer selection during docking with hundreds of pregenerated protein backbones. Ten of the complexes had some degree of symmetry in their interactions, so we tested Rosetta SymDock, realized its shortcomings, and developed the next-generation symmetric docking protocol, SymDock2, which includes docking of multiple backbones and induced-fit refinement. Since the last CAPRI assessment, we also developed methods for modeling and designing carbohydrates in Rosetta, and we used them to successfully model oligosaccharide-protein complexes in round 41. Although the results were broadly encouraging, they also highlighted the pressing need to invest in (a) flexible docking algorithms with the ability to model loop and linker motions and in (b) new sampling and scoring methods for oligosaccharide-protein interactions.


Asunto(s)
Simulación del Acoplamiento Molecular , Oligosacáridos/química , Péptidos/química , Proteínas/química , Programas Informáticos , Secuencia de Aminoácidos , Sitios de Unión , Humanos , Ligandos , Oligosacáridos/metabolismo , Péptidos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Mapeo de Interacción de Proteínas , Multimerización de Proteína , Proteínas/metabolismo , Proyectos de Investigación , Homología Estructural de Proteína
2.
Nat Protoc ; 12(2): 401-416, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28125104

RESUMEN

We describe Rosetta-based computational protocols for predicting the 3D structure of an antibody from sequence (RosettaAntibody) and then docking the antibody to protein antigens (SnugDock). Antibody modeling leverages canonical loop conformations to graft large segments from experimentally determined structures, as well as offering (i) energetic calculations to minimize loops, (ii) docking methodology to refine the VL-VH relative orientation and (iii) de novo prediction of the elusive complementarity determining region (CDR) H3 loop. To alleviate model uncertainty, antibody-antigen docking resamples CDR loop conformations and can use multiple models to represent an ensemble of conformations for the antibody, the antigen or both. These protocols can be run fully automated via the ROSIE web server (http://rosie.rosettacommons.org/) or manually on a computer with user control of individual steps. For best results, the protocol requires roughly 1,000 CPU-hours for antibody modeling and 250 CPU-hours for antibody-antigen docking. Tasks can be completed in under a day by using public supercomputers.


Asunto(s)
Región Variable de Inmunoglobulina/inmunología , Simulación del Acoplamiento Molecular/métodos , Secuencia de Aminoácidos , Antígenos/inmunología , Regiones Determinantes de Complementariedad/química , Regiones Determinantes de Complementariedad/inmunología , Región Variable de Inmunoglobulina/química , Internet , Dominios Proteicos , Homología de Secuencia de Aminoácido , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA