Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Chem Res Toxicol ; 37(6): 1000-1010, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38769630

RESUMEN

Electronic cigarette smoking (or vaping) is on the rise, presenting questions about the effects of secondhand exposure. The chemical composition of vape emissions was examined in the exhaled breath of eight human volunteers with the high chemical specificity of complementary online and offline techniques. Our study is the first to take multiple exhaled puff measurements from human participants and compare volatile organic compound (VOC) concentrations between two commonly used methods, proton-transfer-reaction time-of-flight mass spectrometry (PTR-ToF-MS) and gas chromatography (GC). Five flavor profile groups were selected for this study, but flavor compounds were not observed as the main contributors to the PTR-ToF-MS signal. Instead, the PTR-ToF-MS mass spectra were overwhelmed by e-liquid thermal decomposition and fragmentation products, which masked other observations regarding flavorings and other potentially toxic species associated with secondhand vape exposure. Compared to the PTR-ToF-MS, GC measurements reported significantly different VOC concentrations, usually below those from PTR-ToF-MS. Consequently, PTR-ToF-MS mass spectra should be interpreted with caution when reporting quantitative results in vaping studies, such as doses of inhaled VOCs. Nevertheless, the online PTR-ToF-MS analysis can provide valuable qualitative information by comparing relative VOCs in back-to-back trials. For example, by comparing the mass spectra of exhaled air with those of direct puffs, we can conclude that harmful VOCs present in the vape emissions are largely absorbed by the participants, including large fractions of nicotine.


Asunto(s)
Compuestos Orgánicos Volátiles , Humanos , Compuestos Orgánicos Volátiles/análisis , Masculino , Adulto , Pruebas Respiratorias , Femenino , Espectrometría de Masas , Vapeo/efectos adversos , Espiración , Sistemas Electrónicos de Liberación de Nicotina , Adulto Joven , Cromatografía de Gases
2.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34635596

RESUMEN

Oceans emit large quantities of dimethyl sulfide (DMS) to the marine atmosphere. The oxidation of DMS leads to the formation and growth of cloud condensation nuclei (CCN) with consequent effects on Earth's radiation balance and climate. The quantitative assessment of the impact of DMS emissions on CCN concentrations necessitates a detailed description of the oxidation of DMS in the presence of existing aerosol particles and clouds. In the unpolluted marine atmosphere, DMS is efficiently oxidized to hydroperoxymethyl thioformate (HPMTF), a stable intermediate in the chemical trajectory toward sulfur dioxide (SO2) and ultimately sulfate aerosol. Using direct airborne flux measurements, we demonstrate that the irreversible loss of HPMTF to clouds in the marine boundary layer determines the HPMTF lifetime (τHPMTF < 2 h) and terminates DMS oxidation to SO2 When accounting for HPMTF cloud loss in a global chemical transport model, we show that SO2 production from DMS is reduced by 35% globally and near-surface (0 to 3 km) SO2 concentrations over the ocean are lowered by 24%. This large, previously unconsidered loss process for volatile sulfur accelerates the timescale for the conversion of DMS to sulfate while limiting new particle formation in the marine atmosphere and changing the dynamics of aerosol growth. This loss process potentially reduces the spatial scale over which DMS emissions contribute to aerosol production and growth and weakens the link between DMS emission and marine CCN production with subsequent implications for cloud formation, radiative forcing, and climate.

3.
Proc Natl Acad Sci U S A ; 117(9): 4505-4510, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32071211

RESUMEN

Dimethyl sulfide (DMS), emitted from the oceans, is the most abundant biological source of sulfur to the marine atmosphere. Atmospheric DMS is oxidized to condensable products that form secondary aerosols that affect Earth's radiative balance by scattering solar radiation and serving as cloud condensation nuclei. We report the atmospheric discovery of a previously unquantified DMS oxidation product, hydroperoxymethyl thioformate (HPMTF, HOOCH2SCHO), identified through global-scale airborne observations that demonstrate it to be a major reservoir of marine sulfur. Observationally constrained model results show that more than 30% of oceanic DMS emitted to the atmosphere forms HPMTF. Coincident particle measurements suggest a strong link between HPMTF concentration and new particle formation and growth. Analyses of these observations show that HPMTF chemistry must be included in atmospheric models to improve representation of key linkages between the biogeochemistry of the ocean, marine aerosol formation and growth, and their combined effects on climate.

4.
Environ Sci Technol ; 56(13): 9623-9631, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35699285

RESUMEN

We use global airborne observations of propane (C3H8) and ethane (C2H6) from the Atmospheric Tomography (ATom) and HIAPER Pole-to-Pole Observations (HIPPO), as well as U.S.-based aircraft and tower observations by NOAA and from the NCAR FRAPPE campaign as tracers for emissions from oil and gas operations. To simulate global mole fraction fields for these gases, we update the default emissions' configuration of C3H8 used by the global chemical transport model, GEOS-Chem v13.0.0, using a scaled C2H6 spatial proxy. With the updated emissions, simulations of both C3H8 and C2H6 using GEOS-Chem are in reasonable agreement with ATom and HIPPO observations, though the updated emission fields underestimate C3H8 accumulation in the arctic wintertime, pointing to additional sources of this gas in the high latitudes (e.g., Europe). Using a Bayesian hierarchical model, we estimate global emissions of C2H6 and C3H8 from fossil fuel production in 2016-2018 to be 13.3 ± 0.7 (95% CI) and 14.7 ± 0.8 (95% CI) Tg/year, respectively. We calculate bottom-up hydrocarbon emission ratios using basin composition measurements weighted by gas production and find their magnitude is higher than expected and is similar to ratios informed by our revised alkane emissions. This suggests that emissions are dominated by pre-processing activities in oil-producing basins.


Asunto(s)
Contaminantes Atmosféricos , Petróleo , Contaminantes Atmosféricos/análisis , Teorema de Bayes , Fósiles , Gases , Hidrocarburos , Metano/análisis , Gas Natural/análisis
5.
Environ Sci Technol ; 55(24): 16326-16338, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34870986

RESUMEN

The role of anthropogenic NOx emissions in secondary organic aerosol (SOA) production is not fully understood but is important for understanding the contribution of emissions to air quality. Here, we examine the role of organic nitrates (RONO2) in SOA formation over the Korean Peninsula during the Korea-United States Air Quality field study in Spring 2016 as a model for RONO2 aerosol in cities worldwide. We use aircraft-based measurements of the particle phase and total (gas + particle) RONO2 to explore RONO2 phase partitioning. These measurements show that, on average, one-fourth of RONO2 are in the condensed phase, and we estimate that ≈15% of the organic aerosol (OA) mass can be attributed to RONO2. Furthermore, we observe that the fraction of RONO2 in the condensed phase increases with OA concentration, evidencing that equilibrium absorptive partitioning controls the RONO2 phase distribution. Lastly, we model RONO2 chemistry and phase partitioning in the Community Multiscale Air Quality modeling system. We find that known chemistry can account for one-third of the observed RONO2, but there is a large missing source of semivolatile, anthropogenically derived RONO2. We propose that this missing source may result from the oxidation of semi- and intermediate-volatility organic compounds and/or from anthropogenic molecules that undergo autoxidation or multiple generations of OH-initiated oxidation.


Asunto(s)
Contaminantes Atmosféricos , Compuestos Orgánicos Volátiles , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Ciudades , Nitratos/análisis
6.
Environ Sci Technol ; 53(6): 2961-2970, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30821440

RESUMEN

Rapid increase in atmospheric methane (CH4) mixing ratios over the past century is attributable to the intensification of human activities. Information on spatially explicit source contributions is needed to develop efficient and cost-effective CH4 emission reduction and mitigation strategies to addresses near-term climate change. This study collected long-term ambient CH4 measurements at Mount Wilson Observatory (MWO) in Los Angeles, California, to estimate the annual CH4 emissions from the portion of Los Angeles County that is within the South Coast Air Basin (SCLA). The measurement-based CH4 emission estimates for SCLA ranged from 3.95 to 4.89 million metric tons (MMT) carbon dioxide equivalent (CO2e) per year between 2012 and 2016. Source apportionment of CH4, CO, CO2, and volatile organic compounds (VOCs) measurements were used to evaluate source categories that contributed to ambient CH4 mixing ratio enhancements (ΔCH4) at SCLA between 2014 and 2016. Results suggested ΔCH4 contributions of 56-79% from natural gas sources, 7-31% from landfills, and 4-15% from transportation sources. The SCLA-specific CH4 emission estimate made using a research grade gridded CH4 emission inventory suggested contributions of 47% from natural gas sources and 50% from landfills. Subsequent airborne measurements determined that CH4 emissions from two major CH4 sources in SCLA were significantly smaller in magnitude than previously thought. This study highlights the importance of studying the variabilities of CH4 emissions across California for policy makers and stakeholders alike.


Asunto(s)
Contaminantes Atmosféricos , Metano , Monitoreo del Ambiente , Los Angeles , Gas Natural
7.
Geophys Res Lett ; 46(10): 5601-5613, 2019 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-32606484

RESUMEN

We report airborne measurements of acetaldehyde (CH3CHO) during the first and second deployments of the National Aeronautics and Space Administration (NASA) Atmospheric Tomography Mission (ATom). The budget of CH3CHO is examined using the Community Atmospheric Model with chemistry (CAM-chem), with a newly-developed online air-sea exchange module. The upper limit of the global ocean net emission of CH3CHO is estimated to be 34 Tg a-1 (42 Tg a-1 if considering bubble-mediated transfer), and the ocean impacts on tropospheric CH3CHO are mostly confined to the marine boundary layer. Our analysis suggests that there is an unaccounted CH3CHO source in the remote troposphere and that organic aerosols can only provide a fraction of this missing source. We propose that peroxyacetic acid (PAA) is an ideal indicator of the rapid CH3CHO production in the remote troposphere. The higher-than-expected CH3CHO measurements represent a missing sink of hydroxyl radicals (and halogen radical) in current chemistry-climate models.

8.
Proc Natl Acad Sci U S A ; 113(11): 2880-5, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26929368

RESUMEN

National-scale emissions of carbon tetrachloride (CCl4) are derived based on inverse modeling of atmospheric observations at multiple sites across the United States from the National Oceanic and Atmospheric Administration's flask air sampling network. We estimate an annual average US emission of 4.0 (2.0-6.5) Gg CCl4 y(-1) during 2008-2012, which is almost two orders of magnitude larger than reported to the US Environmental Protection Agency (EPA) Toxics Release Inventory (TRI) (mean of 0.06 Gg y(-1)) but only 8% (3-22%) of global CCl4 emissions during these years. Emissive regions identified by the observations and consistently shown in all inversion results include the Gulf Coast states, the San Francisco Bay Area in California, and the Denver area in Colorado. Both the observation-derived emissions and the US EPA TRI identified Texas and Louisiana as the largest contributors, accounting for one- to two-thirds of the US national total CCl4 emission during 2008-2012. These results are qualitatively consistent with multiple aircraft and ship surveys conducted in earlier years, which suggested significant enhancements in atmospheric mole fractions measured near Houston and surrounding areas. Furthermore, the emission distribution derived for CCl4 throughout the United States is more consistent with the distribution of industrial activities included in the TRI than with the distribution of other potential CCl4 sources such as uncapped landfills or activities related to population density (e.g., use of chlorine-containing bleach).

9.
Environ Sci Technol ; 52(12): 6789-6797, 2018 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-29792701

RESUMEN

Emissions of twelve (hydro)chlorofluorocarbons (F-gases) and methane were quantified using large-scale static chambers as a function of cover type (daily, intermediate, final) and seasonal variation (wet, dry) at a California landfill. The majority of the F-gas fluxes was positive and varied over 7 orders of magnitude across the cover types in a given season (wet: 10-8 to 10-1 g/m2-day; dry: 10-9 to 10-2 g/m2-day). The highest fluxes were from active filling areas with thin, coarse-grained daily covers, whereas the lowest fluxes were from the thick, fine-grained final cover. Historical F-gas replacement trends, waste age, and cover soil geotechnical properties affected flux with significantly lower F-gas fluxes than methane flux (10-4 to 10+1 g/m2-day). Both flux and variability of flux decreased with the order: daily to intermediate to final covers; coarser to finer cover materials; low to high fines content cover soils; high to low degree of saturation cover soils; and thin to thick covers. Cover-specific F-gas fluxes were approximately one order of magnitude higher in the wet than dry season, due to combined effects of comparatively high saturations, high void ratios, and low temperatures. Emissions were primarily controlled by type and relative areal extent of cover materials and secondarily by season.


Asunto(s)
Contaminantes Atmosféricos , Eliminación de Residuos , California , Gases , Metano , Oxidación-Reducción , Suelo , Instalaciones de Eliminación de Residuos
10.
Environ Sci Technol ; 52(8): 4514-4525, 2018 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-29584423

RESUMEN

Oil and gas (O&G) facilities emit air pollutants that are potentially a major health risk for nearby populations. We characterized prenatal through adult health risks for acute (1 h) and chronic (30 year) residential inhalation exposure scenarios to nonmethane hydrocarbons (NMHCs) for these populations. We used ambient air sample results to estimate and compare risks for four residential scenarios. We found that air pollutant concentrations increased with proximity to an O&G facility, as did health risks. Acute hazard indices for neurological (18), hematological (15), and developmental (15) health effects indicate that populations living within 152 m of an O&G facility could experience these health effects from inhalation exposures to benzene and alkanes. Lifetime excess cancer risks exceeded 1 in a million for all scenarios. The cancer risk estimate of 8.3 per 10 000 for populations living within 152 m of an O&G facility exceeded the United States Environmental Protection Agency's 1 in 10 000 upper threshold. These findings indicate that state and federal regulatory policies may not be protective of health for populations residing near O&G facilities. Health risk assessment results can be used for informing policies and studies aimed at reducing and understanding health effects associated with air pollutants emitted from O&G facilities.


Asunto(s)
Contaminantes Atmosféricos , Adulto , Colorado , Humanos , Hidrocarburos , Exposición por Inhalación , Medición de Riesgo , Estados Unidos , United States Environmental Protection Agency
11.
Environ Sci Technol ; 52(23): 13738-13746, 2018 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-30407797

RESUMEN

The concentration of nitrogen oxides (NO x) plays a central role in controlling air quality. On a global scale, the primary sink of NO x is oxidation to form HNO3. Gas-phase HNO3 photolyses slowly with a lifetime in the troposphere of 10 days or more. However, several recent studies examining HONO chemistry have proposed that particle-phase HNO3 undergoes photolysis 10-300 times more rapidly than gas-phase HNO3. We present here constraints on the rate of particle-phase HNO3 photolysis based on observations of NO x and HNO3 collected over the Yellow Sea during the KORUS-AQ study in summer 2016. The fastest proposed photolysis rates are inconsistent with the observed NO x to HNO3 ratios. Negligible to moderate enhancements of the HNO3 photolysis rate in particles, 1-30 times faster than in the gas phase, are most consistent with the observations. Small or moderate enhancement of particle-phase HNO3 photolysis would not significantly affect the HNO3 budget but could help explain observations of HONO and NO x in highly aged air.


Asunto(s)
Óxidos de Nitrógeno , Ácido Nitroso , Aerosoles , Nitratos , Fotólisis
12.
Nature ; 488(7412): 490-4, 2012 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-22914166

RESUMEN

After methane, ethane is the most abundant hydrocarbon in the remote atmosphere. It is a precursor to tropospheric ozone and it influences the atmosphere's oxidative capacity through its reaction with the hydroxyl radical, ethane's primary atmospheric sink. Here we present the longest continuous record of global atmospheric ethane levels. We show that global ethane emission rates decreased from 14.3 to 11.3 teragrams per year, or by 21 per cent, from 1984 to 2010. We attribute this to decreasing fugitive emissions from ethane's fossil fuel source--most probably decreased venting and flaring of natural gas in oil fields--rather than a decline in its other major sources, biofuel use and biomass burning. Ethane's major emission sources are shared with methane, and recent studies have disagreed on whether reduced fossil fuel or microbial emissions have caused methane's atmospheric growth rate to slow. Our findings suggest that reduced fugitive fossil fuel emissions account for at least 10-21 teragrams per year (30-70 per cent) of the decrease in methane's global emissions, significantly contributing to methane's slowing atmospheric growth rate since the mid-1980s.


Asunto(s)
Atmósfera/química , Etano/análisis , Etano/química , Metano/análisis , Metano/química , Biocombustibles/estadística & datos numéricos , Biomasa , Etano/historia , Efecto Invernadero , Historia del Siglo XX , Historia del Siglo XXI , Metano/historia , Gas Natural/estadística & datos numéricos , Yacimiento de Petróleo y Gas , Ozono/química , Humedales
13.
Proc Natl Acad Sci U S A ; 112(44): 13514-9, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26483454

RESUMEN

Sulfuric acid (H2SO4), formed from oxidation of sulfur dioxide (SO2) emitted during fossil fuel combustion, is a major precursor of new airborne particles, which have well-documented detrimental effects on health, air quality, and climate. Another precursor is methanesulfonic acid (MSA), produced simultaneously with SO2 during the atmospheric oxidation of organosulfur compounds (OSCs), such as dimethyl sulfide. In the present work, a multidisciplinary approach is used to examine how contributions of H2SO4 and MSA to particle formation will change in a large coastal urban area as anthropogenic fossil fuel emissions of SO2 decline. The 3-dimensional University of California Irvine-California Institute of Technology airshed model is used to compare atmospheric concentrations of gas phase MSA, H2SO4, and SO2 under current emissions of fossil fuel-associated SO2 and a best-case futuristic scenario with zero fossil fuel sulfur emissions. Model additions include results from (i) quantum chemical calculations that clarify the previously uncertain gas phase mechanism of formation of MSA and (ii) a combination of published and experimental estimates of OSC emissions, such as those from marine, agricultural, and urban processes, which include pet waste and human breath. Results show that in the zero anthropogenic SO2 emissions case, particle formation potential from H2SO4 will drop by about two orders of magnitude compared with the current situation. However, particles will continue to be generated from the oxidation of natural and anthropogenic sources of OSCs, with contributions from MSA and H2SO4 of a similar order of magnitude. This could be particularly important in agricultural areas where there are significant sources of OSCs.


Asunto(s)
Contaminantes Atmosféricos/química , Material Particulado/química , Dióxido de Azufre/química , Azufre/química , Seguimiento de Parámetros Ecológicos/métodos , Seguimiento de Parámetros Ecológicos/tendencias , Monitoreo del Ambiente/métodos , Predicción , Combustibles Fósiles , Humanos , Mesilatos/química , Modelos Teóricos , Oxidación-Reducción , Tamaño de la Partícula , Ácidos Sulfúricos/química
14.
Nature ; 476(7359): 194-7, 2011 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-21833086

RESUMEN

Atmospheric methane (CH(4)) increased through much of the twentieth century, but this trend gradually weakened until a stable state was temporarily reached around the turn of the millennium, after which levels increased once more. The reasons for the slowdown are incompletely understood, with past work identifying changes in fossil fuel, wetland and agricultural sources and hydroxyl (OH) sinks as important causal factors. Here we show that the late-twentieth-century changes in the CH(4) growth rates are best explained by reduced microbial sources in the Northern Hemisphere. Our results, based on synchronous time series of atmospheric CH(4) mixing and (13)C/(12)C ratios and a two-box atmospheric model, indicate that the evolution of the mixing ratio requires no significant change in Southern Hemisphere sources between 1984 and 2005. Observed changes in the interhemispheric difference of (13)C effectively exclude reduced fossil fuel emissions as the primary cause of the slowdown. The (13)C observations are consistent with long-term reductions in agricultural emissions or another microbial source within the Northern Hemisphere. Approximately half (51 ± 18%) of the decrease in Northern Hemisphere CH(4) emissions can be explained by reduced emissions from rice agriculture in Asia over the past three decades associated with increases in fertilizer application and reductions in water use.


Asunto(s)
Atmósfera/química , Geografía , Metano/análisis , Consorcios Microbianos/fisiología , Agricultura/estadística & datos numéricos , Animales , Asia , Biomasa , Fertilizantes/estadística & datos numéricos , Incendios , Combustibles Fósiles/estadística & datos numéricos , Radical Hidroxilo/química , Metano/metabolismo , Oryza/metabolismo , Factores de Tiempo , Abastecimiento de Agua/estadística & datos numéricos , Humedales
15.
Nature ; 476(7359): 198-201, 2011 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-21833087

RESUMEN

Methane and ethane are the most abundant hydrocarbons in the atmosphere and they affect both atmospheric chemistry and climate. Both gases are emitted from fossil fuels and biomass burning, whereas methane (CH(4)) alone has large sources from wetlands, agriculture, landfills and waste water. Here we use measurements in firn (perennial snowpack) air from Greenland and Antarctica to reconstruct the atmospheric variability of ethane (C(2)H(6)) during the twentieth century. Ethane levels rose from early in the century until the 1980s, when the trend reversed, with a period of decline over the next 20 years. We find that this variability was primarily driven by changes in ethane emissions from fossil fuels; these emissions peaked in the 1960s and 1970s at 14-16 teragrams per year (1 Tg = 10(12) g) and dropped to 8-10 Tg yr(-1) by the turn of the century. The reduction in fossil-fuel sources is probably related to changes in light hydrocarbon emissions associated with petroleum production and use. The ethane-based fossil-fuel emission history is strikingly different from bottom-up estimates of methane emissions from fossil-fuel use, and implies that the fossil-fuel source of methane started to decline in the 1980s and probably caused the late twentieth century slow-down in the growth rate of atmospheric methane.


Asunto(s)
Atmósfera/química , Etano/análisis , Combustibles Fósiles , Metano/análisis , Nieve/química , Regiones Antárticas , Biocombustibles , Biomasa , Incendios , Combustibles Fósiles/historia , Combustibles Fósiles/estadística & datos numéricos , Geografía , Groenlandia , Historia del Siglo XX , Historia del Siglo XXI , Hielo/análisis , Modelos Teóricos
16.
Faraday Discuss ; 189: 231-51, 2016 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-27138104

RESUMEN

South Korea has recently achieved developed country status with the second largest megacity in the world, the Seoul Metropolitan Area (SMA). This study provides insights into future changes in air quality for rapidly emerging megacities in the East Asian region. We present total OH reactivity observations in the SMA conducted at an urban Seoul site (May-June, 2015) and a suburban forest site (Sep, 2015). The total OH reactivity in an urban site during the daytime was observed at similar levels (∼15 s(-1)) to those previously reported from other East Asian megacity studies. Trace gas observations indicate that OH reactivity is largely accounted for by NOX (∼50%) followed by volatile organic compounds (VOCs) (∼35%). Isoprene accounts for a substantial fraction of OH reactivity among the comprehensive VOC observational dataset (25-47%). In general, observed total OH reactivity can be accounted for by the observed trace gas dataset. However, observed total OH reactivity in the suburban forest area cannot be largely accounted for (∼70%) by the trace gas measurements. The importance of biogenic VOC (BVOCs) emissions and oxidations used to evaluate the impacts of East Asian megacity outflows for the regional air quality and climate contexts are highlighted in this study.

17.
Environ Sci Technol ; 50(19): 10756-10764, 2016 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-27580823

RESUMEN

Oil and natural gas operations have continued to expand and move closer to densely populated areas, contributing to growing public concerns regarding exposure to hazardous air pollutants. During the Barnett Shale Coordinated Campaign in October, 2013, ground-based whole air samples collected downwind of oil and gas sites revealed enhancements in several potentially toxic volatile organic compounds (VOCs) when compared to background values. Molar emissions ratios relative to methane were determined for hexane, benzene, toluene, ethylbenzene, and xylene (BTEX compounds). Using methane leak rates measured from the Picarro mobile flux plane (MFP) system and a Barnett Shale regional methane emissions inventory, the rates of emission of these toxic gases were calculated. Benzene emissions ranged between 51 ± 4 and 60 ± 4 kg h-1. Hexane, the most abundantly emitted pollutant, ranged from 642 ± 45 to 1070 ± 340 kg h-1. While observed hydrocarbon enhancements fall below federal workplace standards, results may indicate a link between emissions from oil and natural gas operations and concerns about exposure to hazardous air pollutants. The larger public health risks associated with the production and distribution of natural gas are of particular importance and warrant further investigation, particularly as the use of natural gas increases in the United States and internationally.


Asunto(s)
Contaminantes Atmosféricos , Gas Natural , Hidrocarburos , Texas , Estados Unidos , Compuestos Orgánicos Volátiles
18.
Environ Sci Technol ; 49(13): 8175-82, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26148556

RESUMEN

A growing dependence on natural gas for energy may exacerbate emissions of the greenhouse gas methane (CH4). Identifying fingerprints of these emissions is critical to our understanding of potential impacts. Here, we compare stable isotopic and alkane ratio tracers of natural gas, agricultural, and urban CH4 sources in the Barnett Shale hydraulic fracturing region near Fort Worth, Texas. Thermogenic and biogenic sources were compositionally distinct, and emissions from oil wells were enriched in alkanes and isotopically depleted relative to natural gas wells. Emissions from natural gas production varied in δ(13)C and alkane ratio composition, with δD-CH4 representing the most consistent tracer of natural gas sources. We integrated our data into a bottom-up inventory of CH4 for the region, resulting in an inventory of ethane (C2H6) sources for comparison to top-down estimates of CH4 and C2H6 emissions. Methane emissions in the Barnett are a complex mixture of urban, agricultural, and fossil fuel sources, which makes source apportionment challenging. For example, spatial heterogeneity in gas composition and high C2H6/CH4 ratios in emissions from conventional oil production add uncertainty to top-down models of source apportionment. Future top-down studies may benefit from the addition of δD-CH4 to distinguish thermogenic and biogenic sources.


Asunto(s)
Contaminantes Atmosféricos/análisis , Sedimentos Geológicos/química , Fracking Hidráulico , Metano/análisis , Isótopos de Carbono , Etano/análisis , Geografía , Hidrocarburos/análisis , Gas Natural/análisis , Yacimiento de Petróleo y Gas , Propano/análisis , Texas
19.
Proc Natl Acad Sci U S A ; 109(50): 20246-53, 2012 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-22233807

RESUMEN

Detailed airborne, surface, and subsurface chemical measurements, primarily obtained in May and June 2010, are used to quantify initial hydrocarbon compositions along different transport pathways (i.e., in deep subsurface plumes, in the initial surface slick, and in the atmosphere) during the Deepwater Horizon oil spill. Atmospheric measurements are consistent with a limited area of surfacing oil, with implications for leaked hydrocarbon mass transport and oil drop size distributions. The chemical data further suggest relatively little variation in leaking hydrocarbon composition over time. Although readily soluble hydrocarbons made up ∼25% of the leaking mixture by mass, subsurface chemical data show these compounds made up ∼69% of the deep plume mass; only ∼31% of the deep plume mass was initially transported in the form of trapped oil droplets. Mass flows along individual transport pathways are also derived from atmospheric and subsurface chemical data. Subsurface hydrocarbon composition, dissolved oxygen, and dispersant data are used to assess release of hydrocarbons from the leaking well. We use the chemical measurements to estimate that (7.8 ± 1.9) × 10(6) kg of hydrocarbons leaked on June 10, 2010, directly accounting for roughly three-quarters of the total leaked mass on that day. The average environmental release rate of (10.1 ± 2.0) × 10(6) kg/d derived using atmospheric and subsurface chemical data agrees within uncertainties with the official average leak rate of (10.2 ± 1.0) × 10(6) kg/d derived using physical and optical methods.

20.
Proc Natl Acad Sci U S A ; 109(50): 20280-5, 2012 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-22205764

RESUMEN

During the Deepwater Horizon (DWH) oil spill, a wide range of gas and aerosol species were measured from an aircraft around, downwind, and away from the DWH site. Additional hydrocarbon measurements were made from ships in the vicinity. Aerosol particles of respirable sizes were on occasions a significant air quality issue for populated areas along the Gulf Coast. Yields of organic aerosol particles and emission factors for other atmospheric pollutants were derived for the sources from the spill, recovery, and cleanup efforts. Evaporation and subsequent secondary chemistry produced organic particulate matter with a mass yield of 8 ± 4% of the oil mixture reaching the water surface. Approximately 4% by mass of oil burned on the surface was emitted as soot particles. These yields can be used to estimate the effects on air quality for similar events as well as for this spill at other times without these data. Whereas emission of soot from burning surface oil was large during the episodic burns, the mass flux of secondary organic aerosol to the atmosphere was substantially larger overall. We use a regional air quality model to show that some observed enhancements in organic aerosol concentration along the Gulf Coast were likely due to the DWH spill. In the presence of evaporating hydrocarbons from the oil, NO(x) emissions from the recovery and cleanup operations produced ozone.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Contaminación por Petróleo , Aerosoles/análisis , Aerosoles/toxicidad , Monitoreo del Ambiente , Gases/análisis , Gases/toxicidad , Golfo de México , Humanos , Modelos Teóricos , Compuestos Orgánicos/análisis , Compuestos Orgánicos/toxicidad , Material Particulado/análisis , Material Particulado/toxicidad , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA