RESUMEN
OBJECTIVE: De novo variants in cullin-3 ubiquitin ligase (CUL3) have been strongly associated with neurodevelopmental disorders (NDDs), but no large case series have been reported so far. Here, we aimed to collect sporadic cases carrying rare variants in CUL3, describe the genotype-phenotype correlation, and investigate the underlying pathogenic mechanism. METHODS: Genetic data and detailed clinical records were collected via multicenter collaboration. Dysmorphic facial features were analyzed using GestaltMatcher. Variant effects on CUL3 protein stability were assessed using patient-derived T-cells. RESULTS: We assembled a cohort of 37 individuals with heterozygous CUL3 variants presenting a syndromic NDD characterized by intellectual disability with or without autistic features. Of these, 35 have loss-of-function (LoF) and 2 have missense variants. CUL3 LoF variants in patients may affect protein stability leading to perturbations in protein homeostasis, as evidenced by decreased ubiquitin-protein conjugates in vitro. Notably, we show that 4E-BP1 (EIF4EBP1), a prominent substrate of CUL3, fails to be targeted for proteasomal degradation in patient-derived cells. INTERPRETATION: Our study further refines the clinical and mutational spectrum of CUL3-associated NDDs, expands the spectrum of cullin RING E3 ligase-associated neuropsychiatric disorders, and suggests haploinsufficiency via LoF variants is the predominant pathogenic mechanism. ANN NEUROL 2024.
RESUMEN
Rhabdoid Tumor Predisposition Syndrome 1 (RTPS1) confers an increased risk of developing rhabdoid tumors and is caused by germline mutations in SMARCB1. RTPS1 should be evaluated in all individuals with rhabdoid tumor and is more likely in those with a young age at presentation (occasionally congenital presentation), multiple primary tumors, or a family history of rhabdoid tumor or RTPS1. Proband genetic testing is the standard method for diagnosing RTPS1. Most known RTPS1-related SMARCB1 gene mutations are copy number variants (CNVs) or single nucleotide variants/indels, but structural variant analysis (SVA) is not usually included in the molecular evaluation. Here, we report two children with RTPS1 presenting with atypical teratoid/rhabdoid tumor (ATRT) who had constitutional testing showing balanced chromosome translocations involving SMARCB1. Patient 1 is a 23-year-old female diagnosed with pineal region ATRT at 7 months who was found to have a de novo, constitutional t(16;22)(p13.3;q11.2). Patient 2 is a 24-month-old male diagnosed with a posterior fossa ATRT at 14 months, with subsequent testing showing a constitutional t(5;22)(q14.1;q11.23). These structural rearrangements have not been previously reported in RTPS1. While rare, these cases suggest that structural variants should be considered in the evaluation of children with rhabdoid tumors to provide more accurate genetic counseling on the risks of developing tumors, the need for surveillance, and the risks of passing the disorder on to future children. Further research is needed to understand the prevalence, clinical features, and tumor risks associated with RTPS1-related constitutional balanced translocations.
Asunto(s)
Neoplasias Encefálicas , Trastornos de los Cromosomas , Tumor Rabdoide , Teratoma , Niño , Femenino , Masculino , Humanos , Adulto Joven , Adulto , Lactante , Tumor Rabdoide/genética , Tumor Rabdoide/patología , Proteína SMARCB1/genética , Neoplasias Encefálicas/genética , Mutación de Línea Germinal , Translocación Genética , Teratoma/genética , Teratoma/patologíaRESUMEN
Erythroid sarcoma (ES) is exceedingly rare in the pediatric population with only a handful of reports of de novo cases, mostly occurring in the central nervous system (CNS) or orbit. It is clinically and pathologically challenging and can masquerade as a nonhematopoietic small round blue cell tumor. Clinical presentation of ES without bone marrow involvement makes diagnosis particularly difficult. We describe a 22-month-old female with ES who presented with a 2-cm mass involving the left parotid region and CNS. The presence of crush/fixation artifact from the initial biopsy made definitive classification of this highly proliferative and malignant neoplasm challenging despite an extensive immunohistochemical workup. Molecular studies including RNA-sequencing revealed a NFIA::CBFA2T3 fusion. This fusion has been identified in several cases of de novo acute erythroid leukemia (AEL) and gene expression analysis comparing this case to other AELs revealed a similar transcriptional profile. Given the diagnostically challenging nature of this tumor, clinical RNA-sequencing was essential for establishing a diagnosis.
Asunto(s)
Factores de Transcripción NFI , Proteínas de Fusión Oncogénica , Proteínas Represoras , Sarcoma , Femenino , Humanos , Lactante , Factores de Transcripción NFI/genética , Proteínas de Fusión Oncogénica/genética , Sarcoma/genética , Sarcoma/patología , Sarcoma/diagnósticoRESUMEN
PURPOSE: To assess the differences in variant classifications using the American College of Medical Genetics and Genomics and the Association for Molecular Pathology 2015 guidelines and the Bayesian point-based classification system (here referred to as the point system) in 115 hereditary cancer predisposition genes and explore variant sub-tiering by the point system. METHODS: Germline variant classifications for 721 pediatric patients from an in-house panel were retrospectively evaluated using the 2 scoring systems. RESULTS: A total of 2376 unique variants were identified, with â¼23.5% exhibiting discordant classifications. Unique variants classified by the point system demonstrated a lower rate of variants of uncertain significance (VUS; â¼15%) compared with American College of Medical Genetics and Genomics and the Association for Molecular Pathology 2015 guidelines (â¼36%). This change is attributed to unique variants with 1 benign supporting evidence (â¼12%) or 1 benign strong evidence (â¼4%) being classified as likely benign by the point system. Additionally, variants with conflicting/modified evidence (â¼5% of 2376) are also resolved by the point system. Sub-tiering unique variants classified by the point system as VUS (n = 354) indicates â¼77.4% were VUS-Low (0-1 points), whereas the remaining â¼22.6% were VUS-Mid (2-3 points) and VUS-High (4-5 points). CONCLUSION: The point system reduces the VUS rate and facilitates their sub-tiering. Future large-scale studies are warranted to explore the impact of the point system on improving VUS reporting and/or VUS clinical management.
RESUMEN
Congenital/neonatal bone neoplasms are extremely rare. We present the case of a patient with a neonatal bone tumor of the fibula that had osteoblastic differentiation and a novel PTBP1::FOSB fusion. FOSB fusions are described in several different tumor types, including osteoid osteoma and osteoblastoma; however, these tumors typically present in the second or third decade of life, with case reports as young as 4 months of age. Our case expands the spectrum of congenital/neonatal bone lesions. The initial radiologic, histologic, and molecular findings supported the decision for close clinical follow-up rather than more aggressive intervention. Since the time of diagnosis, this tumor has undergone radiologic regression without treatment.
Asunto(s)
Neoplasias Óseas , Osteoblastoma , Osteoma Osteoide , Recién Nacido , Humanos , Osteoma Osteoide/diagnóstico , Osteoma Osteoide/patología , Osteoblastoma/diagnóstico , Osteoblastoma/patología , Neoplasias Óseas/patología , Diagnóstico Diferencial , Proteínas Proto-Oncogénicas c-fos/genética , Ribonucleoproteínas Nucleares Heterogéneas , Proteína de Unión al Tracto de PolipirimidinaRESUMEN
The promyelocytic leukemia-retinoic acid receptor-α (PML::RARA) fusion is the hallmark of acute promyelocytic leukemia (APL) and is observed in over 95% of APL cases. RARA and homologous receptors RARB and RARG are occasionally fused to other gene partners, which differentially affect sensitivity to targeted therapies. Most APLs without RARA fusions have rearrangements involving RARG or RARB, both of which frequently show resistance to all-trans-retinoic acid (ATRA) and/or multiagent chemotherapy for acute myeloid leukemia (AML). We present a 13-year-old male diagnosed with variant APL with a novel FNDC3B::RARB in-frame fusion that showed no response to ATRA but responded well to conventional AML therapy. While FNDC3B has been identified as a rare RARA translocation partner in ATRA-sensitive variant APL, it has never been reported as a fusion partner with RARB and it is only the second known fusion partner with RARB in variant APL. We also show that this novel fusion confers an RNA expression signature that is similar to APL, despite clinical resistance to ATRA monotherapy.
Asunto(s)
Leucemia Mieloide Aguda , Leucemia Promielocítica Aguda , Masculino , Humanos , Adolescente , Leucemia Promielocítica Aguda/tratamiento farmacológico , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/metabolismo , Translocación Genética , Tretinoina/uso terapéutico , Leucemia Mieloide Aguda/genética , Receptor alfa de Ácido Retinoico/genética , Genómica , Proteínas de Fusión Oncogénica/genética , Fibronectinas/genéticaRESUMEN
BACKGROUND: Retinoblastoma binding protein 4 (Rbbp4) is a component of transcription regulatory complexes that control cell cycle gene expression. Previous work indicated that Rbbp4 cooperates with the Rb tumor suppressor to block cell cycle entry. Here, we use genetic analysis to examine the interactions of Rbbp4, Rb, and Tp53 in zebrafish neural progenitor cell cycle regulation and survival. RESULTS: Rbbp4 is upregulated across the spectrum of human embryonal and glial brain cancers. Transgenic rescue of rbbp4 mutant embryos shows Rbbp4 is essential for zebrafish neurogenesis. Rbbp4 loss leads to apoptosis and γ-H2AX in the developing brain that is suppressed by tp53 knockdown or maternal zygotic deletion. Mutant retinal neural precursors accumulate in M phase and fail to initiate G0 gene expression. rbbp4; rb1 mutants show an additive effect on the number of M phase cells. In rbbp4 mutants, Tp53 acetylation is detected; however, Rbbp4 overexpression did not rescue DNA damage-induced apoptosis. CONCLUSION: Rbbp4 is necessary for neural progenitor cell cycle progression and initiation of G0 independent of Rb. Tp53-dependent apoptosis in the absence of Rbpb4 correlates with Tp53 acetylation. Together these results suggest that Rbbp4 is required for cell cycle exit and contributes to neural progenitor survival through the regulation of Tp53 acetylation.
Asunto(s)
Células-Madre Neurales , Proteína 4 de Unión a Retinoblastoma , Proteína p53 Supresora de Tumor , Pez Cebra , Acetilación , Animales , Apoptosis/genética , Ciclo Celular/genética , Humanos , Células-Madre Neurales/metabolismo , Proteína 4 de Unión a Retinoblastoma/genética , Proteína 4 de Unión a Retinoblastoma/metabolismo , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez CebraRESUMEN
Acetylation of the lysine residues in histones and other DNA-binding proteins plays a major role in regulation of eukaryotic gene expression. This process is controlled by histone acetyltransferases (HATs/KATs) found in multiprotein complexes that are recruited to chromatin by the scaffolding subunit transformation/transcription domain-associated protein (TRRAP). TRRAP is evolutionarily conserved and is among the top five genes intolerant to missense variation. Through an international collaboration, 17 distinct de novo or apparently de novo variants were identified in TRRAP in 24 individuals. A strong genotype-phenotype correlation was observed with two distinct clinical spectra. The first is a complex, multi-systemic syndrome associated with various malformations of the brain, heart, kidneys, and genitourinary system and characterized by a wide range of intellectual functioning; a number of affected individuals have intellectual disability (ID) and markedly impaired basic life functions. Individuals with this phenotype had missense variants clustering around the c.3127G>A p.(Ala1043Thr) variant identified in five individuals. The second spectrum manifested with autism spectrum disorder (ASD) and/or ID and epilepsy. Facial dysmorphism was seen in both groups and included upslanted palpebral fissures, epicanthus, telecanthus, a wide nasal bridge and ridge, a broad and smooth philtrum, and a thin upper lip. RNA sequencing analysis of skin fibroblasts derived from affected individuals skin fibroblasts showed significant changes in the expression of several genes implicated in neuronal function and ion transport. Thus, we describe here the clinical spectrum associated with TRRAP pathogenic missense variants, and we suggest a genotype-phenotype correlation useful for clinical evaluation of the pathogenicity of the variants.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Trastorno Autístico/etiología , Discapacidad Intelectual/etiología , Mutación Missense , Proteínas Nucleares/genética , Adolescente , Adulto , Secuencia de Aminoácidos , Trastorno Autístico/metabolismo , Trastorno Autístico/patología , Niño , Preescolar , Femenino , Estudios de Asociación Genética , Humanos , Lactante , Discapacidad Intelectual/metabolismo , Discapacidad Intelectual/patología , Masculino , Pronóstico , Homología de Secuencia , Síndrome , Adulto JovenRESUMEN
PURPOSE: CTR9 is a subunit of the PAF1 complex (PAF1C) that plays a crucial role in transcription regulation by binding CTR9 to RNA polymerase II. It is involved in transcription-coupled histone modification through promoting H3K4 and H3K36 methylation. We describe the clinical and molecular studies in 13 probands, harboring likely pathogenic CTR9 missense variants, collected through GeneMatcher. METHODS: Exome sequencing was performed in all individuals. CTR9 variants were assessed through 3-dimensional modeling of the activated human transcription complex Pol II-DSIF-PAF-SPT6 and the PAF1/CTR9 complex. H3K4/H3K36 methylation analysis, mitophagy assessment based on tetramethylrhodamine ethyl ester perchlorate immunofluorescence, and RNA-sequencing in skin fibroblasts from 4 patients was performed. RESULTS: Common clinical findings were variable degrees of intellectual disability, hypotonia, joint hyperlaxity, speech delay, coordination problems, tremor, and autism spectrum disorder. Mild dysmorphism and cardiac anomalies were less frequent. For 11 CTR9 variants, de novo occurrence was shown. Three-dimensional modeling predicted a likely disruptive effect of the variants on local CTR9 structure and protein interaction. Additional studies in fibroblasts did not unveil the downstream functional consequences of the identified variants. CONCLUSION: We describe a neurodevelopmental disorder caused by (mainly) de novo variants in CTR9, likely affecting PAF1C function.
Asunto(s)
Trastorno del Espectro Autista , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Fosfoproteínas , Factores de Transcripción , Regulación de la Expresión Génica , Heterocigoto , Humanos , Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/genética , Fosfoproteínas/genética , Factores de Transcripción/genéticaRESUMEN
PURPOSE: Haploinsufficiency of PSMD12 has been reported in individuals with neurodevelopmental phenotypes, including developmental delay/intellectual disability (DD/ID), facial dysmorphism, and congenital malformations, defined as Stankiewicz-Isidor syndrome (STISS). Investigations showed that pathogenic variants in PSMD12 perturb intracellular protein homeostasis. Our objective was to further explore the clinical and molecular phenotypic spectrum of STISS. METHODS: We report 24 additional unrelated patients with STISS with various truncating single nucleotide variants or copy-number variant deletions involving PSMD12. We explore disease etiology by assessing patient cells and CRISPR/Cas9-engineered cell clones for various cellular pathways and inflammatory status. RESULTS: The expressivity of most clinical features in STISS is highly variable. In addition to previously reported DD/ID, speech delay, cardiac and renal anomalies, we also confirmed preaxial hand abnormalities as a feature of this syndrome. Of note, 2 patients also showed chilblains resembling signs observed in interferonopathy. Remarkably, our data show that STISS patient cells exhibit a profound remodeling of the mTORC1 and mitophagy pathways with an induction of type I interferon-stimulated genes. CONCLUSION: We refine the phenotype of STISS and show that it can be clinically recognizable and biochemically diagnosed by a type I interferon gene signature.
Asunto(s)
Discapacidad Intelectual , Trastornos del Desarrollo del Lenguaje , Anomalías Musculoesqueléticas , Haploinsuficiencia , Humanos , Discapacidad Intelectual/diagnóstico , Trastornos del Desarrollo del Lenguaje/genética , Anomalías Musculoesqueléticas/genética , FenotipoRESUMEN
Recent advancements in molecular characterisation have identified four principal molecular groups of medulloblastoma: WNT, SHH, group 3 and group 4. Each has its characteristic clinical features, signature genetic alterations and distinct DNA methylome profiles. Thus far, CTNNB1 mutations have been considered pathognomonic of WNT-activated medulloblastoma. Furthermore, it has been shown that CTNNB1 mutations dominantly drive the WNT-activated phenotype in medulloblastoma, even in the presence of alterations in the SHH pathway. We herein report an illustrative case that challenges this belief-a medulloblastoma with a pathogenic CTNNB1 mutation that otherwise showed the histopathology, immunophenotype and methylation and transcriptomic profiles of an SHH-activated medulloblastoma. Detailed molecular analyses, including whole exome sequencing, transcriptome analysis and DNA methylation profiling with DKFZ brain tumour classifier and St. Jude MLPnet neural network classifier analyses, have been performed on the tumour. Our example emphasises the diagnostic value of the immunohistochemistry panel with YAP1, GAB1 and ß-catenin and DNA methylation profiling, combined with exome sequencing, in the characterisation of medulloblastoma. CTNNB1 mutations are not specific for WNT-activated medulloblastoma, and different CTNNB1 mutations have diverse oncogenic potential.
Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , beta Catenina , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/patología , Metilación de ADN , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Meduloblastoma/genética , Meduloblastoma/patología , Mutación , Transcriptoma , beta Catenina/genéticaRESUMEN
Acute undifferentiated leukemia (AUL) is a very rare hematologic neoplasm that expresses no markers specific for either myeloid or lymphoid lineages. While commonly observed in several acute leukemias, KMT2A rearrangements in AUL have been rarely reported in the literature. We report the third case to our knowledge of AUL harboring a KMT2A rearrangement. Furthermore, the KMT2A/GIMAP8 gene fusion identified in this case represents a novel KMT2A rearrangement.
Asunto(s)
GTP Fosfohidrolasas/genética , N-Metiltransferasa de Histona-Lisina/genética , Leucemia Bifenotípica Aguda/genética , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteínas de Fusión Oncogénica/genética , Niño , Humanos , Leucemia Bifenotípica Aguda/patología , MasculinoRESUMEN
AEBP1 encodes the aortic carboxypeptidase-like protein (ACLP) that associates with collagens in the extracellular matrix (ECM) and has several roles in development, tissue repair, and fibrosis. ACLP is expressed in bone, the vasculature, and dermal tissues and is involved in fibroblast proliferation and mesenchymal stem cell differentiation into collagen-producing cells. Aebp1-/- mice have abnormal, delayed wound repair correlating with defects in fibroblast proliferation. In this study, we describe four individuals from three unrelated families that presented with a unique constellation of clinical findings including joint laxity, redundant and hyperextensible skin, poor wound healing with abnormal scarring, osteoporosis, and other features reminiscent of Ehlers-Danlos syndrome (EDS). Analysis of skin biopsies revealed decreased dermal collagen with abnormal collagen fibrils that were ragged in appearance. Exome sequencing revealed compound heterozygous variants in AEBP1 (c.1470delC [p.Asn490_Met495delins(40)] and c.1743C>A [p.Cys581∗]) in the first individual, a homozygous variant (c.1320_1326del [p.Arg440Serfs∗3]) in the second individual, and a homozygous splice site variant (c.1630+1G>A) in two siblings from the third family. We show that ACLP enhances collagen polymerization and binds to several fibrillar collagens via its discoidin domain. These studies support the conclusion that bi-allelic pathogenic variants in AEBP1 are the cause of this autosomal-recessive EDS subtype.
Asunto(s)
Alelos , Carboxipeptidasas/genética , Colágeno/metabolismo , Tejido Conectivo/patología , Síndrome de Ehlers-Danlos/genética , Mutación/genética , Proteínas Represoras/genética , Adulto , Secuencia de Aminoácidos , Carboxipeptidasas/química , Niño , Preescolar , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Masculino , Dominios Proteicos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Represoras/química , Piel/patología , Piel/ultraestructura , Adulto JovenRESUMEN
PURPOSE: Exome sequencing often identifies pathogenic genetic variants in patients with undiagnosed diseases. Nevertheless, frequent findings of variants of uncertain significance necessitate additional efforts to establish causality before reaching a conclusive diagnosis. To provide comprehensive genomic testing to patients with undiagnosed disease, we established an Individualized Medicine Clinic, which offered clinical exome testing and included a Translational Omics Program (TOP) that provided variant curation, research activities, or research exome sequencing. METHODS: From 2012 to 2018, 1101 unselected patients with undiagnosed diseases received exome testing. Outcomes were reviewed to assess impact of the TOP and patient characteristics on diagnostic rates through descriptive and multivariate analyses. RESULTS: The overall diagnostic yield was 24.9% (274 of 1101 patients), with 174 (15.8% of 1101) diagnosed on the basis of clinical exome sequencing alone. Four hundred twenty-three patients with nondiagnostic or without access to clinical exome sequencing were evaluated by the TOP, with 100 (9% of 1101) patients receiving a diagnosis, accounting for 36.5% of the diagnostic yield. The identification of a genetic diagnosis was influenced by the age at time of testing and the disease phenotype of the patient. CONCLUSION: Integration of translational research activities into clinical practice of a tertiary medical center can significantly increase the diagnostic yield of patients with undiagnosed disease.
Asunto(s)
Exoma , Enfermedades no Diagnosticadas , Exoma/genética , Pruebas Genéticas , Humanos , Fenotipo , Investigación Biomédica Traslacional , Secuenciación del ExomaRESUMEN
Infant leukemias are a rare group of neoplasms that are clinically and biologically distinct from their pediatric and adult counterparts. Unlike leukemia in older children where survival rates are generally favorable, infants with leukemia have a 5-year event-free survival rate of <50%. The majority of infant leukemias are characterized by KMT2A (MLL) rearrangements (~70 to 80% in acute lymphoblastic leukemia), which appear to be drivers of early leukemogenesis. In this report, we describe three cases: a 9-month-old female infant with B-acute lymphoblastic leukemia (B-ALL), an 8-month-old female presenting with B/myeloid mixed phenotype acute leukemia (MPAL), and a 16-month-old male with B-ALL. The first case had a normal karyotype and B-ALL FISH results consistent with an atypical KMT2A rearrangement. The second case had trisomy 10 as the sole chromosomal abnormality and a normal KMT2A FISH result. Case 3 had trisomy 8 and a t(11;15)(q23;q21), an atypical KMT2A rearrangement by FISH studies, and a focal deletion of 15q with a breakpoint within the USP8 gene by chromosomal microarray. Mate pair sequencing was performed on all three cases and identified a KMT2A-USP2 rearrangement (cases 1 and 2) or a KMT2A-USP8 rearrangement (case 3). These recently characterized KMT2A fusions have been described exclusively in infant and pediatric leukemia cases where the incidence varies vary according to leukemia subtype, are considered high-risk, with a high incidence of central nervous system involvement, poor response to initial prednisone treatment, and poor event free survival. Additionally, approximately half of cases are unable to be resolved using standard cytogenetic approaches and are likely under recognized. Therefore, targeted molecular approaches are suggested in genetically unresolved infant leukemia cases to characterize these prognostically relevant clones.
Asunto(s)
Reordenamiento Génico , N-Metiltransferasa de Histona-Lisina/genética , Proteína de la Leucemia Mieloide-Linfoide/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Endopeptidasas/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Femenino , Pruebas Genéticas/métodos , Humanos , Lactante , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Ubiquitina Tiolesterasa/genéticaRESUMEN
Lipomatosis of nerve is a rare malformation characterized by a fibrolipomatous proliferation within peripheral nerve. Lipomatosis of nerve most frequently involves the median nerve, and manifests clinically as a compressive neuropathy. However, 30-60% of cases are associated with tissue overgrowth within the affected nerve's territory (e.g., macrodactyly for lipomatosis of nerve in the distal median nerve). Somatic activating PIK3CA mutations have been identified in peripheral nerve from patients with lipomatosis of nerve with type I macrodactyly, which is now classified as a PIK3CA-related overgrowth spectrum disorder. However, the PIK3CA mutation status of histologically confirmed lipomatosis of nerve, including cases involving proximal nerves, and cases without territory overgrowth, has not been determined. Fourteen histologically confirmed cases of lipomatosis of nerve involving the median (N = 6), brachial plexus (N = 1), ulnar (N = 3), plantar (N = 2), sciatic and superficial peroneal nerves (N = 1 each) were included. Ten cases had nerve territory overgrowth, ranging from macrodactyly to hemihypertrophy; and four cases had no territory overgrowth. Exome sequencing revealed "hotspot" activating PIK3CA missense mutations in 6/7 cases. Droplet digital polymerase chain reaction for the five most common PIK3CA mutations (p.H1047R, p.H1047L, p.E545K, p.E542K, and p.C420R) confirmed the exome results and identified an additional six cases with mutations (12/14 total). PIK3CA mutations were found in 8/10 cases with territory overgrowth (N = 7 p.H1047R and N = 1 p.E545K), including two proximal nerve cases with extremity overgrowth, and 4/4 cases without territory overgrowth (p.H1047R and p.H1047L, N = 2 each). The variant allele frequency of PIK3CA mutations (6-32%) did not correlate with the overgrowth phenotype. Three intraneural lipomas had no detected PIK3CA mutations. As PIK3CA mutations are frequent events in lipomatosis of nerve, irrespective of anatomic site or territory overgrowth, we propose that all phenotypic variants of this entity be classified within the PIK3CA-related overgrowth spectrum and termed "PIK3CA-related lipomatosis of nerve".
Asunto(s)
Proliferación Celular , Fosfatidilinositol 3-Quinasa Clase I/genética , Lipomatosis/genética , Mutación , Nervios Periféricos/enzimología , Enfermedades del Sistema Nervioso Periférico/genética , Adulto , Niño , Preescolar , Análisis Mutacional de ADN , Femenino , Predisposición Genética a la Enfermedad , Humanos , Recién Nacido , Lipomatosis/enzimología , Lipomatosis/patología , Masculino , Nervios Periféricos/patología , Enfermedades del Sistema Nervioso Periférico/enzimología , Enfermedades del Sistema Nervioso Periférico/patología , Fenotipo , Reacción en Cadena de la Polimerasa , Terminología como Asunto , Secuenciación del ExomaRESUMEN
PURPOSE: Lamb-Shaffer syndrome (LAMSHF) is a neurodevelopmental disorder described in just over two dozen patients with heterozygous genetic alterations involving SOX5, a gene encoding a transcription factor regulating cell fate and differentiation in neurogenesis and other discrete developmental processes. The genetic alterations described so far are mainly microdeletions. The present study was aimed at increasing our understanding of LAMSHF, its clinical and genetic spectrum, and the pathophysiological mechanisms involved. METHODS: Clinical and genetic data were collected through GeneMatcher and clinical or genetic networks for 41 novel patients harboring various types ofSOX5 alterations. Functional consequences of selected substitutions were investigated. RESULTS: Microdeletions and truncating variants occurred throughout SOX5. In contrast, most missense variants clustered in the pivotal SOX-specific high-mobility-group domain. The latter variants prevented SOX5 from binding DNA and promoting transactivation in vitro, whereas missense variants located outside the high-mobility-group domain did not. Clinical manifestations and severity varied among patients. No clear genotype-phenotype correlations were found, except that missense variants outside the high-mobility-group domain were generally better tolerated. CONCLUSIONS: This study extends the clinical and genetic spectrum associated with LAMSHF and consolidates evidence that SOX5 haploinsufficiency leads to variable degrees of intellectual disability, language delay, and other clinical features.
Asunto(s)
Proteínas de Unión al ADN/genética , Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/genética , Factores de Transcripción SOXD/genética , Adolescente , Adulto , Animales , Niño , Preescolar , Femenino , Predisposición Genética a la Enfermedad , Haploinsuficiencia/genética , Humanos , Lactante , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/patología , Trastornos del Desarrollo del Lenguaje/diagnóstico , Trastornos del Desarrollo del Lenguaje/genética , Trastornos del Desarrollo del Lenguaje/patología , Masculino , Mutación Missense/genética , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/patología , Linaje , Fenotipo , Adulto JovenRESUMEN
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMEN
The non-POU domain containing, octamer-binding gene, NONO, is located on chromosome Xq13.1 and encodes a member of a small family of RNA and DNA binding proteins that perform a variety of tasks involved in RNA synthesis, transcriptional regulation and DNA repair. Hemizygous loss-of-function variants in NONO have been shown to cause mental retardation, X-linked, syndromic 34 in males. Features of this disorder can include a range of neurodevelopmental phenotypes, left ventricular noncompaction (LVNC), congenital heart defects, and CNS anomalies. To date only eight cases have been described in the literature. Here we report two unrelated patients and a miscarried fetus with loss-of-function variants in NONO. Their phenotypes, and a review of previously reported cases, demonstrate that hemizygous loss-of-function variants in NONO cause a recognizable genetic syndrome. The cardinal features of this condition include developmental delay, intellectual disability, hypotonia, macrocephaly, structural abnormalities affecting the corpus callosum and/or cerebellum, LVNC, congenital heart defects, and gastrointestinal/feeding issues. This syndrome also carries an increased risk for strabismus and cryptorchidism and is associated with dysmorphic features that include an elongated face, up/down-slanted palpebral fissures, frontal bossing, and malar hypoplasia.
Asunto(s)
Proteínas de Unión al ADN/genética , Discapacidades del Desarrollo/patología , Cardiopatías Congénitas/patología , Hemicigoto , Discapacidad Intelectual/patología , Mutación , Proteínas de Unión al ARN/genética , Adulto , Preescolar , Discapacidades del Desarrollo/genética , Femenino , Edad Gestacional , Cardiopatías Congénitas/genética , Humanos , Discapacidad Intelectual/genética , Masculino , Fenotipo , SíndromeRESUMEN
Primary aneurysmal bone cyst (ABC) is a benign multiloculated cystic lesion of bone that is defined cytogenetically by USP6 gene rearrangements. Rearrangements involving USP6 are promoter swaps, usually generated by fusion of the noncoding upstream exons of different partner genes with exon 1 or 2 of USP6, thus leading to transcriptional upregulation of full-length USP6 coding sequence. Testing for USP6 rearrangements is used diagnostically to distinguish it from secondary ABC and other giant cell-rich primary bone tumors. In this report, we present a case of a 16-year-old male with a primary ABC of the left distal femur. USP6 break apart fluorescence in situ hybridization was positive for a rearrangement and conventional chromosome analysis identified a reciprocal X;17 translocation. In order to identify the putative USP6 fusion partner, we performed RNA sequencing and uncovered a novel USP9X-USP6 promoter swap fusion. This result was confirmed by reverse transcription-polymerase chain reaction (RT-PCR) and by mate pair sequencing thus showing the utility of these alternative methodologies in identifying novel fusion candidates. Ubiquitin-specific protease 9X (USP9X), like USP6, encodes a highly conserved substrate-specific deubiquitylating enzyme. USP9X is highly expressed in a number of tissue types and acts as both an oncogene and tumor suppressor in several human cancers. We conclude that oncogenic activation of USP6 via USP9X promoter exchange represents a novel driver of primary ABC formation.