Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Mol Ther ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38788710

RESUMEN

Sepsis-associated encephalopathy (SAE) is a frequent complication of severe systemic infection resulting in delirium, premature death, and long-term cognitive impairment. We closely mimicked SAE in a murine peritoneal contamination and infection (PCI) model. We found long-lasting synaptic pathology in the hippocampus including defective long-term synaptic plasticity, reduction of mature neuronal dendritic spines, and severely affected excitatory neurotransmission. Genes related to synaptic signaling, including the gene for activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) and members of the transcription-regulatory EGR gene family, were downregulated. At the protein level, ARC expression and mitogen-activated protein kinase signaling in the brain were affected. For targeted rescue we used adeno-associated virus-mediated overexpression of ARC in the hippocampus in vivo. This recovered defective synaptic plasticity and improved memory dysfunction. Using the enriched environment paradigm as a non-invasive rescue intervention, we found improvement of defective long-term potentiation, memory, and anxiety. The beneficial effects of an enriched environment were accompanied by an increase in brain-derived neurotrophic factor (BDNF) and ARC expression in the hippocampus, suggesting that activation of the BDNF-TrkB pathway leads to restoration of the PCI-induced reduction of ARC. Collectively, our findings identify synaptic pathomechanisms underlying SAE and provide a conceptual approach to target SAE-induced synaptic dysfunction with potential therapeutic applications to patients with SAE.

2.
Lipids Health Dis ; 20(1): 156, 2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-34743684

RESUMEN

Rash, photosensitivity, erythema multiforme, and the acute generalized exanthematous pustulosis (AGEP) are relatively uncommon adverse reactions of drugs. To date, the etiology is not well understood and individual susceptibility still remains unknown. Amiodarone, chlorpromazine, amitriptyline, and trimipramine are classified lysosomotropic as well as photosensitizing, however, they fail to trigger rash and pruritic papules in all individuals. Lysosomotropism is a common charcteristic of various drugs, but independent of individuals. There is evidence that the individual ability to respond to external oxidative stress is crosslinked with the elongation of long-chain fatty acids to very long-chain fatty acids by ELOVLs. ELOVL6 and ELOVL7 are sensitive to ROS induced depletion of cellular NADPH and insufficient regeneration via the pentose phosphate pathway and mitochondrial fatty acid oxidation. Deficiency of NADPH in presence of lysosomotropic drugs promotes the synthesis of C16-ceramide in lysosomes and may contribute to emerging pruritic papules of AGEP. However, independently from a lysosomomotropic drug, severe depletion of ATP and NAD(P)H, e.g., by UV radiation or a potent photosensitizer can trigger likewise the collapse of the lysosomal transmembrane proton gradient resulting in lysosomal C16-ceramide synthesis and pruritic papules. This kind of papules are equally present in polymorphous light eruption (PMLE/PLE) and acne aestivalis (Mallorca acne). The suggested model of a compartmentalized ceramide metabolism provides a more sophisticated explanation of cutaneous drug adverse effects and the individual sensitivity to UV radiation. Parameters such as pKa and ClogP of the triggering drug, cutaneous fatty acid profile, and ceramide profile enables new concepts in risk assessment and scoring of AGEP as well as prophylaxis outcome.


Asunto(s)
Pustulosis Exantematosa Generalizada Aguda/tratamiento farmacológico , Pustulosis Exantematosa Generalizada Aguda/etiología , Amitriptilina/farmacocinética , Ceramidas/metabolismo , Esfingolípidos/metabolismo , Pustulosis Exantematosa Generalizada Aguda/patología , Vesícula/inducido químicamente , Dermatitis Atópica/etiología , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Antagonistas de los Receptores Histamínicos/efectos adversos , Humanos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , NADP/metabolismo , Trastornos por Fotosensibilidad/etiología , Trastornos por Fotosensibilidad/metabolismo , Fármacos Fotosensibilizantes/efectos adversos
3.
Int J Mol Sci ; 22(4)2021 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-33670304

RESUMEN

Lysosomotropism is a biological characteristic of small molecules, independently present of their intrinsic pharmacological effects. Lysosomotropic compounds, in general, affect various targets, such as lipid second messengers originating from lysosomal enzymes promoting endothelial stress response in systemic inflammation; inflammatory messengers, such as IL-6; and cathepsin L-dependent viral entry into host cells. This heterogeneous group of drugs and active metabolites comprise various promising candidates with more favorable drug profiles than initially considered (hydroxy) chloroquine in prophylaxis and treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections/Coronavirus disease 2019 (COVID-19) and cytokine release syndrome (CRS) triggered by bacterial or viral infections. In this hypothesis, we discuss the possible relationships among lysosomotropism, enrichment in lysosomes of pulmonary tissue, SARS-CoV-2 infection, and transition to COVID-19. Moreover, we deduce further suitable approved drugs and active metabolites based with a more favorable drug profile on rational eligibility criteria, including readily available over-the-counter (OTC) drugs. Benefits to patients already receiving lysosomotropic drugs for other pre-existing conditions underline their vital clinical relevance in the current SARS-CoV2/COVID-19 pandemic.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Descubrimiento de Drogas , Lisosomas/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Antivirales/farmacocinética , Antivirales/uso terapéutico , COVID-19/inmunología , COVID-19/metabolismo , COVID-19/virología , Clorpromazina/farmacocinética , Clorpromazina/farmacología , Clorpromazina/uso terapéutico , Síndrome de Liberación de Citoquinas/tratamiento farmacológico , Descubrimiento de Drogas/métodos , Reposicionamiento de Medicamentos/métodos , Fluvoxamina/farmacocinética , Fluvoxamina/farmacología , Fluvoxamina/uso terapéutico , Humanos , Hidroxicloroquina/farmacocinética , Hidroxicloroquina/farmacología , Hidroxicloroquina/uso terapéutico , Interleucina-1/antagonistas & inhibidores , Interleucina-1/inmunología , Interleucina-6/antagonistas & inhibidores , Interleucina-6/inmunología , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/virología , Lisosomas/inmunología , Lisosomas/metabolismo , Lisosomas/virología , SARS-CoV-2/inmunología , SARS-CoV-2/fisiología , Bibliotecas de Moléculas Pequeñas/farmacocinética , Bibliotecas de Moléculas Pequeñas/uso terapéutico , Replicación Viral/efectos de los fármacos
4.
Int J Mol Sci ; 21(14)2020 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-32668803

RESUMEN

In line with SARS and MERS, the SARS-CoV-2/COVID-19 pandemic is one of the largest challenges in medicine and health care worldwide. SARS-CoV-2 infection/COVID-19 provides numerous therapeutic targets, each of them promising, but not leading to the success of therapy to date. Neither an antiviral nor an immunomodulatory therapy in patients with SARS-CoV-2 infection/COVID-19 or pre-exposure prophylaxis against SARS-CoV-2 has proved to be effective. In this review, we try to close the gap and point out the likely relationships among lysosomotropism, increasing lysosomal pH, SARS-CoV-2 infection, and disease process, and we deduce an approach for the treatment and prophylaxis of COVID-19, and cytokine release syndrome (CRS)/cytokine storm triggered by bacteria or viruses. Lysosomotropic compounds affect prominent inflammatory messengers (e.g., IL-1B, CCL4, CCL20, and IL-6), cathepsin-L-dependent viral entry of host cells, and products of lysosomal enzymes that promote endothelial stress response in systemic inflammation. As supported by recent clinical data, patients who have already taken lysosomotropic drugs for other pre-existing conditions likely benefit from this treatment in the COVID-19 pandemic. The early administration of a combination of antivirals such as remdesivir and lysosomotropic drugs, such as the antibiotics teicoplanin or dalbavancin, seems to be able to prevent SARS-CoV-2 infection and transition to COVID-19.


Asunto(s)
Infecciones por Coronavirus/patología , Lisosomas/metabolismo , Neumonía Viral/patología , Enzima Convertidora de Angiotensina 2 , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Betacoronavirus/aislamiento & purificación , Betacoronavirus/fisiología , COVID-19 , Proteasas 3C de Coronavirus , Infecciones por Coronavirus/complicaciones , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/virología , Síndrome de Liberación de Citoquinas/etiología , Síndrome de Liberación de Citoquinas/patología , Humanos , Pandemias , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/complicaciones , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/virología , SARS-CoV-2 , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/metabolismo , Internalización del Virus/efectos de los fármacos
5.
Int J Mol Sci ; 21(17)2020 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-32847028

RESUMEN

Assessment of hematotoxicity from environmental or xenobiotic compounds is of notable interest and is frequently assessed via the colony forming unit (CFU) assay. Identification of the mode of action of single compounds is of further interest, as this often enables transfer of results across different tissues and compounds. Metabolomics displays one promising approach for such identification, nevertheless, suitability with current protocols is restricted. Here, we combined a hematopoietic stem and progenitor cell (HSPC) expansion approach with distinct lineage differentiations, resulting in formation of erythrocytes, dendritic cells and neutrophils. We examined the unique combination of pathway activity in glycolysis, glutaminolysis, polyamine synthesis, fatty acid oxidation and synthesis, as well as glycerophospholipid and sphingolipid metabolism. We further assessed their interconnections and essentialness for each lineage formation. By this, we provide further insights into active metabolic pathways during the differentiation of HSPC into different lineages, enabling profound understanding of possible metabolic changes in each lineage caused by exogenous compounds.


Asunto(s)
Linaje de la Célula/fisiología , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/metabolismo , Metaboloma , Células Mieloides/fisiología , Antígenos CD34/metabolismo , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Linaje de la Célula/genética , Células Cultivadas , Perfilación de la Expresión Génica , Células Madre Hematopoyéticas/fisiología , Humanos , Redes y Vías Metabólicas/genética , Metabolómica , RNA-Seq
6.
Int J Mol Sci ; 20(16)2019 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-31443157

RESUMEN

Active rebuilding, stabilizing, and maintaining the lipid barrier of the skin is an encouraging disease management and care concept for dry skin, atopic dermatitis (eczema, neurodermatitis), and psoriasis. For decades, corticosteroids have been the mainstay of topical therapy for atopic dermatitis; however, innovations within the scope of basic therapy are rare. In (extremely) dry, irritated, or inflammatory skin, as well as in lesions, an altered (sphingo)lipid profile is present. Recovery of a balanced (sphingo)lipid profile is a promising target for topical and personalized treatment and prophylaxis. New approaches for adults and small children are still lacking. With an ingenious combination of commonly used active ingredients, it is possible to restore and reinforce the dermal lipid barrier and maintain refractivity. Lysosomes and ceramide de novo synthesis play a key role in attenuation of the dermal lipid barrier. Linoleic acid in combination with amitriptyline in topical medication offers the possibility to relieve patients affected by dry and itchy skin, mild to moderate atopic dermatitis lesions, and eczemas without the commonly occurring serious adverse effects of topical corticosteroids or systemic antibody administration.


Asunto(s)
Ceramidas/metabolismo , Dermatitis Atópica/metabolismo , Amitriptilina/uso terapéutico , Animales , Antioxidantes/metabolismo , Apoptosis/fisiología , Humanos , Ácido Linoleico/uso terapéutico , Esfingolípidos/metabolismo
7.
BMC Genomics ; 18(1): 601, 2017 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-28797245

RESUMEN

BACKGROUND: The human immune system is responsible for protecting the host from infection. However, in immunocompromised individuals the risk of infection increases substantially with possible drastic consequences. In extreme, systemic infection can lead to sepsis which is responsible for innumerous deaths worldwide. Amongst its causes are infections by bacteria and fungi. To increase survival, it is mandatory to identify the type of infection rapidly. Discriminating between fungal and bacterial pathogens is key to determine if antifungals or antibiotics should be administered, respectively. For this, in situ experiments have been performed to determine regulation mechanisms of the human immune system to identify biomarkers. However, these studies led to heterogeneous results either due different laboratory settings, pathogen strains, cell types and tissues, as well as the time of sample extraction, to name a few. METHODS: To generate a gene signature capable of discriminating between fungal and bacterial infected samples, we employed Mixed Integer Linear Programming (MILP) based classifiers on several datasets comprised of the above mentioned pathogens. RESULTS: When combining the classifiers by a joint optimization we could increase the consistency of the biomarker gene list independently of the experimental setup. An increase in pairwise overlap (the number of genes that overlap in each cross-validation) of 43% was obtained by this approach when compared to that of single classifiers. The refined gene list was composed of 19 genes and ranked according to consistency in expression (up- or down-regulated) and most of them were linked either directly or indirectly to the ERK-MAPK signalling pathway, which has been shown to play a key role in the immune response to infection. Testing of the identified 12 genes on an unseen dataset yielded an average accuracy of 83%. CONCLUSIONS: In conclusion, our method allowed the combination of independent classifiers and increased consistency and reliability of the generated gene signatures.


Asunto(s)
Biología Computacional/métodos , Hongos/fisiología , Marcadores Genéticos/genética , Aspergillus fumigatus/fisiología , Infecciones Bacterianas/genética , Infecciones Bacterianas/inmunología , Interacciones Huésped-Patógeno , Humanos , Monocitos/efectos de los fármacos , Monocitos/inmunología , Monocitos/microbiología , Micosis/genética , Micosis/inmunología , Máquina de Vectores de Soporte
8.
Ann Surg ; 264(6): 1125-1134, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26727089

RESUMEN

OBJECTIVE: The present study was aimed to identify mechanisms linked to complicated courses and adverse events after severe trauma by a systems biology approach. SUMMARY BACKGROUND DATA: In severe trauma, overwhelming systemic inflammation can result in additional damage and the development of complications, including sepsis. METHODS: In a prospective, longitudinal single-center study, RNA samples from circulating leukocytes from patients with multiple injury (injury severity score ≥17 points; n = 81) were analyzed for dynamic changes in gene expression over a period of 21 days by whole-genome screening (discovery set; n = 10 patients; 90 samples) and quantitative RT-PCR (validation set; n = 71 patients, 517 samples). Multivariate correlational analysis of transcripts and clinical parameters was used to identify mechanisms related to sepsis. RESULTS: Transcriptome profiling of the discovery set revealed the strongest changes between patients with either systemic inflammation or sepsis in gene expression of the heme degradation pathway. Using quantitative RT-PCR analyses (validation set), the key components haptoglobin (HP), cluster of differentiation (CD) 163, heme oxygenase-1 (HMOX1), and biliverdin reductase A (BLVRA) showed robust changes following trauma. Upregulation of HP was associated with the severity of systemic inflammation and the development of sepsis. Patients who received allogeneic blood transfusions had a higher incidence of nosocomial infections and sepsis, and the amount of blood transfusion as source of free heme correlated with the expression pattern of HP. CONCLUSIONS: These findings indicate that the heme degradation pathway is associated with increased susceptibility to septic complications after trauma, which is indicated by HP expression in particular.


Asunto(s)
Proteínas Sanguíneas/genética , Infección Hospitalaria/sangre , Infección Hospitalaria/etiología , Sepsis/sangre , Sepsis/etiología , Transcriptoma/genética , Heridas y Lesiones/complicaciones , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/sangre , Femenino , Expresión Génica , Humanos , Puntaje de Gravedad del Traumatismo , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Reacción en Cadena en Tiempo Real de la Polimerasa , Medición de Riesgo , Factores de Riesgo , Reacción a la Transfusión
9.
Mol Med ; 21: 355-63, 2015 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-25860876

RESUMEN

In sepsis, the severity-dependent decrease of von Willebrand factor (VWF)-inactivating protease, a disintegrin and metalloproteinase with thrombospondin motifs 13 (ADAMTS13), results in platelet aggregation and consumption, leading to sepsis-associated thrombotic microangiopathy (TMA) and organ failure. Previous reports assessing its functional deficiency have pinpointed involvement of autoantibodies or mutations to propagate thrombotic thrombocytopenic purpura (TTP). However, mechanisms of acquired ADAMTS13 deficiency during host response remain unclear. To enhance understanding of ADAMTS13 deficiency in sepsis, we evaluated changes in expression of mRNA coding ADAMTS13 during septic conditions using primary cellular sources of the protease. We hypothesized that proinflammatory cytokines and constituents of serum from septic patients affect the transcriptional level of ADAMTS13 in vitro, and previously recommended therapeutic agents as adjunctive therapy for sepsis interact therewith. Cultured hepatic stellate cells (HSCs), endothelial cells (HMEC) and human precision-cut liver slices as an ex vivo model were stimulated with sepsis prototypic cytokines, bacterial endotoxin and pooled serum obtained from septic patients. Stimulation resulted in a significant decrease in ADAMTS13 mRNA between 10% and 80% of basal transcriptional rates. Costimulation of selenite or recombinant activated protein C (APC) with serum prevented ADAMTS13 decrease in HSCs and increased ADAMTS13 transcripts in HMEC. In archived clinical samples, the activity of ADAMTS13 in septic patients treated with APC (n = 5) increased with an accompanying decrease in VWF propeptide as surrogate for improved endothelial function. In conclusion, proinflammatory conditions of sepsis repress mRNA coding ADAMTS13 and the ameliorating effect by selenite and APC may support the concept for identification of beneficial mechanisms triggered by these drugs at a molecular level.


Asunto(s)
Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Expresión Génica , Proteína C/metabolismo , ARN Mensajero/genética , Ácido Selenioso/metabolismo , Factor de von Willebrand/metabolismo , Proteína ADAMTS13 , Citocinas/sangre , Citocinas/metabolismo , Activación Enzimática , Humanos , Mediadores de Inflamación/sangre , Mediadores de Inflamación/metabolismo , Hígado/metabolismo , Proteolisis , Sepsis/genética , Sepsis/metabolismo , Transcripción Genética
10.
J Lipid Res ; 54(2): 410-24, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23230083

RESUMEN

Plasma secretion of acid sphingomyelinase is a hallmark of cellular stress response resulting in the formation of membrane embedded ceramide-enriched lipid rafts and the reorganization of receptor complexes. Consistently, decompartmentalization of ceramide formation from inert sphingomyelin has been associated with signaling events and regulation of the cellular phenotype. Herein, we addressed the question of whether the secretion of acid sphingomyelinase is involved in host response during sepsis. We found an exaggerated clinical course in mice genetically deficient in acid sphingomyelinase characterized by an increased bacterial burden, an increased phagocytotic activity, and a more pronounced cytokine storm. Moreover, on a functional level, leukocyte-endothelial interaction was found diminished in sphingomyelinase-deficient animals corresponding to a distinct leukocytes' phenotype with respect to rolling and sticking as well as expression of cellular surface proteins. We conclude that hydrolysis of membrane-embedded sphingomyelin, triggered by circulating sphingomyelinase, plays a pivotal role in the first line of defense against invading microorganisms. This function might be essential during the early phase of infection leading to an adaptive response of remote cells and tissues.


Asunto(s)
Sepsis/enzimología , Sepsis/inmunología , Esfingomielina Fosfodiesterasa/deficiencia , Esfingomielina Fosfodiesterasa/metabolismo , Animales , Citocinas/metabolismo , Activación Enzimática/inmunología , Técnicas de Inactivación de Genes , Leucocitos/inmunología , Ratones , Recuento de Plaquetas , Sepsis/sangre , Esfingomielina Fosfodiesterasa/sangre , Esfingomielina Fosfodiesterasa/genética , Factores de Tiempo
11.
Anal Biochem ; 397(1): 60-6, 2010 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-19825358

RESUMEN

Sensitivity and specificity of nucleic acid binding probes immobilized on solid supports are essential features of microarrays. Whereas conventional biochips apply nonquenched linear probes (cDNA, oligonucleotides), hairpin structures containing a fluorophore-quencher system comprise important prerequisites required for ideal transcriptional probes. We describe here the generation of addressable bipartite molecular hook (ABMH) probes and the characterization of their performance analyzing biological and clinical samples, also in comparison to linear oligonucleotide arrays. ABMH can be immobilized subsequent to reaction with the target sequence or the reaction carried out directly with the immobilized probe; target sequences are recognized with excellent sensitivity, specificity, and a detection limit below 50 fM. Due to excellent sensitivity and specificity, ABMH represent ideal candidates for the nonamplified microarray-based detection of low abundance nucleic acids, e.g., required in diagnostic assays.


Asunto(s)
Sondas de Ácido Nucleico/química , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Línea Celular Tumoral , Humanos , Límite de Detección , Sensibilidad y Especificidad , Factor 2 Asociado a Receptor de TNF/análisis , Factor 2 Asociado a Receptor de TNF/genética
12.
Eur J Med Chem ; 153: 73-104, 2018 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-29031494

RESUMEN

Ceramide generation is involved in signal transduction of cellular stress response, in particular during stress-induced apoptosis in response to stimuli such as minimally modified Low-density lipoproteins, TNFalpha and exogenous C6-ceramide. In this paper we describe 48 diverse synthetic products and evaluate their lysosomotropic and acid sphingomyelinase inhibiting activities in macrophages. A stimuli-induced increase of C16-ceramide in macrophages can be almost completely suppressed by representative compound NB 06 providing an effective protection of macrophages against apoptosis. Compounds like NB 06 thus offer highly interesting fields of application besides prevention of apoptosis of macrophages in atherosclerotic plaques in vessel walls. Most importantly, they can be used for blocking pH-dependent lysosomal processes and enzymes in general as well as for analyzing lysosomal dependent cellular signaling. Modulation of gene expression of several prominent inflammatory messengers IL1B, IL6, IL23A, CCL4 and CCL20 further indicate potentially beneficial effects in the field of (systemic) infections involving bacterial endotoxins like LPS or infections with influenza A virus.


Asunto(s)
Apoptosis/efectos de los fármacos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Lisosomas/efectos de los fármacos , Esfingomielina Fosfodiesterasa/antagonistas & inhibidores , Línea Celular , Células Cultivadas , Ceramidas/inmunología , Humanos , Inflamación/tratamiento farmacológico , Inflamación/inmunología , Lipopolisacáridos/inmunología , Lisosomas/inmunología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Transducción de Señal/efectos de los fármacos , Esfingomielina Fosfodiesterasa/inmunología
13.
Front Microbiol ; 8: 2366, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29238336

RESUMEN

Blood stream infections can be caused by several pathogens such as viruses, fungi and bacteria and can cause severe clinical complications including sepsis. Delivery of appropriate and quick treatment is mandatory. However, it requires a rapid identification of the invading pathogen. The current gold standard for pathogen identification relies on blood cultures and these methods require a long time to gain the needed diagnosis. The use of in situ experiments attempts to identify pathogen specific immune responses but these often lead to heterogeneous biomarkers due to the high variability in methods and materials used. Using gene expression profiles for machine learning is a developing approach to discriminate between types of infection, but also shows a high degree of inconsistency. To produce consistent gene signatures, capable of discriminating fungal from bacterial infection, we have employed Support Vector Machines (SVMs) based on Mixed Integer Linear Programming (MILP). Combining classifiers by joint optimization constraining them to the same set of discriminating features increased the consistency of our biomarker list independently of leukocyte-type or experimental setup. Our gene signature showed an enrichment of genes of the lysosome pathway which was not uncovered by the use of independent classifiers. Moreover, our results suggest that the lysosome genes are specifically induced in monocytes. Real time qPCR of the identified lysosome-related genes confirmed the distinct gene expression increase in monocytes during fungal infections. Concluding, our combined classifier approach presented increased consistency and was able to "unmask" signaling pathways of less-present immune cells in the used datasets.

14.
Front Microbiol ; 7: 1167, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27536272

RESUMEN

Severe influenza associated with strong symptoms and lung inflammation can be caused by intra-host evolution of quasispecies with aspartic acid or glycine in hemagglutinin position 222 (HA-222D/G; H1 numbering). To gain insights into the dynamics of host response to this coevolution and to identify key mechanisms contributing to copathogenesis, the lung transcriptional response of BALB/c mice infected with an A(H1N1)pdm09 isolate consisting HA-222D/G quasispecies was analyzed from days 1 to 12 post infection (p.i). At day 2 p.i. 968 differentially expressed genes (DEGs) were detected. The DEG number declined to 359 at day 4 and reached 1001 at day 7 p.i. prior to recovery. Interestingly, a biphasic expression profile was shown for the majority of these genes. Cytokine assays confirmed these results on protein level exemplarily for two key inflammatory cytokines, interferon gamma and interleukin 6. Using a reverse engineering strategy, a regulatory network was inferred to hypothetically explain the biphasic pattern for selected DEGs. Known regulatory interactions were extracted by Pathway Studio 9.0 and integrated during network inference. The hypothetic gene regulatory network revealed a positive feedback loop of Ifng, Stat1, and Tlr3 gene signaling that was triggered by the HA-G222 variant and correlated with a clinical symptom score indicating disease severity.

15.
Artículo en Inglés | MEDLINE | ID: mdl-25728369

RESUMEN

Ceramides are derivatised using 7-(diethylamino)coumarin-3-carbonyl azide; subsequent gradient HPLC separation allows sensitive optical quantification of individual cellular ceramides. Compared to 9-anthracenecarbonyl cyanide (9-anthroyl nitrile) as derivatisation agent, the limit of detection could be improved 415-fold, respectively 10,000-fold (detection limit 0.6 pmol labelled ceramide/sample) when compared to benzoyl chloride-labelling. Acidic or alkaline catalysts are not required, enabling drying and storing of the labelled samples and a free choice of solvents for subsequent HPLC-separation. The quantitative method is characterised by high sensitivity, linearity and robustness in the pico- to nanomolar concentration range and does not require mass-spectrometry for quantification of cellular ceramides.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Cumarinas/química , Hidrazinas/química , Células Cultivadas , Ceramidas/análisis , Cromatografía de Fase Inversa/métodos , Humanos , Leucocitos , Límite de Detección , Reproducibilidad de los Resultados , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA