Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cancer Immunol Immunother ; 72(11): 3507-3521, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37526660

RESUMEN

The human cutaneous metastatic melanoma is the deadliest skin cancer. Partial, or less frequently complete spontaneous regressions could be observed, mainly mediated by T cells. Nevertheless, the underlying mechanisms are not fully unraveled. We investigated the first events of the immune response related to cancer regression in Melanoma-bearing Libechov Minipigs (MeLiM), a unique swine model of cutaneous melanoma that regresses spontaneously. Using a multiparameter flow cytometry strategy and integrating new clinical and histological criteria of the regression, we show that T cells and B cells are present only in the late stages, arguing against their role in the initial destruction of malignant cells. NK cells infiltrate the tumors before T cells and therefore might be involved in the induction of the regression process. Myeloid cells represent the main immune population within the tumor microenvironment regardless of the regression stage. Among those, MHCII+ CD163- macrophages that differ phenotypically and functionally compared to other tumor-associated macrophages, increase in number together with the first signs of regression suggesting their crucial contribution to initiating the regression process. Our study supports the importance of macrophage reprogramming in humans to improve current immunotherapy for metastatic melanoma.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Porcinos , Animales , Humanos , Melanoma/patología , Neoplasias Cutáneas/patología , Porcinos Enanos , Macrófagos/patología , Microambiente Tumoral , Melanoma Cutáneo Maligno
2.
Vet Res ; 52(1): 33, 2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33632315

RESUMEN

In livestock species, the monolayer of epithelial cells covering the digestive mucosa plays an essential role for nutrition and gut barrier function. However, research on farm animal intestinal epithelium has been hampered by the lack of appropriate in vitro models. Over the past decade, methods to culture livestock intestinal organoids have been developed in pig, bovine, rabbit, horse, sheep and chicken. Gut organoids from farm animals are obtained by seeding tissue-derived intestinal epithelial stem cells in a 3-dimensional culture environment reproducing in vitro the stem cell niche. These organoids can be generated rapidly within days and are formed by a monolayer of polarized epithelial cells containing the diverse differentiated epithelial progeny, recapitulating the original structure and function of the native epithelium. The phenotype of intestinal organoids is stable in long-term culture and reflects characteristics of the digestive segment of origin. Farm animal intestinal organoids can be amplified in vitro, cryopreserved and used for multiple experiments, allowing an efficient reduction of the use of live animals for experimentation. Most of the studies using livestock intestinal organoids were used to investigate host-microbe interactions at the epithelial surface, mainly focused on enteric infections with viruses, bacteria or parasites. Numerous other applications of farm animal intestinal organoids include studies on nutrient absorption, genome editing and bioactive compounds screening relevant for agricultural, veterinary and biomedical sciences. Further improvements of the methods used to culture intestinal organoids from farm animals are required to replicate more closely the intestinal tissue complexity, including the presence of non-epithelial cell types and of the gut microbiota. Harmonization of the methods used to culture livestock intestinal organoids will also be required to increase the reproducibility of the results obtained in these models. In this review, we summarize the methods used to generate and cryopreserve intestinal organoids in farm animals, present their phenotypes and discuss current and future applications of this innovative culture system of the digestive epithelium.


Asunto(s)
Animales Domésticos/anatomía & histología , Técnicas de Cultivo de Célula/veterinaria , Criopreservación/veterinaria , Intestino Grueso/citología , Intestino Delgado/citología , Organoides/citología , Animales , Técnicas de Cultivo de Célula/métodos , Criopreservación/métodos , Células Epiteliales/citología , Mucosa Intestinal/citología
3.
Genet Sel Evol ; 53(1): 24, 2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33731010

RESUMEN

BACKGROUND: The impact of individual genetic and genomic variations on immune responses is an emerging lever investigated in vaccination strategies. In our study, we used genetic and pre-vaccination blood transcriptomic data to study vaccine effectiveness in pigs. RESULTS: A cohort of 182 Large White pigs was vaccinated against Mycoplasma hyopneumoniae (M. hyo) at weaning (28 days of age), with a booster 21 days later. Vaccine response was assessed by measuring seric M. hyo antibodies (Ab) at 0 (vaccination day), 21 (booster day), 28, 35, and 118 days post-vaccination (dpv). Inter-individual variability of M. hyo Ab levels was observed at all time points and the corresponding heritabilities ranged from 0.46 to 0.57. Ab persistence was higher in females than in males. Genome-wide association studies with a 658 K SNP panel revealed two genomic regions associated with variations of M. hyo Ab levels at 21 dpv at positions where immunity-related genes have been mapped, DAB2IP on chromosome 1, and ASAP1, CYRIB and GSDMC on chromosome 4. We studied covariations of Ab responses with the pre-vaccination blood transcriptome obtained by RNA-Seq for a subset of 82 pigs. Weighted gene correlation network and differential expression analyses between pigs that differed in Ab responses highlighted biological functions that were enriched in heme biosynthesis and platelet activation for low response at 21 dpv, innate antiviral immunity and dendritic cells for high response at 28 and 35 dpv, and cell adhesion and extracellular matrix for high response at 118 dpv. Sparse partial least squares discriminant analysis identified 101 genes that efficiently predicted divergent responders at all time points. We found weak negative correlations of M. hyo Ab levels with body weight traits, which revealed a trade-off that needs to be further explored. CONCLUSIONS: We confirmed the influence of the host genetics on vaccine effectiveness to M. hyo and provided evidence that the pre-vaccination blood transcriptome co-varies with the Ab response. Our results highlight that both genetic markers and blood biomarkers could be used as potential predictors of vaccine response levels and more studies are required to assess whether they can be exploited in breeding programs.


Asunto(s)
Inmunogenicidad Vacunal , Neumonía Porcina por Mycoplasma/genética , Polimorfismo de Nucleótido Simple , Porcinos/genética , Transcriptoma , Animales , Anticuerpos/sangre , Anticuerpos/genética , Anticuerpos/inmunología , Femenino , Hemo/metabolismo , Inmunidad Innata , Masculino , Mycoplasma hyopneumoniae/inmunología , Activación Plaquetaria , Neumonía Porcina por Mycoplasma/inmunología , Neumonía Porcina por Mycoplasma/prevención & control , Porcinos/inmunología , Vacunación/veterinaria
4.
BMC Biol ; 17(1): 108, 2019 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-31884969

RESUMEN

BACKGROUND: Comparative genomics studies are central in identifying the coding and non-coding elements associated with complex traits, and the functional annotation of genomes is a critical step to decipher the genotype-to-phenotype relationships in livestock animals. As part of the Functional Annotation of Animal Genomes (FAANG) action, the FR-AgENCODE project aimed to create reference functional maps of domesticated animals by profiling the landscape of transcription (RNA-seq), chromatin accessibility (ATAC-seq) and conformation (Hi-C) in species representing ruminants (cattle, goat), monogastrics (pig) and birds (chicken), using three target samples related to metabolism (liver) and immunity (CD4+ and CD8+ T cells). RESULTS: RNA-seq assays considerably extended the available catalog of annotated transcripts and identified differentially expressed genes with unknown function, including new syntenic lncRNAs. ATAC-seq highlighted an enrichment for transcription factor binding sites in differentially accessible regions of the chromatin. Comparative analyses revealed a core set of conserved regulatory regions across species. Topologically associating domains (TADs) and epigenetic A/B compartments annotated from Hi-C data were consistent with RNA-seq and ATAC-seq data. Multi-species comparisons showed that conserved TAD boundaries had stronger insulation properties than species-specific ones and that the genomic distribution of orthologous genes in A/B compartments was significantly conserved across species. CONCLUSIONS: We report the first multi-species and multi-assay genome annotation results obtained by a FAANG project. Beyond the generation of reference annotations and the confirmation of previous findings on model animals, the integrative analysis of data from multiple assays and species sheds a new light on the multi-scale selective pressure shaping genome organization from birds to mammals. Overall, these results emphasize the value of FAANG for research on domesticated animals and reinforces the importance of future meta-analyses of the reference datasets being generated by this community on different species.


Asunto(s)
Animales Domésticos/genética , Cromatina/genética , Anotación de Secuencia Molecular , Transcriptoma , Animales , Bovinos , Pollos , Cabras , Filogenia , Sus scrofa
5.
J Anim Breed Genet ; 137(1): 60-72, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31482656

RESUMEN

Enterotoxigenic Escherichia coli (ETEC) is the aetiological agent of postweaning diarrhoea (PWD) in piglets. The SNPs located on the Mucine 4 (MUC4) and Fucosyltransferase 1 (FUT1) genes have been associated with the susceptibility to ETEC F4 and ETEC F18, respectively. The interplay between the MUC4 and FUT1 genotypes to ETEC infection and the use of amoxicillin in modifying the intestinal microbiota during a natural infection by multiresistant ETEC strains have never been investigated. The aim of this study was to evaluate the effects of the MUC4 and FUT1 genotypes and the administration of amoxicillin through different routes on the presence of diarrhoea and the faecal microbiota composition in piglets naturally infected with ETEC. Seventy-one piglets were divided into three groups: two groups differing by amoxicillin administration routes-parenteral (P) or oral (O) and a control group without antibiotics (C). Faecal scores, body weight, presence of ETEC F4 and F18 were investigated 4 days after the arrival in the facility (T0), at the end of the amoxicillin administration (T1) and after the withdrawal period (T2). The faecal bacteria composition was assessed by sequencing the 16S rRNA gene. We described that MUC4 and FUT1 genotypes were associated with the presence of ETEC F4 and ETEC F18. The faecal microbiota was influenced by the MUC4 genotypes at T0. We found the oral administration to be associated with the presence of diarrhoea at T1 and T2. Furthermore, the exposure to amoxicillin resulted in significant alterations of the faecal microbiota. Overall, MUC4 and FUT1 were confirmed as genetic markers for the susceptibility to ETEC infections in pigs. Moreover, our data highlight that group amoxicillin treatment may produce adverse outcomes on pig health in course of multiresistant ETEC infection. Therefore, alternative control measures able to maintain a healthy faecal microbiota in weaners are recommended.


Asunto(s)
Amoxicilina/farmacología , Diarrea/genética , Infecciones por Escherichia coli/complicaciones , Heces/microbiología , Genotipo , Microbiota , Porcinos/microbiología , Amoxicilina/administración & dosificación , Amoxicilina/uso terapéutico , Animales , ADN Bacteriano/genética , Diarrea/complicaciones , Diarrea/tratamiento farmacológico , Diarrea/microbiología , Escherichia coli Enterotoxigénica/fisiología , Polimorfismo de Nucleótido Simple , Porcinos/genética , Destete
6.
Immunogenetics ; 70(4): 209-222, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29052750

RESUMEN

The cluster of differentiation 4 (CD4) molecule functions as a co-receptor for MHC class II binding to TCR in T helper cells. A CD4 epitope deficiency was identified in the swine MeLiM (melanoblastoma-bearing Libechov minipig) strain, a model for spontaneous cutaneous melanoma development and regression. Extensive sequencing revealed a high genetic variability of CD4 and the existence of several haplotypes segregating in MeLiM. Forty polymorphisms were identified in the coding sequence, out of which 20 correspond to non-synonymous variants and 10 are located in the 3'UTR of CD4 transcripts. One of the haplotypes segregating in the MeLiM explained the epitope deficiency observed. An association analysis between CD4 genotype and several phenotypes related to tumor regression was performed in 267 animals. An association was evidenced between a MeLiM alternative CD4 haplotype and skin and eye depigmentation, as well as the extent of hair depigmentation. Also, seric IgG concentration was shown to be higher in pigs carrying the alternative haplotype at the homozygous state. In conclusion, the genetic variability of the CD4 gene is associated with immune response-related phenotypes in MeLiM minipigs.


Asunto(s)
Antígenos CD4/genética , Predisposición Genética a la Enfermedad/genética , Haplotipos , Melanoma/genética , Neoplasias Cutáneas/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Femenino , Inmunoglobulina G/sangre , Masculino , Melanoma/sangre , Polimorfismo de Nucleótido Simple , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico , Neoplasias Cutáneas/sangre , Pigmentación de la Piel/genética , Porcinos , Porcinos Enanos
7.
Am J Physiol Lung Cell Mol Physiol ; 310(7): L689-99, 2016 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-26747784

RESUMEN

Influenza A viruses (IAV) trigger contagious acute respiratory diseases. A better understanding of the molecular mechanisms of IAV pathogenesis and host immune responses is required for the development of more efficient treatments of severe influenza. Calpains are intracellular proteases that participate in diverse cellular responses, including inflammation. Here, we used in vitro and in vivo approaches to investigate the role of calpain signaling in IAV pathogenesis. Calpain expression and activity were found altered in IAV-infected bronchial epithelial cells. With the use of small-interfering RNA (siRNA) gene silencing, specific synthetic inhibitors of calpains, and mice overexpressing calpastatin, we found that calpain inhibition dampens IAV replication and IAV-triggered secretion of proinflammatory mediators and leukocyte infiltration. Remarkably, calpain inhibition has a protective impact in IAV infection, since it significantly reduced mortality of mice challenged not only by seasonal H3N2- but also by hypervirulent H5N1 IAV strains. Hence, our study suggests that calpains are promising therapeutic targets for treating IAV acute pneumonia.


Asunto(s)
Calpaína/fisiología , Subtipo H5N1 del Virus de la Influenza A/inmunología , Gripe Humana/enzimología , Animales , Citocinas/metabolismo , Perros , Células Epiteliales/inmunología , Células Epiteliales/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación Viral de la Expresión Génica , Humanos , Gripe Humana/inmunología , Gripe Humana/virología , Células de Riñón Canino Madin Darby , Ratones Endogámicos C57BL , Receptores de Reconocimiento de Patrones/metabolismo , Transducción de Señal , Replicación Viral
8.
J Infect Dis ; 210(2): 214-23, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24493823

RESUMEN

Influenza A virus triggers a contagious respiratory disease that can cause considerable morbidity and mortality. Using an in vitro approach, we previously demonstrated that the pattern recognition receptor retinoic acid-inducible gene I (RIG-I) plays a key role in influenza A virus-mediated immune response. However, the importance of RIG-I signaling in vivo has not been thoroughly examined, because of the lack of an appropriate mouse models. To circumvent this issue, we generated a new transgenic mouse overexpressing LGP2 (hereafter, "LGP2 TG mice"), a major regulator of the RIG-I signaling pathway. The time course of several parameters was compared in infected wild-type and LGP2 TG mice. We found that LGP2 TG mice displayed significantly reduced inflammatory mediators and a lower leukocyte infiltration into the bronchoalveolar airspace. More importantly, LGP2 TG mice had a significant survival advantage. Hence, our in vivo study reveals that LGP2 is a major downregulator of the influenza A virus-triggered detrimental inflammatory response.


Asunto(s)
Interacciones Huésped-Patógeno , Virus de la Influenza A/fisiología , ARN Helicasas/metabolismo , Animales , Proteína 58 DEAD Box , ARN Helicasas DEAD-box/metabolismo , Modelos Animales de Enfermedad , Expresión Génica , Mediadores de Inflamación/análisis , Leucocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/patología , Transducción de Señal , Análisis de Supervivencia
9.
J Virol ; 87(12): 6911-24, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23596287

RESUMEN

Interleukin-22 (IL-22) has redundant, protective, or pathogenic functions during autoimmune, inflammatory, and infectious diseases. Here, we addressed the potential role of IL-22 in host defense and pathogenesis during lethal and sublethal respiratory H3N2 influenza A virus (IAV) infection. We show that IL-22, as well as factors associated with its production, are expressed in the lung tissue during the early phases of IAV infection. Our data indicate that retinoic acid receptor-related orphan receptor-γt (RORγt)-positive αß and γδ T cells, as well as innate lymphoid cells, expressed enhanced Il22 transcripts as early as 2 days postinfection. During lethal or sublethal IAV infections, endogenous IL-22 played no role in the control of IAV replication and in the development of the IAV-specific CD8(+) T cell response. During lethal infection, where wild-type (WT) mice succumbed to severe pneumonia, the lack of IL-22 did not accelerate or delay IAV-associated pathogenesis and animal death. In stark contrast, during sublethal IAV infection, IL-22-deficient animals had enhanced lung injuries and showed a lower airway epithelial integrity relative to WT littermates. Of importance, the protective effect of endogenous IL-22 in pulmonary damages was associated with a more controlled secondary bacterial infection. Indeed, after challenge with Streptococcus pneumoniae, IAV-experienced Il22(-/-) animals were more susceptible than WT controls in terms of survival rate and bacterial burden in the lungs. Together, IL-22 plays no major role during lethal influenza but is beneficial during sublethal H3N2 IAV infection, where it limits lung inflammation and subsequent bacterial superinfections.


Asunto(s)
Infecciones Bacterianas/inmunología , Coinfección/inmunología , Subtipo H3N2 del Virus de la Influenza A/patogenicidad , Interleucinas/inmunología , Infecciones por Orthomyxoviridae/inmunología , Neumonía/inmunología , Animales , Infecciones Bacterianas/microbiología , Coinfección/microbiología , Humanos , Subtipo H3N2 del Virus de la Influenza A/inmunología , Pulmón/inmunología , Pulmón/microbiología , Pulmón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Infecciones por Orthomyxoviridae/mortalidad , Infecciones por Orthomyxoviridae/virología , Neumonía/patología , Infecciones del Sistema Respiratorio/inmunología , Infecciones del Sistema Respiratorio/microbiología , Streptococcus pneumoniae/patogenicidad , Interleucina-22
10.
PLoS Pathog ; 8(8): e1002841, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22916010

RESUMEN

Intracellular Toll-like receptors (TLRs) expressed by dendritic cells recognize nucleic acids derived from pathogens and play an important role in the immune responses against the influenza virus (IAV), a single-stranded RNA sensed by different receptors including TLR7. However, the importance of TLR7 processing in the development of anti-viral immune responses is not known. Here we report that asparagine endopeptidase (AEP) deficient mice are unable to generate a strong anti-IAV response, as demonstrated by reduced inflammation, cross presentation of cell-associated antigens and priming of CD8(+) T cells following TLR7-dependent pulmonary infection induced by IAV. Moreover, AEP deficient lung epithelial- or myeloid-cells exhibit impaired TLR7 signaling due to defective processing of this receptor. Indeed, TLR7 requires a proteolytic cleavage by AEP to generate a C-terminal fragment competent for signaling. Thus, AEP activity is critical for TLR7 processing, opening new possibilities for the treatment of influenza and TLR7-dependent inflammatory diseases.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Endopeptidasas/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Glicoproteínas de Membrana/inmunología , Infecciones por Orthomyxoviridae/inmunología , Transducción de Señal/inmunología , Receptor Toll-Like 7/inmunología , Animales , Linfocitos T CD8-positivos/metabolismo , Endopeptidasas/genética , Endopeptidasas/metabolismo , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Noqueados , Infecciones por Orthomyxoviridae/genética , Infecciones por Orthomyxoviridae/metabolismo , Transducción de Señal/genética , Receptor Toll-Like 7/genética , Receptor Toll-Like 7/metabolismo
11.
Poult Sci ; 103(1): 103175, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38029604

RESUMEN

Poultry production is an important agricultural sector for human food worldwide. Chicks after hatch often face health problems leading to economic losses that are deleterious for breeders. Avian defensin 2 (AvBD2) is a prominent host defense peptide of the intestinal mucosa of cecum and is involved in the resistance of poultry to bacterial pathogens. This peptide could thus represent an innate immunity marker of robustness of birds. To test this hypothesis by comparing fast-growing and slow-growing lines in different conditions of breeding, the chick's cecal AvBD2 content was analyzed according to animal quality and immunity indicators. Chick's cecal tissue sections labeled by immunohistochemistry with newly developed specific antibodies revealed the localization of AvBD2 in the mucosa with high individual variability, without showing differences attributable to quality indicators, but interestingly showing inverse correlation with seric IgM levels in the fast-growing line. The availability of our anti-AvBD2 antibodies to the scientific community opens perspectives to identify the cellular sources of this defensin in the cecal mucosa and to investigate the organization and function of innate immune arsenal of birds.


Asunto(s)
Pollos , Enfermedades de las Aves de Corral , Animales , Humanos , Inmunidad Innata , Mucosa Intestinal/microbiología , Bacterias , Defensinas , Ciego/microbiología , Enfermedades de las Aves de Corral/microbiología
12.
Poult Sci ; 103(6): 103650, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38555756

RESUMEN

Dietary ingredient and nutrient composition may affect the efficacy of additives in broilers. Specific feed ingredients can represent dietary challenging conditions for broilers, resulting in impaired performances and health, which might be alleviated by dietary probiotics and postbiotics. We assessed the effects of a Lactobacilli probiotic (Pro) and postbiotic (Post) when added to a standard (SD) and challenge (CD) diet. A completely randomized block study with 2 diets (SD, CD) and 3 additive conditions (Control, Pro and Post) involving 1,368 one-day-old Ross male broilers, equally distributed among 36 pens, from d1 to d42 was conducted. Both diets were formulated to contain identical levels of nutrients, with CD formulated to be richer than SD in nonstarch polysaccharides using rye and barley as ingredients. Readout parameters included growth performance parameters, footpad lesions score, blood minerals and biochemical parameters, and tibia health, strength, and composition. Compared to SD, CD decreased BW (1,936 vs. 2,033 g; p = 0.001), increased FCR (p < 0.01) and impaired tibia health and strength (p < 0.05) at d35, thereby confirming the challenging effect of CD. Pro and Post increased BW in CD (+4.7 and +3.2%, respectively, at d35; P < 0.05) but not in the SD group, without affecting FCR. Independently of the diet, Pro increased plasma calcium, phosphorus and uric acid at d21 (+6.2, +7.4, and +15.5%, respectively) and d35 (+6.6, +6.2 and +21.0%, respectively) (P < 0.05) while Post increased plasma magnesium only at d21 (+11.3%; P = 0.037). Blood bile acids were affected by additives in an age- and diet-dependent manner, with some opposite effects between dietary conditions. Diet composition modulated Pro and Post effects on broiler growth performance. Additionally, Pro and Post affected animal metabolism and leg health diet-dependently for some but not all investigated parameters. Our findings show that the effects of pro- and postbiotics on the growth performance and physiology of broilers can be dependent on diet composition and thus possibly other factors affecting diet characteristics.


Asunto(s)
Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales , Pollos , Dieta , Probióticos , Distribución Aleatoria , Animales , Pollos/crecimiento & desarrollo , Pollos/fisiología , Probióticos/administración & dosificación , Probióticos/farmacología , Masculino , Dieta/veterinaria , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales/efectos de los fármacos , Suplementos Dietéticos/análisis , Lactobacillus/fisiología
13.
Poult Sci ; 103(5): 103609, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38547541

RESUMEN

Vaccination is one of the most effective strategies for preventing infectious diseases but individual vaccine responses are highly heterogeneous. Host genetics and gut microbiota composition are 2 likely drivers of this heterogeneity. We studied 94 animals belonging to 4 lines of laying hens: a White Leghorn experimental line genetically selected for a high antibody response against the Newcastle Disease Virus (NDV) vaccine (ND3) and its unselected control line (CTR), and 2 commercial lines (White Leghorn [LEG] and Rhode Island Red [RIR]). Animals were reared in the same conditions from hatching to 42 d of age, and animals from different genetic lines were mixed. Animals were vaccinated at 22 d of age and their humoral vaccine response against NDV was assessed by hemagglutination inhibition assay and ELISA from blood samples collected at 15, 19, and 21 d after vaccination. The immune parameters studied were the 3 immunoglobulins subtypes A, M, and Y and the blood cell composition was assessed by flow cytometry. The composition of the cecal microbiota was assessed at the end of the experiment by analyzing amplified 16S rRNA gene sequences to obtain amplicon sequence variants (ASV). The 4 lines showed significantly different levels of NDV vaccine response at the 3 measured points, with, logically, a higher response of the genetically selected ND3 line, and intermediate and low responses for the unselected CTR control line and for the 2 commercial lines, respectively. The ND3 line displayed also a higher proportion of immunoglobulins (IgA, IgM, and IgY). The RIR line showed the most different blood cell composition. The 4 lines showed significantly different microbiota characteristics: composition, abundances at all taxonomic levels, and correlations between genera and vaccine response. The tested genetic lines differ for immune parameters and gut microbiota composition and functions. These phenotypic differences can be attributed to genetic differences between lines. Causal relationships between both types of parameters are discussed and will be investigated in further studies.


Asunto(s)
Ciego , Pollos , Microbioma Gastrointestinal , Virus de la Enfermedad de Newcastle , Vacunas Virales , Animales , Pollos/inmunología , Pollos/genética , Pollos/microbiología , Femenino , Virus de la Enfermedad de Newcastle/inmunología , Vacunas Virales/inmunología , Ciego/microbiología , Ciego/inmunología , Enfermedades de las Aves de Corral/microbiología , Enfermedades de las Aves de Corral/inmunología , Enfermedad de Newcastle/inmunología , Vacunación/veterinaria , ARN Ribosómico 16S/análisis , ARN Ribosómico 16S/genética
14.
Microbiome ; 12(1): 116, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38943206

RESUMEN

BACKGROUND: Population stratification based on interindividual variability in gut microbiota composition has revealed the existence of several ecotypes named enterotypes in humans and various animal species. Enterotypes are often associated with environmental factors including diet, but knowledge of the role of host genetics remains scarce. Moreover, enterotypes harbor functionalities likely associated with varying abilities and susceptibilities of their host. Previously, we showed that under controlled conditions, 60-day-old pig populations consistently split into two enterotypes with either Prevotella and Mitsuokella (PM enterotype) or Ruminococcus and Treponema (RT enterotype) as keystone taxa. Here, our aim was to rely on pig as a model to study the influence of host genetics to assemble enterotypes, and to provide clues on enterotype functional differences and their links with growth traits. RESULTS: We established two pig lines contrasted for abundances of the genera pairs specifying each enterotype at 60 days of age and assessed them for fecal microbiota composition and growth throughout three consecutive generations. Response to selection across three generations revealed, per line, an increase in the prevalence of the selected enterotype and in the average relative abundances of directly and indirectly selected bacterial genera. The PM enterotype was found less diverse than the RT enterotype but more efficient for piglet growth during the post-weaning period. Shotgun metagenomics revealed differentially abundant bacterial species between the two enterotypes. By using the KEGG Orthology database, we show that functions related to starch degradation and polysaccharide metabolism are enriched in the PM enterotype, whereas functions related to general nucleoside transport and peptide/nickel transport are enriched in the RT enterotype. Our results also suggest that the PM and RT enterotypes might differ in the metabolism of valine, leucin, and isoleucine, favoring their biosynthesis and degradation, respectively. CONCLUSION: We experimentally demonstrated that enterotypes are functional ecosystems that can be selected as a whole by exerting pressure on the host genetics. We also highlight that holobionts should be considered as units of selection in breeding programs. These results pave the way for a holistic use of host genetics, microbiota diversity, and enterotype functionalities to understand holobiont shaping and adaptation. Video Abstract.


Asunto(s)
Heces , Microbioma Gastrointestinal , Animales , Microbioma Gastrointestinal/genética , Porcinos/microbiología , Heces/microbiología , Bacterias/clasificación , Bacterias/genética , Metagenómica/métodos , Prevotella/genética , Prevotella/clasificación , Ruminococcus/genética , Treponema/genética
15.
Sci Rep ; 14(1): 9240, 2024 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649394

RESUMEN

In MeLiM minipigs, melanomas develop around birth, can metastasize, and have histopathologic characteristics similar to humans. Interestingly, MeLiM melanomas eventually regress. This favorable outcome raises the question of their malignancy, which we investigated. We clinically followed tens of tumors from onset to first signs of regression. Transcriptome analysis revealed an enrichment of all cancer hallmarks in melanomas, although no activating or suppressing somatic mutation were found in common driver genes. Analysis of tumor cell genomes revealed high mutation rates without UV signature. Canonical proliferative, survival and angiogenic pathways were detected in MeLiM tumor cells all along progression stages. Functionally, we show that MeLiM melanoma cells are capable to grow in immunocompromised mice, with serial passages and for a longer time than in MeLiM pigs. Pigs set in place an immune response during progression with dense infiltration by myeloid cells while melanoma cells are deficient in B2M expression. To conclude, our data on MeLiM melanomas reveal several malignancy characteristics. The combination of these features with the successful spontaneous regression of these tumors make it an outstanding model to study an efficient anti-tumor immune response.


Asunto(s)
Melanoma , Regresión Neoplásica Espontánea , Porcinos Enanos , Animales , Porcinos , Melanoma/patología , Melanoma/genética , Ratones , Regresión Neoplásica Espontánea/patología , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/genética , Mutación , Regulación Neoplásica de la Expresión Génica , Perfilación de la Expresión Génica , Modelos Animales de Enfermedad
16.
J Biol Chem ; 287(12): 8816-29, 2012 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-22294696

RESUMEN

Invariant natural killer T (iNKT) cells are non-conventional lipid-reactive αß T lymphocytes that play a key role in host responses during viral infections, in particular through the swift production of cytokines. Their beneficial role during experimental influenza A virus (IAV) infection has recently been proposed, although the mechanisms involved remain elusive. Here we show that during in vivo IAV infection, mouse pulmonary iNKT cells produce IFN-γ and IL-22, a Th17-related cytokine critical in mucosal immunity. Although permissive to viral replication, IL-22 production by iNKT cells is not due to IAV infection per se of these cells but is indirectly mediated by IAV-infected dendritic cells (DCs). We show that activation of the viral RNA sensors TLR7 and RIG-I in DCs is important for triggering IL-22 secretion by iNKT cells, whereas the NOD-like receptors NOD2 and NLRP3 are dispensable. Invariant NKT cells respond to IL-1ß and IL-23 provided by infected DCs independently of the CD1d molecule to release IL-22. In vitro, IL-22 protects IAV-infected airway epithelial cells against mortality but has no role on viral replication. Finally, during early IAV infection, IL-22 plays a positive role in the control of lung epithelial damages. Overall, IAV infection of DCs activates iNKT cells, providing a rapid source of IL-22 that might be beneficial to preserve the lung epithelium integrity.


Asunto(s)
Células Epiteliales/citología , Subtipo H3N2 del Virus de la Influenza A/fisiología , Gripe Humana/inmunología , Gripe Humana/fisiopatología , Interleucinas/inmunología , Pulmón/citología , Células T Asesinas Naturales/inmunología , Animales , Muerte Celular , Células Epiteliales/inmunología , Humanos , Subtipo H3N2 del Virus de la Influenza A/inmunología , Gripe Humana/virología , Pulmón/inmunología , Pulmón/virología , Masculino , Ratones , Ratones Endogámicos C57BL , Interleucina-22
17.
J Immunol ; 186(10): 5590-602, 2011 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-21490153

RESUMEN

Influenza A virus (IAV) infection results in a highly contagious respiratory illness leading to substantial morbidity and occasionally death. In this report, we assessed the in vivo physiological contribution of invariant NKT (iNKT) lymphocytes, a subset of lipid-reactive αß T lymphocytes, on the host response and viral pathogenesis using a virulent, mouse-adapted, IAV H3N2 strain. Upon infection with a lethal dose of IAV, iNKT cells become activated in the lungs and bronchoalveolar space to become rapidly anergic to further restimulation. Relative to wild-type animals, C57BL/6 mice deficient in iNKT cells (Jα18(-/-) mice) developed a more severe bronchopneumonia and had an accelerated fatal outcome, a phenomenon reversed by the adoptive transfer of NKT cells prior to infection. The enhanced pathology in Jα18(-/-) animals was not associated with either reduced or delayed viral clearance in the lungs or with a defective local NK cell response. In marked contrast, Jα18(-/-) mice displayed a dramatically reduced IAV-specific CD8(+) T cell response in the lungs and in lung-draining mediastinal lymph nodes. We further show that this defective CD8(+) T cell response correlates with an altered accumulation and maturation of pulmonary CD103(+), but not CD11b(high), dendritic cells in the mediastinal lymph nodes. Taken together, these findings point to a role for iNKT cells in the control of pneumonia as well as in the development of the CD8(+) T cell response during the early stage of acute IAV H3N2 infection.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Inflamación/inmunología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Pulmón/inmunología , Células T Asesinas Naturales/inmunología , Infecciones por Orthomyxoviridae/inmunología , Neumonía Viral/inmunología , Traslado Adoptivo , Animales , Antígenos CD , Bronconeumonía , Antígeno CD11b , Linfocitos T CD8-positivos/metabolismo , Células Dendríticas/inmunología , Ensayo de Inmunoadsorción Enzimática , Subtipo H3N2 del Virus de la Influenza A/patogenicidad , Cadenas alfa de Integrinas , Pulmón/virología , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/virología , Neumonía Viral/patología , Neumonía Viral/virología , Reacción en Cadena de la Polimerasa , Carga Viral
18.
PLoS One ; 18(5): e0285724, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37253049

RESUMEN

Lung transplantation is the only curative option for end-stage chronic respiratory diseases. However the survival rate is only about 50% at 5 years. Although experimental evidences have shown that innate allo-responses impact on the clinical outcome, the knowledge of the involved mechanisms involved is limited. We established a cross-circulatory platform to monitor the early recruitment and activation of immune cells in an extracorporeal donor lung by coupling blood perfusion to cell mapping with a fluorescent marker in the pig, a commonly-used species for lung transplantation. The perfusing pig cells were easily detectable in lung cell suspensions, in broncho-alveolar lavages and in different areas of lung sections, indicating infiltration of the organ. Myeloid cells (granulocytes and monocytic cells) were the dominant recruited subsets. Between 6 and 10 h of perfusion, recruited monocytic cells presented a strong upregulation of MHC class II and CD80/86 expression, whereas alveolar macrophages and donor monocytic cells showed no significant modulation of expression. This cross-circulation model allowed us to monitor the initial encounter between perfusing cells and the lung graft, in an easy, rapid, and controllable manner, to generate robust information on innate response and test targeted therapies for improvement of lung transplantation outcome.


Asunto(s)
Trasplante de Pulmón , Animales , Porcinos , Pulmón , Genes MHC Clase II , Perfusión
19.
Sci Rep ; 12(1): 9995, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35705568

RESUMEN

Interactions between the gut microbiota and the immune system may be involved in vaccine and infection responses. In the present study, we studied the interactions between caecal microbiota composition and parameters describing the immune response in six experimental inbred chicken lines harboring different MHC haplotypes. Animals were challenge-infected with the infectious bronchitis virus (IBV), and half of them were previously vaccinated against this pathogen. We explored to what extent the gut microbiota composition and the genetic line could be related to the immune response, evaluated through flow cytometry. To do so, we characterized the caecal bacterial communities with a 16S rRNA gene amplicon sequencing approach performed one week after the IBV infectious challenge. We observed significant effects of both the vaccination and the genetic line on the microbiota after the challenge infection with IBV, with a lower bacterial richness in vaccinated chickens. We also observed dissimilar caecal community profiles among the different lines, and between the vaccinated and non-vaccinated animals. The effect of vaccination was similar in all the lines, with a reduced abundance of OTU from the Ruminococcacea UCG-014 and Faecalibacterium genera, and an increased abundance of OTU from the Eisenbergiella genus. The main association between the caecal microbiota and the immune phenotypes involved TCRϒδ expression on TCRϒδ+ T cells. This phenotype was negatively associated with OTU from the Escherichia-Shigella genus that were also less abundant in the lines with the highest responses to the vaccine. We proved that the caecal microbiota composition is associated with the IBV vaccine response level in inbred chicken lines, and that the TCRϒδ+ T cells (judged by TCRϒδ expression) may be an important component involved in this interaction, especially with bacteria from the Escherichia-Shigella genus. We hypothesized that bacteria from the Escherichia-Shigella genus increased the systemic level of bacterial lipid antigens, which subsequently mitigated poultry γδ T cells.


Asunto(s)
Infecciones por Coronavirus , Virus de la Bronquitis Infecciosa , Microbiota , Enfermedades de las Aves de Corral , Vacunas Virales , Animales , Pollos , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/veterinaria , Enfermedades de las Aves de Corral/genética , Enfermedades de las Aves de Corral/prevención & control , ARN Ribosómico 16S/genética , Receptores de Antígenos de Linfocitos T , Vacunación/veterinaria
20.
Transplantation ; 106(5): 979-987, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-34468431

RESUMEN

BACKGROUND: Normothermic ex vivo lung perfusion (EVLP) increases the pool of donor lungs by requalifying marginal lungs refused for transplantation through the recovery of macroscopic and functional properties. However, the cell response and metabolism occurring during EVLP generate a nonphysiological accumulation of electrolytes, metabolites, cytokines, and other cellular byproducts which may have deleterious effects both at the organ and cell levels, with impact on transplantation outcomes. METHODS: We analyzed the physiological, metabolic, and genome-wide response of lungs undergoing a 6-h EVLP procedure in a pig model in 4 experimental conditions: without perfusate modification, with partial replacement of fluid, and with adult or pediatric dialysis filters. RESULTS: Adult and pediatric dialysis stabilized the electrolytic and metabolic profiles while maintaining acid-base and gas exchanges. Pediatric dialysis increased the level of IL-10 and IL-6 in the perfusate. Despite leading to modification of the perfusate composition, the 4 EVLP conditions did not affect the gene expression profiles, which were associated in all cases with increased cell survival, cell proliferation, inflammatory response and cell movement, and with inhibition of bleeding. CONCLUSIONS: Management of EVLP perfusate by periodic replacement and continuous dialysis has no significant effect on the lung function nor on the gene expression profiles ex vivo. These results suggest that the accumulation of dialyzable cell products does not significantly alter the lung cell response during EVLP, a finding that may have impact on EVLP management in the clinic.


Asunto(s)
Trasplante de Pulmón , Preservación de Órganos , Animales , Humanos , Pulmón , Trasplante de Pulmón/métodos , Preservación de Órganos/métodos , Perfusión/métodos , Diálisis Renal , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA